Antiparasitic and cytotoxic activity of bokkosin, a novel diterpene-substituted chromanyl benzoquinone from Calliandra portoricensis

Nvau, J. B., Alenezi, S., Ungogo, M. A., Alfayez, I. A.M., Natto, M. J., Gray, A. I., Ferro, V. A., Watson, D. G., De Koning, H. P. and Igoli, J. O. (2020) Antiparasitic and cytotoxic activity of bokkosin, a novel diterpene-substituted chromanyl benzoquinone from Calliandra portoricensis. Frontiers in Chemistry, 8, p. 574103. (doi: 10.3389/fchem.2020.574103) (PMID:33282826) (PMCID:PMC7705231)

[img] Text
230194.pdf - Published Version
Available under License Creative Commons Attribution.

859kB

Abstract

Calliandra portoricensis is a medicinal plant growing freely in Nigeria. It is used traditionally to treat tuberculosis, as an anthelmintic and an abortifacient. Phytochemical fractionation and screening of its root extracts has yielded a novel (5-hydroxy-7-methoxy-4-oxo-1-chromanyl)-4-methoxy-p-benzoquinone (breverin)-substituted cassane diterpene, which was designated bokkosin. It was obtained from column chromatography of the ethyl acetate extract of the roots. The compound was characterized using IR, NMR (1D and 2D) and mass spectral data. Promising antiparasitic activity was observed against the kinetoplastid parasite Trypanosoma brucei brucei, as well as moderate activity against Trypanosoma congolense and Leishmania mexicana and low toxicity in mammalian cells, with the best in vitro EC50 values against T. b. brucei (0.69 μg/mL against a standard laboratory strain, and its multi-drug resistant clone (0.33 μg/mL). The effect on T. b. brucei in culture was rapid and dose-dependent, leading to apparently irreversible growth arrest and cell death after an exposure of just 2 h at 2 × or 4 × EC50. The identification of bokkosin constitutes the first isolation of this class of compound from any natural source and establishes the compound as a potential trypanocide that, considering its novelty, should now be tested for activity against other microorganisms as well.

Item Type:Articles
Additional Information:SA was funded by the Civil Service Commission (CSC) through a Ph.D., studentship from the Ministry of Health, State of Kuwait. IA was funded through a Ph.D., studentship from the Ministry of Health of Saudi Arabia; MU received a scholarship from the Petroleum Technology Development Fund (PTDF) of Nigeria. MN was funded through a Clinical Fellowship from the Ministry of Health, Saudi Arabia.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:ALFAYEZ, IBRAHIM ABDULLAH M and Ungogo, Mr Marzuq and De Koning, Professor Harry and Natto, Dr Manal
Authors: Nvau, J. B., Alenezi, S., Ungogo, M. A., Alfayez, I. A.M., Natto, M. J., Gray, A. I., Ferro, V. A., Watson, D. G., De Koning, H. P., and Igoli, J. O.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Frontiers in Chemistry
Publisher:Frontiers Media S.A.
ISSN:2296-2646
Copyright Holders:Copyright © 2020 The Authors
First Published:First published in Frontiers in Chemistry 8:574103
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record