A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements

Howell, M., Inman, G. J. and Hill, C. S. (2002) A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements. Development, 129(12), pp. 2823-2834. (PMID:12050132)

Full text not currently available from Enlighten.

Publisher's URL: http://dev.biologists.org/content/129/12/2823.full

Abstract

In early Xenopus embryos, the prototypical XFast-1/Smad2/Smad4 complex ARF1 is induced at the Mix.2 ARE by activin overexpression. We have characterised ARF2, a related, but much more abundant, complex formed during gastrulation in response to endogenous TGFβ family members and we have identified a novel Fast family member, XFast-3, as its transcription factor component. Endogenous ARF2 efficiently competes out ARF1 at early gastrulation, due to the ability of XFast-3 to interact with activated Smads with much higher affinity than XFast-1. We demonstrate that ARF1 and ARF2 are activated by distinct TGFβ family members. Using morpholino antisense oligonucleotides to deplete levels of the constituent transcription factors XFast-1 and XFast-3 specifically, we demonstrate an important role for ARF1 and ARF2 in early Xenopus embryos in controlling the convergent extension movements of gastrulation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Inman, Professor Gareth
Authors: Howell, M., Inman, G. J., and Hill, C. S.
College/School:College of Medical Veterinary and Life Sciences > School of Cancer Sciences
Journal Name:Development
Publisher:Company of Biologists
ISSN:0950-1991
ISSN (Online):1477-9129

University Staff: Request a correction | Enlighten Editors: Update this record