
http://eprints.gla.ac.uk/24801/

Deposited on: 11 February 2010
Electronic proceedings

For further information on the meeting, for all abstracts of talks and posters as well as other articles of these proceedings, please visit the following web site:

http://espm.kis.uni-freiburg.de

edited by Hardi Peter
Kiepenheuer-Institut für Sonnenphysik
Freiburg, Germany
peter@kis.uni-freiburg.de
We report here on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. Selected profiles for lines with formation temperatures between log(T)=4.7 and log(T)=6.3 are given and are used to explain the existence of dark features in the raster images. We estimate the contribution of the He II 256.32 Å line in the raster image at 256 Å in the prominence region. We compare the observed prominence profiles with theoretical profiles from non-LTE radiative transfer models and deduce the contribution of resonant scattering in the He II 256 Å emission.
Solar Prominence Diagnostic with Hinode/EIS

With a touch of non-LTE radiative transfer calculations

Nicolas Labrosse
University of Glasgow

Brigitte Schmieder
Observatoire de Paris Meudon

Petr Heinzel, Stanislav Gunar
Ondrejov Observatory, Astr. Inst. of Academy of Science

The International Team 123 on Spectroscopy and Imaging of Quiescent and Eruptive Solar Prominences from Space acknowledges the support of the International Space Science Institute
Prominence observed on 25 and 26 April 2007

JOP 178: http://gaia.bagn.obs-mip.fr/jop178/
– EIS:
 ● Rasters with 1” and 2” slits
 ● Line profiles in [167-211] and [246-291] Å
– SOT Hα

– Dark prominence structure seen in TRACE and EIS 195 Å images
 ● due to absorption in HI, HeI and HeII resonance continua
 ● and to coronal emissivity blocking due to prominence cavity
– XRT void due to X-ray emissivity blocking
– Determination of column densities and ionization degree of H
• Movie / stills
The blend at 256 Å

A typical raster with EIS at 256 Å
Contributions from [Young et al. 2007]

- He II 256.32 Å (log T ~ 4.7)
- Si X 256.37 Å (log T ~ 6.1)
- Fe XII 256.41 Å (log T ~ 6.1)
- Fe XIII 256.42 Å (log T ~ 6.2)

The coronal lines dominate above the limb (not in prominence)

Procedure to obtain the 'real' He II emission at 256.32 Å

- Use Si X 261.04 Å (unblended)
 - has fixed ratio with Si X 256.37 Å
- Remove Si X 256.37 Å
- Fit resulting signal with 1 or 2 gaussians to remove Fe XII/Fe XIII
The blend at 256 Å
Line profiles at 256 Å in bright prominence

Si X 261.04
Si X 256.37
Fe XII/Fe XIII 256.4

EIS spectrum with line blends

He II 256.32 contributes for ~ 25% of the total emission!
Calculation of He II line at 256.32 Å

• 1D plane-parallel vertical slab

Free parameters
- Gas pressure
- Temperature
- Column mass
- Height above the limb
- Radial velocity

Equations to solve
- Pressure equilibrium, ionisation and statistical equilibria (SE), radiative transfer (RT) for H (20 levels)
- SE, RT for other elements: He I (29 levels) + He II (4 levels)

\[
\begin{align*}
p(m) &= 4p_c \frac{m}{M} \left(1 - \frac{m}{M}\right) + p_0 \\
T(m) &= T_{cen} + (T_{tr} - T_{cen}) \left[1 - 4 \frac{m}{M} \left(1 - \frac{m}{M}\right)\right]
\end{align*}
\]

(Anzer & Heinzel 1999)
Prominence plasma parameters

Obtained by comparison between grid of computed profiles and observed profiles

Model results

- Column mass: 9×10^{-4} g cm$^{-2}$
- Mean H density: 8.4×10^{10} cm$^{-3}$

 (He abundance=0.10)

- Area of bright part: 5×10^{18} cm2
- Mass: 5×10^{15} g
Results (2)

Hydrogen ionisation

\[\frac{n_p}{n_H} \]
- Surface: 1
- Centre: 0.94

Temperature
- Surface: 10^5 K
- Centre: 10^4 K

Helium ionisation

\[\frac{n_{(He II)}}{n_{(He)}} \]
- Surface: 0.20
- Centre: 3.3×10^{-5}
- Max = 0.99

\[\frac{n_{(He III)}}{n_{(He)}} \]
- Surface: 0.8
- Centre: 0
EIS provides a new view on prominences
Enables us to probe different regions of prominences
Emission at 256 Å can be understood in this prominence as

- ~25% He II 256
- The rest coming from coronal lines (emission from the corona in front of the prominence)

The He II line is formed by

- Scattering of the incident radiation (50%-70%)
- Collisional excitation

Non-LTE computations are necessary to interpret this part of the spectrum