Multiparty Session Types for Safe Runtime Adaptation in an Actor Language (Artifact)

Paul Harvey Rakuten Mobile Innovation Studio, Tokyo, Japan

Simon Fowler School of Computing Science, University of Glasgow, Scotland, UK

Ornela Dardha School of Computing Science, University of Glasgow, Scotland, UK

Simon J. Gay School of Computing Science, University of Glasgow, Scotland, UK

Abstract

This is the companion artifact for the paper “Multiparty Session Types for Safe Runtime Adaptation in an Actor Language”. EnsembleS is an actor-based programming language supporting dynamic self-adaptation, (discovery, replacement, and communication), which also guarantees communication safety. The artifact includes the EnsembleS compiler, the modified StMungo code, and all examples contained within the paper.

2012 ACM Subject Classification Software and its engineering → Concurrent programming languages

Keywords and phrases Concurrency, session types, adaptation, actors, trust

Funding Supported by EPSRC grants EP/T014628/1 (STARDUST), EP/K034413/1 (ABCD), EP/L01503X/1 (CDT in Pervasive Parallelism), ERC Consolidator Grant Skye (682315), and by the EU HORIZON 2020 MSCA RISE project 778233 (BehAPI).

Acknowledgements Thanks to the ECOOP’21 AEC for their useful comments.


1 Scope

The artifact showcases the implementation of the EnsembleS compiler and typechecker, and shows that it can run the example code included in the paper. It also shows how the typechecker will statically detect errors.

2 Content

The artifact package includes:

- The EnsembleS implementation, in particular the compiler and typechecker
- A modified StMungo implementation which generates EnsembleS template code
- The example code from the paper

© Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay; licensed under Creative Commons License CC-BY 4.0

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

This artifact has been tested on VirtualBox 6.1 on Arch Linux, with 16GB RAM and an Intel Core i7 9th Gen. It should be runnable on any modern laptop or desktop machine.

5 License

The artifact is available under the GPLv3 license.

6 MD5 sum of the artifact

8b223e1c291a4fc141040acb18b094fb

7 Size of the artifact

6.33 GiB