The Simpson's Paradox in the offline evaluation of recommendation systems

Jadidinejad, A. H. , Macdonald, C. and Ounis, I. (2021) The Simpson's Paradox in the offline evaluation of recommendation systems. ACM Transactions on Information Systems, 40(1), 4. (doi: 10.1145/3458509)

[img] Text
238170.pdf - Accepted Version

1MB

Abstract

Recommendation systems are often evaluated based on user’s interactions that were collected from an existing, already deployed recommendation system. In this situation, users only provide feedback on the exposed items and they may not leave feedback on other items since they have not been exposed to them by the deployed system. As a result, the collected feedback dataset that is used to evaluate a new model is influenced by the deployed system, as a form of closed loop feedback. In this article, we show that the typical offline evaluation of recommender systems suffers from the so-called Simpson’s paradox. Simpson’s paradox is the name given to a phenomenon observed when a significant trend appears in several different sub-populations of observational data but disappears or is even reversed when these sub-populations are combined together. Our in-depth experiments based on stratified sampling reveal that a very small minority of items that are frequently exposed by the deployed system plays a confounding factor in the offline evaluation of recommendation systems. In addition, we propose a novel evaluation methodology that takes into account the confounder, i.e., the deployed system’s characteristics. Using the relative comparison of many recommendation models as in the typical offline evaluation of recommender systems, and based on the Kendall rank correlation coefficient, we show that our proposed evaluation methodology exhibits statistically significant improvements of 14% and 40% on the examined open loop datasets (Yahoo! and Coat), respectively, in reflecting the true ranking of systems with an open loop (randomised) evaluation in comparison to the standard evaluation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Jadidinejad, Dr Amir and Ounis, Professor Iadh and Macdonald, Dr Craig
Authors: Jadidinejad, A. H., Macdonald, C., and Ounis, I.
College/School:College of Science and Engineering > School of Computing Science
Journal Name:ACM Transactions on Information Systems
Publisher:ACM
ISSN:1046-8188
ISSN (Online):1558-2868
Copyright Holders:Copyright © 2021 Association for Computing Machinery
First Published:First published in ACM Transactions on Information Systems 40(1):4
Publisher Policy:Reproduced in accordance with the publisher copyright policy
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
300982Exploiting Closed-Loop Aspects in Computationally and Data Intensive AnalyticsRoderick Murray-SmithEngineering and Physical Sciences Research Council (EPSRC)EP/R018634/1Computing Science