Development of 3-Dimensional Fully Nonlinear Potential Flow Planar Wave Tank in Framework of OpenFOAM

Lin, Z., Qian, L., Bai, W., Ma, X., Chen, H. and Zhou, J.-G. (2019) Development of 3-Dimensional Fully Nonlinear Potential Flow Planar Wave Tank in Framework of OpenFOAM. In: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, 09-14 Jun 2019, V009T12A014. ISBN 9780791858882 (doi: 10.1115/OMAE2019-96098)

Full text not currently available from Enlighten.

Abstract

A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Chen, Dr Hao
Authors: Lin, Z., Qian, L., Bai, W., Ma, X., Chen, H., and Zhou, J.-G.
College/School:College of Science and Engineering > School of Engineering
ISBN:9780791858882

University Staff: Request a correction | Enlighten Editors: Update this record