The deformation and failure of strip footings on anisotropic cohesionless sloping grounds

Gao, Z. , Zhao, J. and Li, X. (2021) The deformation and failure of strip footings on anisotropic cohesionless sloping grounds. International Journal for Numerical and Analytical Methods in Geomechanics, 45(10), pp. 1526-1545. (doi: 10.1002/nag.3212)

[img] Text
237317.pdf - Published Version
Available under License Creative Commons Attribution.

4MB

Abstract

Footing foundations are sometimes built on sloping grounds of natural sand which is highly anisotropic. The anisotropic mechanical behaviour of sand can significantly influence the bearing capacity of a foundation and the failure mechanism of its supporting slope. Neglecting sand anisotropy may lead to overestimated bearing capacity and under‐design of foundations. A numerical investigation on the response of a supporting slope under a strip footing is presented, placing a special focus on the effect of sand anisotropy. A critical state sand model accounting for fabric evolution is used. The nonlocal method has been used to regularize the mesh‐dependency of the numerical solutions. Predictions of the anisotropic model on the bearing capacity of strip footings on slopes are validated by centrifuge test data on Toyoura sand. Compared to the centrifuge test data, an isotropic model may overpredict the bearing capacity of the footing by up to 100% when the model parameters are determined based on test data on a horizontal bedding plane case. When the isotropic model parameters are determined based on test data where the bedding plane is vertical, the predictions of bearing capacity can be improved for some cases but the settlement at failure may be significantly overestimated. The soil body tends to move along the bedding plane upon the footing loading due to the non‐coaxial strain increment caused by fabric anisotropy. The slip surface appears to be deeper with lower bearing capacity when the preferred soil movement direction caused by bedding plane is towards the slope.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Li, Xin and Gao, Dr Zhiwei
Authors: Gao, Z., Zhao, J., and Li, X.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:International Journal for Numerical and Analytical Methods in Geomechanics
Publisher:Wiley
ISSN:0363-9061
ISSN (Online):1096-9853
Published Online:03 May 2021
Copyright Holders:Copyright © 2021 The Authors
First Published:First published in International Journal for Numerical and Analytical Methods in Geomechanics 45(10): 1526-1545
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record