
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/229181/

Deposited on: 17 February 2021
Enhancing the performance of MgO-activated slag-fly ash mixes by accelerated carbonation

N.T. Dunga, T.J.N. Hooperb, C. Unluerc,*

aSchool of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

bEnergy Research Institute, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553

cSchool of Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom

* Corresponding author. E-mail address: Cise.Unluer@glasgow.ac.uk

Abstract

This study focused on the development of reactive MgO (RM) activated-GGBS binders containing fly ash (FA). Performance of these binders was aimed to be improved by enhancing the hydration of RM and dissolution of GGBS and FA via high temperature pre-curing (HTPC); and conversion of unreacted phases into carbonates via carbonation. Spherical FA particles mitigated inter-particle surface frictions and improved flow. Although the use of HTPC accelerated the hydration of MgO, rapid precipitation of brucite hindered the dissolution of GGBS and FA and formation of associated hydration products. Transformation of RM into hydrated magnesium carbonates (HMCs) under carbonation led to significant improvements in sample performance via the pore filling effect and binding strength provided by HMCs, despite the degradation of ettringite and C-(A)-S-H during carbonation. Inclusion of 12% FA resulted in comparable strengths to the control sample, highlighting the feasibility of incorporating FA within RM activated-GGBS samples without compromising performance.

Keywords: MgO; granulated blast furnace slag; fly ash; curing; microstructure
1 Introduction

Portland cement (PC) production is energy intensive, requires the use of natural resources and leads to the emissions of ~8% of total global anthropogenic CO₂ emissions [1]. One of the alternative binders being developed to alleviate these effects involves the use of alkali-activated ground granulated blast-furnace slag (GGBS), which could present a sustainable alternative to PC due to its lower energy and resource consumption as well as lower CO₂ emissions associated with the reuse of by-products.

The alkali activation process involves the dissolution of the oxide in slag (e.g. Si-O-Si, Al-O-Al, Al-O-Si and Ca-O) by an alkaline activator, followed by the formation of a Si-Al layer, crystal hydrotalcite and calcium aluminate silicate hydrate C-(A)-S-H phases [2-6]. Despite presenting a satisfactory performance, the practical application of strong alkalis is restricted by their flash setting, high drying shrinkage, difficulty of handling the caustic alkali and potential of alkali-aggregated reaction [7-9]. Another factor that needs to be considered is the high amounts of CO₂ emissions and energy demand linked with the production of activators.

Previous studies [10-12] demonstrated the use of reactive MgO (RM) as an activator to produce sustainable alkali-activated GGBS (AAS)-based cementitious binders that could be more economical and without significant caustic and drying shrinkage issues. Within the RM activated-GGBS system, C-(A)-S-H and hydrotalcite are the primary hydration products contributing to strength gain [11, 13, 14], in addition to magnesium silicate hydrate (M-S-H) and ettringite [15]. The CaO content and reactivity of RM activator are the main factors controlling the alkalinity of the system, which determines the dissolution of GGBS and subsequent strength development [16]. Previous applications of RM activated-GGBS formulations involve soil stabilization, resulting in higher compressive strengths than corresponding PC-stabilized soil samples [17-19]. RM activated-GGBS can also be used for the stabilization of marine soft clay, resulting in a higher resistance to sodium sulfate attack than PC stabilized clay [20].

Despite these advantages, the use of RM as an activator for GGBS has not been largely practiced mainly because of its low hydration degree [21] and subsequently low strength gain. Accordingly, RM-GGBS pastes with a water/binder ratio of 0.5 was reported to reveal 28-day compressive strengths of <20 MPa [11, 14, 16]. This low strength was associated with a
considerable amount of unhydrated MgO observed in these mixes even after 28 days of hydration [11, 14]. One potential way to improve the hydration of RM involves the elevation of the curing temperature to enhance the diffusion of water and increase the rate of MgO dissolution [17, 21-23], thereby accelerating the activation of GGBS, for which RM is used as an activator.

Fly ash (FA), which is also a by-product obtained from coal combustion in electric power plants, could eliminate the friction between GGBS grains and improve the workability of these systems in line with the spherical nature of its particles [24]. In spite of this advantage, FA has not been used in RM-activated systems due to its higher activation energy demand than GGBS [25] and the low alkalinity of hydrated MgO. Accordingly, the low reactivity of FA was reported to delay the setting time and reduce the early compressive strength of PC-FA and alkali-activated FA mixes [26]. However, if unused, the direct disposal of FA to landfills causes environmental problems including the leaching of metals and pollution of air and water resources. These issues could be resolved by the inclusion of FA within cementitious mixes, in which it can play a role in the reaction process and associated strength development via the improvement of its dissolution [17, 26, 27]. Therefore, in addition to preventing any contamination of natural resources due to its disposal, the use of FA in these mixes could both contribute to fresh properties by providing improved workability [28, 29] and potentially performance.

Keeping these factors in mind, this study focuses on the development of sustainable binders involving the use of RM activated-GGBS that includes FA, the combination of which has not been widely reported in the literature until now. Within these binders, the hydration of RM and the dissolution of GGBS and FA were enhanced via the adjustment of the curing temperature [21, 30]. Further improvements in the performance of the developed RM activated-GGBS-FA samples were achieved via the conversion of the unhydrated MgO into hydrated magnesium carbonates (HMCs) such as rosette-like hydromagnesite (4MgCO₃·Mg(OH)₂·4H₂O), needle-like nesquehonite (MgCO₃·3H₂O), and acicular artinite (MgCO₃·Mg(OH)₂·3H₂O) [31, 32]. This was enabled by subjecting the samples to elevated concentrations of CO₂ during curing [33, 34]. The utilization of high concentrations of CO₂ in the carbonation process not only led to a reduction in porosity and provided a binding network facilitated by the formation of HMCs, thereby improving sample performance [21, 30, 31, 35, 36], but also shed light on the feasibility of reducing CO₂ emissions associated with cement production.
To achieve these, the mechanical and microstructural properties of RM activated-GGBS-FA formulations with varying compositions were evaluated under different curing conditions. The prepared concrete samples were cured under two different temperatures (30°C and 50°C) for 28 days, prior to being carbonated under 10% CO₂ for 70 days. The effect of temperature on the reaction kinetics was assessed via the heat evolution during hydration, measured by isothermal calorimetry. The evaluation of compressive strength at different curing durations, was followed by a detailed microstructural assessment involving x-ray diffraction (XRD), ²⁷Al and ²⁹Si solid-state nuclear magnetic resonance (NMR), thermogravimetry-differential thermogravimetry (TG-DTG) and scanning electron microscopy (SEM) analyses.

2 Materials and Methodology

2.1 Materials

In this study, RM (obtained from Richard Baker Harrison, UK), GGBS and FA (both obtained from Engro Corporation, Singapore) were used to form the main binder component. The chemical and physical properties of RM and FA (provided by the suppliers) and those of GGBS (obtained from x-ray fluorescence analysis) are shown in Table 1. XRD patterns of RM, GGBS and FA (Fig. 1) indicated that the main peak for RM was recorded at 43.8° 2Ө. The crystalline phases of GGBS were at ~25° 2Ө (gehlenite (Ca₂Al(Al SiO₇), PDF# 01-073-6601) and ~30° 2Ө (sodium aluminum silicate (Na₂Al₂Si₇.2O₁₈.4), PDF# 00-056-0486), in addition to its amorphous phase at ~25-35° 2Ө. FA included the crystalline phases of quartz (SiO₂, PDF# 01-070-7344) and mullite (Al₄.₅₂Si₁.₄₈O₉.₇₄, PDF# 00-056-0486), in addition to a broad amorphous hump at ~15-25° 2Ө. Fig. 2 shows the morphology of each component, where the angular and irregular grains of RM and GGBS, in contrast to the spherical particles of FA, were observed. The particle size distribution of RM, GGBS and FA is shown in Fig. 3, revealing the relatively comparable profiles of GGBS and FA.

For the preparation of concrete samples, saturated surface dry aggregates with a particle size of 4.7–9.5 mm were used. This study omitted the use of sand in the designed mix compositions
to avoid the presence of quartz or clay, with the goal of increasing the accuracy of the phase quantifications.

2.2 Methodology

The detailed mix designs of concrete samples prepared in this study are provided in Table 2. The control sample (0FA) involved the use of 20% RM as an alkali activator with 80% GGBS (i.e. by mass), based on preliminary studies and previous findings [11]. FA partially replaced GGBS at a content of 15% and 30%, corresponding to 12% and 24% of the total binder (i.e. by mass), in samples 12FA and 24FA, respectively. The water/binder (w/b) ratio was kept constant at 0.5 for all mixes, in which the binder was composed of RM, GGBS and FA.

A homogenous mixture was obtained after 6 minutes of mixing. The concrete samples were cast into cubic molds (50x50x50 mm), consolidated and finished by a trowel. All samples were demoulded after 24 hours. One set of samples was cured under ambient conditions (30±2°C, 80±4% RH) for 28 days. Another set of samples was cured under high temperature pre-curing (HTPC) conditions (50°C, 80% RH) for 7 days to accelerate the hydration process, followed by curing under ambient conditions (30±2°C, 80±4% RH) for 21 days (i.e. the total curing duration was 28 days). Samples cured under ambient conditions were labeled as 0FA, 12FA and 24FA; while those subjected to HTPC were labeled as T.0FA, T.12FA and T.24FA. Once the 28 days of curing were completed, both set of samples were subjected to accelerated carbonation under an elevated CO₂ concentration to increase the rate of the carbonation reaction. In line with the findings of previous studies [33, 37], 10% CO₂ was determined as an ideal concentration for the microstructural and mechanical development of the prepared samples, which were cured under 10% CO₂, 30±1°C and 80±2% RH. Following the results presented in earlier studies [30], the carbonation duration was extended up to 70 days (i.e. the total curing duration was 98 days) to demonstrate the effect of carbonation in the long term. In practice, the CO₂ that could be used in the curing of the proposed samples could be captured from coal power plants and any other industrial plants such as cement plants that release CO₂ throughout their operation. The CO₂ captured from these sources could be directed for the curing of these concrete samples to reduce the overall global anthropogenic CO₂ emissions associated with cement production and use.
In addition to concrete samples, corresponding paste compositions were prepared to investigate the fresh properties and the influence of curing conditions on the hydration kinetics of RM activated GGBS-FA samples. The paste mixes were prepared by mixing water and binder with the same mixture proportions provided in Table 2.

2.2.1 pH test

Pastes with a w/b ratio of 0.5 were prepared for the pH test. After mixing and vacuum filtration, the pH value of the filtered solution was measured by a Mettler Toledo pH meter. The reported results were the average values of three measurements.

2.2.2 Flow and setting time

The flow test was carried out on pastes with a w/b ratio of 0.5 by measuring the increase in the average base diameter of each sample according to ASTM C1437-15 [38]. The setting time of the same pastes was assessed by using a Vicat apparatus according to ASTM C191 −13 [39]. The reported results were the average of four measurements.

2.2.3 Isothermal calorimetry

The heat release within each sample was measured at 30°C and 50°C by an I-Cal 8000 High Precision calorimeter. Solid powders (RM, GGBS and FA) and water were pre-heated in the calorimeter to the measurement temperatures (30°C and 50°C). When thermal equilibrium was reached, water was mixed with the solid powders, and the paste samples were immediately placed into individual calorimeter channels to record the hydration heat for 48 hours.

2.2.4 Compressive strength

The prepared samples were tested for their compressive strength at 1, 3, 7, 14 and 28 days of curing under ambient and HTPC conditions. The performance of samples subjected to
accelerated carbonation was assessed at 14, 28, 56 and 70 days of carbonation. All tests were performed at a loading rate of 55 kN/min and each of the reported strength values were the average of three measurements.

2.2.5 XRD, 27Al and 29Si NMR, TG-DTG and SEM analyses

Samples extracted from all of the 6 faces of the concrete cubes were stored in isopropanol and dried in vacuum, followed by grinding down to pass through a 75 μm sieve before XRD, 27Al and 29Si NMR and TG-DTG analyses. Each XRD, NMR and TG-DTG analysis required around 2 g, 100 mg and 20-30 mg of powder samples, respectively.

XRD analysis was performed on a Philips PW 1800 spectrometer applying Cu Kα radiation (40 kV, 30 mA). The samples were scanned between from 5 to 80° 20 with a scanning rate of 0.04°/step. Fluorite (CaF$_2$), used as an internal standard, was added to powder samples by 5 wt.% to enable the quantification of key phases within each formulation.

Solid-state NMR data was acquired on a 14.1 T Bruker Avance III HD spectrometer with a Bruker 4 mm MAS probe [5]. The 27Al NMR ($v_0 = 156.35$ MHz) one-pulse experiment used a 14 kHz MAS frequency, a 1 μs ($\pi/6$) pulse length and a 1 s relaxation delay. The 29Si NMR ($v_0 = 119.23$ MHz) one-pulse experiment used a 12 kHz MAS frequency, a 5.3 μs ($\pi/2$) pulse length and a 30 s recycle delay. The 27Al and 29Si NMR data were referenced with respect to yttrium aluminum garnet$_{(s)}$ ($\delta_{iso} = 0.7$ ppm) and kaolinite$_{(s)}$ ($\delta_{iso} = -93$ ppm).

TG-DTG was performed between 30°C and 900°C under N$_2$, at a heating rate of 10°C/min in a Perkin Elmer TGA 4000 equipment. To quantify the amount of hydrate and carbonate phases in each sample, DTG curves were deconvoluted according to the Gaussian method using Origin 2017 software, which led to different deconvoluted components corresponding to the decomposition of each phase. The area of each deconvoluted component represented the decomposition of each phase. The vacuum dried samples were coated with gold before SEM analysis to investigate the morphologies of the hydration and carbonation products by using a Zeiss Evo 50 microscope.
3 Results and Discussion

3.1 Fresh properties

Table 3 presents the fresh properties of RM activated-GGBS-FA pastes. Along with RM, the presence of impurities such as CaO in RM increased the pH of the liquid phase within the samples, revealing comparable pH values at around ~12 for all three samples. In terms of the flow values, the inclusion of FA had a direct influence on the workability and resulted in an improvement in the flow, which was directly proportional with the FA content. This improvement was associated with the mitigation of the inter-particle surface frictions of the angular RM and GGBS grains by the spherical FA grains. Furthermore, the use of FA reduced the potential for agglomeration, thereby releasing the water trapped within flocs [24, 28, 29] and resulting in an increase in the flow of pastes from 163% (in sample 0FA) to 190-201% (in samples 12FA and 24FA). Alternatively, the use of FA resulted in longer initial setting times, which went up from 7.75 h (in sample 0FA) to 10.25-10.75 h (in samples 12FA and 24FA). This effect was less pronounced in the final setting time, which ranged between 16.5 and 18.5 h for all samples.

3.2 Isothermal calorimetry

Fig. 4 shows isothermal calorimetry results of all pastes that were hydrated under 30°C and 50°C for 48 hours. Samples hydrated under 30°C (0FA, 12FA and 24FA) revealed one induction period in between two exothermal peaks (Fig. 4 (a)). The initial sharp peak that occurred instantly after mixing corresponded to the dissolution of RM, followed by an increase in the alkalinity of the liquid phase within the sample, enabling the dissolution of GGBS and FA. Accordingly, the second broad acceleration peak, occurring at around 6-30 hours was attributed to the polymerization of the silicate and aluminate, and the formation of reaction products. The induction period between these exothermal peaks was associated with an increase in the dissolved phases to reach a critical concentration, followed by the formation of the reaction products. Samples 12FA and 24FA presented lower acceleration peaks than sample 0FA, which was associated with the presence of FA, which did not contribute to the overall heat evolution as much as GGBS.
On the other hand, the heat flow demonstrated by samples hydrated at 50°C (i.e. T.0FA, T.12FA and T.24FA) revealed a single intensive peak, indicating the rapid precipitation of hydrate phases after the dissolution of precursors. The significantly earlier appearance and higher intensity of the exothermal peak of the samples subjected to HTPC (T.0FA, T.12FA and T.24FA) in comparison to those cured under ambient conditions (0FA, 12FA and 24FA) indicated the acceleration of the reaction kinetics and rapid precipitation of hydrate phases under 50°C. However, most of this acceleration was completed after ~16 hours, followed by a minor heat flow; whereas the acceleration-deceleration period lasted from ~6 to ~30 hours in samples cured under ambient conditions.

The cumulative heat results (Fig. 4 (b)) revealed the effect of FA content on the total heat release, which was more pronounced for those cured under 30°C. Accordingly, a reduction in the cumulative heat was observed with an increase in the FA content, which was in line with the trends observed in the intensity of the acceleration peak shown in Fig. 4 (a). While there was a notable increase in the rate of heat evolved during the first ~16 hours of hydration under 50°C in comparison to 30°C, these samples gradually produced a comparable amount of cumulative heat with the rest of the samples. Therefore, the use of HTPC was only effective in the acceleration of reaction kinetics and precipitation of hydrate phases at early stages, whereas those cured under 30°C gradually produced a similar, if not higher, amount of heat in the longer periods. Accordingly, the control sample (0FA) revealed the highest amount of cumulative heat at the end of 48 hours, followed by those cured under 50°C, showing that the binder composition had a more prominent effect on reaction mechanisms than temperature in the long term.

3.3 Compressive strength

Fig. 5 demonstrates the strength development of samples cured under ambient and HTPC conditions. In agreement with the isothermal calorimetry results, the higher rate of dissolution and precipitation of hydrate phases at early stages enabled samples subjected to HTPC (T.0FA, T.12FA and T.24FA) to gain higher compressive strengths than those cured under ambient conditions (0FA, 12FA and 24FA) during the first 7 days. However, as curing proceeded, HTPC samples presented a slower strength gain, resulting in comparable performances to those cured under ambient conditions. In both curing conditions, the inclusion of 12% FA produced
similar strength results as the control sample, whereas an increase in the FA content to 24% in samples 24FA and T.24FA reduced the compressive strength by ~20% when compared with samples 0FA and T.0FA. These results highlighted the feasibility of incorporating FA within RM activated-GGBS pastes without compromising performance, independent of the curing temperature.

The use of accelerated carbonation enabled all samples to gain significantly higher compressive strengths, as shown in Fig. 6. This increase in strength was due to the formation of carbonate phases such as HMCs and calcite, which filled the available pores and densified the sample microstructure [31]. The strength results of samples over 70 days of carbonation revealed a rapid increase in strength during the first 2 weeks, followed by a slower rate of increase. This reduction in strength gain was associated with the formation of an initial carbonate layer on the sample exterior during the initial stages of carbonation. This layer hindered the further diffusion of CO$_2$ within the sample microstructure at longer durations [31]. Despite their similar starting compressive strengths before carbonation (10-15 MPa), samples cured under ambient conditions (30°C) demonstrated a higher rate of strength gain than those subjected to HTPC (50°C). This difference in strength amongst the two groups was mainly obvious during the early stages, after which samples cured under ambient conditions revealed strength values that were 2-4 MPa higher than those of HTPC samples at 70 days of carbonation (20-27 MPa vs. 18-25 MPa). This limitation in the strength development of samples under HTPC conditions could be associated with the rapid precipitation of the reaction products under the elevated temperatures used during the initial curing of these samples, which could have limited their further reaction with CO$_2$ [21, 22].

Similar to the trend observed in Fig. 5, the strength development was influenced by the presence of FA, generally reducing with an increase in FA content. However, samples containing 12% FA revealed similar strengths as the control samples under both conditions (30°C and 50°C) after 70 days of carbonation. Alternatively, an increase in the FA content to 24% in samples 24FA and T.24FA led to ~25% reduction in the strength of both groups at 70 days (20-27 MPa vs. 26 MPa under ambient and 18-23 MPa vs. 25 MPa under HTPC conditions). This reduction could be associated with the higher free water contents of samples incorporating FA, whose low dissolution within the pore space could hinder CO$_2$ diffusion, thereby reducing the formation of HMCs. Furthermore, the lower CaO content of FA than
GGBS led to decreased formation of calcite under carbonation, which also limited the strength development.

3.4 XRD

The XRD patterns of samples at the age of 28 days under ambient and HTPC conditions are presented in Fig. 7(a) and (b), respectively. The broad hump located at around 20-35° 2θ corresponded to unreacted amorphous phases within FA and GGBS. Unhydrated mullite and quartz were also observed in samples containing FA. In line with the findings of previous studies [40], the formation of calcium aluminum silicate hydrate (C-(A)-S-H, \(\text{Ca}(\text{Al}_2\text{Si}_6\text{O}_{16})\cdot 4\text{H}_2\text{O}, \text{PDF} \#00-039-1372\)), katoite (\(\text{Ca}_3\text{Al}_2(\text{SiO}_4)(\text{OH})_8\), PDF \#00-038-0368), ettringite (\(\text{Ca}_6\text{Al}_2(\text{SO}_4)_3(\text{OH})_{12}\cdot 26\text{H}_2\text{O}, \text{PDF} \#01-075-7554\)), magnesium silicate hydrate (M-S-H, \((\text{Mg}_{1.84}\text{Si}_{0.05})(\text{Si}_{0.93}\text{Mg}_{0.05})\text{H}_0.3\text{O}_4, \text{PDF} \#01-070-6459\)) and hydrotalcite (\(\text{Mg}_6\text{Al}_2(\text{CO}_3)(\text{OH})_{16}\cdot 4\text{H}_2\text{O}, \text{PDF} \#01-014-0191\)) was observed in the mixes prepared in this study, despite the low dissolution of GGBS and FA, associated with the low alkalinity of the activator. This has also been confirmed by previous studies [41-43], where the presence of crystalline M-S-H and C-(A)-S-H was shown in the XRD patterns. The amorphous humps corresponding to M-S-H at ~35° and ~60° 2θ could also be present, albeit not distinguishable from the wide humps at 20-40° 2θ and 60-65° 2θ. Along with these reaction products, the presence of unhydrated periclase (main peak at 42.9° 2θ) could also be seen in all patterns, highlighting the incomplete dissolution of RM. A comparison of the residual RM based on the intensity of the internal standard (fluorite at 28.2° 2θ), revealed the lower intensity of residual RM in the 0FA sample cured under HTPC conditions than those under ambient conditions. This reduction in the peak intensity indicated the accelerated hydration of RM under HTPC conditions, which was in line with the isothermal calorimetry results. An increase in the formation of C-(A)-S-H, along with the reduced formation of ettringite, was also observed under HTPC conditions.

Fig. 8 shows the XRD patterns of samples that were cured under ambient and HTPC conditions for 28 days, followed by 56 days under accelerated carbonation. The decrease in intensities of ettringite and hydrotalcite in carbonated samples was attributed to the decalcification of these phases during carbonation. The formation of calcite (\(\text{CaCO}_3, \text{PDF} \#01-071-3699\)), associated
with the carbonation of portlandite and possibly with the decalcification of ettringite and C-(A)-S-H, was observed in the carbonated samples. A comparison of the residual RM content, based on the intensity of fluorite, revealed the significantly lower intensities of RM in carbonated samples (Fig. 8) than those observed in corresponding samples without carbonation (Fig. 7). This reduction in RM content indicated its transformation into Mg-based carbonation products, which contributed to the higher compressive strengths of the carbonated samples. Accordingly, aragonite (Mg\(_2\)CO\(_3\)(OH)\(_2\)·3H\(_2\)O; PDF #00-006-0484) and hydromagnesite (4MgCO\(_3\)·Mg(OH)\(_2\)·4H\(_2\)O; PDF #00-025-0513), major HMC phases commonly observed in carbonated RM systems \([31, 44, 45]\), were detected in the XRD patterns of the carbonated samples. When compared with samples cured under ambient conditions (Fig. 8(a)), those subjected to HTPC conditions (Fig. 8(b)) resulted in higher residual RM, explaining their lower transformation of RM into HMCs and thereby lower compressive strengths.

3.5 \(^{27}\text{Al}\) and \(^{29}\text{Si}\) MAS NMR

Differently coordinated Al sites appear within distinct \(^{27}\text{Al}\) chemical shift ranges in \(^{27}\text{Al}\) NMR (i.e. 80-50 ppm for Al(IV) and 15-0 ppm for Al(VI)). The \(^{27}\text{Al}\) MAS NMR spectra of the 0FA, 12FA and 24FA precursor mixes are presented in Fig. 9(a). The \(^{27}\text{Al}\) NMR spectra of the 0FA precursor revealed a broad amorphous Al(IV) resonance, which was indicative of the glass-like slag structure, in agreement with the findings of previous studies on GGBS \([46-48]\). The inclusion of FA in samples 12FA and 24FA introduced another small Al(VI) resonance at ~3 ppm. This resonance correlated to an octahedral Al component in FA, attributed to mullite. The amorphous Al(IV) moieties in FA were overshadowed in the NMR spectra by the more populous GGBS Al(IV) component \([49, 50]\).

All of the \(^{29}\text{Si}\) spectra in this study were fitted with multiple Gaussian components, providing accurate simulations of the experimental line-shapes, as shown in Fig. 9 and 11. The relative site occupancy of the deconvoluted \(^{29}\text{Si}\) components for each of the samples is provided in Table 4. The differing connectivity of Si(IV) moieties in aluminosilicate networks resulted in characteristic \(^{29}\text{Si}\) NMR chemical shifts between -60 and -120 ppm. These distinct moieties were labeled Q\(^n\)(mAl), where \(n\) is the number of O mediated bonds to adjacent SiO\(_4\)/AlO\(_4\) units and \(m\) is the amount of Al units involved.
The 29Si MAS NMR spectra of the 0FA, 12 FA and 24FA precursor mixes are presented in Fig. 9(b). Corroborating the results of previous studies on GGBS [34, 46, 47, 51], the 0FA precursor material presented two broad amorphous resonances at δ_{iso} of -75±2 and 110±3 ppm, relating to the Q0/Q1 units in the glass-like unhydrated slag and the Q4 environments in amorphous silica (SiO$_2$), respectively. The 29Si NMR spectra of the 12FA and 24FA precursor materials revealed two additional broad resonances at δ_{iso} of -90±2 and -109±2 ppm, which together represented a distribution of Q4 moieties in FA [49, 52]. The relative site occupancy of the FA components in samples 0FA and 12FA was found to be 13.3% and 29.9%, respectively. Accordingly, these values correlated well with the mass ratios of the Si containing materials in the precursor mixes.

The 27Al MAS NMR spectra of the concrete samples cured under ambient and HTPC conditions for 28 days are presented in Fig. 10(a) and (b), respectively. In comparison with the precursor NMR spectra, these samples presented an altered broad Al(IV) line-shape and two additional sharp Al(VI) resonances. The changes to the Al(IV) line-shape was attributable to the tetrahedral AlO$_4$ moieties in the produced C-A-S-H gel, as demonstrated in previous studies [47, 53]. The two Al(VI) resonances at 10 and 13 ppm corresponded to Al in produced hydrotalcite and ettringite phases, respectively [53-55]. The samples subjected to HTPC (Fig. 10(b)), displayed a clear reduction in the site occupancy of the ettringite phase, corroborating the findings of the XRD analysis. Sample T.12FA revealed some sharp features in its 27Al spectrum within the Al(IV) range (Fig. 10(b)) that were not present in any of the other samples, suggesting a more crystalline nature. These findings were in line with the extra peak at 55.72° 20 observed in the XRD patterns (Fig. 7(b)).

The 27Al NMR spectra of the samples subjected to carbonation are presented in Fig. 10(c). The spectra show a complete loss of the ettringite phase in all samples, corroborating the decomposition seen in XRD patterns. The inclusion of FA did not have a significant effect on the 27Al speciation in both the un-carbonated and carbonated samples. The only difference observed was a decrease in the site occupancy of the ettringite phase with increasing FA content. The reduced formation of ettringite in samples including FA could be due to their lower calcium content (Table 1) and the lower dissolution of FA than GGBS (Section 3.2) [25].
The ^{29}Si MAS NMR spectra of samples cured under ambient and HTPC conditions are presented in Fig. 11(a) and (b), whereas the spectra of carbonated samples following 28 days of ambient curing are presented in Fig. 11(c). All of the ^{29}Si NMR spectra in Fig. 11 presented familiar amorphous resonances at -75 and -110 ppm, which were associated with the amorphous Q^0/Q^1 and Q^4 species present in the precursor GGBS. Samples 12FA and 24FA also retained the FA components at -90 and -109 ppm. The combined site occupancy of these FA components (Table 4) remained relatively constant during the curing and carbonation processes, suggesting that FA played a negligible role in the hydration reactions.

The ^{29}Si NMR spectra of samples cured under the ambient and HTPC conditions in Fig. 11(a) and (b) also presented three sharp resonances with a mean δ_{iso} of -79.0, -81.8 and -84.7 ppm, correlating to crystalline C-(A)-S-H components $Q^1(0\text{Al})$, $Q^2(1\text{Al})$ and $Q^2(0\text{Al})$, respectively [46, 47]. These were accompanied with an amorphous product component (-83 ppm) relating to less crystalline C-(A)-S-H phases [5]. The relative intensities of these ^{29}Si components (Table 4) were lower for samples subjected to HTPC than those cured under ambient conditions, with significant reductions in the $Q^1(0\text{Al})$ and $Q^2(1\text{Al})$ species. This suggested the lower dissolution of GGBS within samples subjected to HTPC, which could also explain the slightly lower compressive strengths of these samples in comparison to those cured under ambient conditions.

The inclusion of FA could have contributed to the formation of crystalline C-(A)-S-H components in both sets of curing conditions. Accordingly, the total site occupancy of the crystalline components markedly increased with increasing FA content under ambient conditions. The inclusion of FA could stimulate the dispersion of dissolved silica and enhance the addition of silica chains with crystallized regions to C-(A)-S-H layers. The changing product concentrations in samples with different FA contents can be compared more clearly by ignoring the site occupancy of the unreacting FA components (i.e. calculating the total site occupancy of the crystalline components without including the percentage of Si in FA), revealing the tripling of the crystalline site occupancy from 3.6% for sample 0FA to 10% for sample 24FA (i.e. 6.9/(1-0.308) = 10%). A less pronounced increase (i.e. 3.5% for T.0FA to 6.1% for T.24FA) was observed for corresponding samples subjected to HTPC conditions. However, this observed increase in the C-(A)-S-H components did not increase the compressive strength of the samples enough to offset the negative effect of the reduction in the content of GGBS with the introduction of FA.
The carbonation process resulted in the complete loss of the crystalline $Q^1(0Al)$ and $Q^2(1Al)$ phases, as shown by Fig. 11(c), revealing the degradation of C-(A)-S-H gel due to decalcification by CO₂. A new component at δ_{iso} of -91.9±0.5 ppm was observed in each of the carbonated samples, which was assigned as $Q^4(3Al)$ species in previous studies [56]. These species provided evidence for the formation of a highly cross-linked aluminosilicate type gel, resulting from the breakdown of the C-(A)-S-H network. Furthermore, the carbonation process led to an increase in the intensity of the broad resonance at -75 ppm due to the production of amorphous monomeric/dimeric (Q^0/Q^1) silicate units during the decomposition of C-(A)-S-H phases, which was in line with earlier findings [56].

3.6 TG-DTG

TG-DTG curves of samples cured under ambient and HTPC conditions for 28 days are presented in Fig. 12(a) and (b), respectively. Despite accelerating the hydration of RM at early ages, subjecting the samples to HTPC conditions did not result in an increase in the overall mass loss. This lack of increase in the mass loss corresponding to the presence of hydrate phases, highlighted the inability of HTPC in enhancing the hydration reaction, explaining the similar compressive strengths of these samples to those cured under ambient conditions.

Fig. 13 shows the TG-DTG curves of samples after 28 days of ambient curing, followed by 56 days of carbonation. Consistent with the XRD results, the formation of HMCs and calcite during the carbonation process led to higher mass losses within the carbonated samples (Fig. 13) than those observed in corresponding samples cured under ambient or HTPC conditions (Fig. 12). The increased mass loss of these samples indicated the additional formation of HMCs and calcite as a result of the reaction between Mg- and Ca- phases and dissolved CO₂. Accordingly, the following three steps of decomposition were detected from the DTG curves:

(i) The peak at ~90°C corresponded to the evaporation of water bonded to the gel structure (i.e. C-(A)-S-H, M-S-H and ettringite) [16, 57, 58] while the shoulder at ~200°C was assigned to the evaporation of water within hydrotalcite and HMCs [5, 59].
(ii) The peak at ~390°C was assigned to the decomposition of hydrotalcite and dehydroxylation of portlandite in non-carbonated samples [11, 59]. This peak was shifted to ~420°C in the carbonated samples [60]. Furthermore, the peak/shoulder at ~490°C, observed in the carbonated samples, was attributed to the dehydroxylation of HMCs [30, 61].

(iii) The peak at ~700°C was associated with the decarbonation of carbonates (e.g. calcite and HMCs) [11, 30, 59, 61].

DTG curves were deconvoluted into Gaussian components representing the decomposition of each phase by using the Origin software. The calculation of the mass loss corresponding to the decarbonation process was taken as the area of the deconvoluted component corresponding to decarbonation, which ranged between ~550-600°C and 750-800°C. The total and individual mass loss values corresponding to the decomposition of the hydrate and carbonate phases, obtained by calculating the area of their deconvoluted DTG curves via the Origin software, are presented in Table 5. In line with the XRD and NMR results, the lower formation of ettringite and hydrotalcite in samples subjected to HTPC conditions led to lower mass lossess associated with the dehydration of these phases than those cured under ambient conditions. Despite the lower formation of hydrotalcite, samples subjected to HTCP indicated higher CO₂ absorption in the formation of HMCs and calcite than those cured under ambient conditions (1.8-3.8% vs. 3.1-4%). Overall, the use of HTPC led to slightly lower total mass loss values than ambient curing (13-13.2% vs. 13.8-14.7%), explaining the limited hydration presented by the former condition.

Subjecting the samples to carbonation conditions stimulated the dissolution of RM, portlandite and possibly C-(A)-S-H, thereby facilitating the formation of HMCs and calcite. Accordingly, an increase in the mass loss corresponding to decarbonation from 1.8-3.8% (after 28 days of ambient curing) to 6.7-7.9% (after 28 days of ambient curing and 56 days of carbonation); and from 3.1-4.0% (after 28 days of HTPC) to 4.9-6.6% (after 28 days of HTPC and 56 days of carbonation) was observed when samples were exposed to carbonation. The high crystallinity of brucite that formed under HTPC led to the lower absorption of CO₂ within these samples than those cured under ambient conditions [21]. The additional formation of carbonate phases such as HMCs and calcite also translated into a significant increase in the total mass loss revealed by carbonated samples (20.5-21.9% for samples after 28 days of ambient curing and 56 days of carbonation; and 15.9-18.5% for samples after 28 days of HTPC and 56 days of
carbonation) in comparison to non-carbonated samples (13.8-14.7% for samples cured under ambient conditions and 13.0-13.2% for samples subjected to HTPC). Within the carbonated samples, a decline in the total mass loss was observed with an increase in FA content, which could explain the corresponding reduction in the strength of these samples. Accordingly, as the FA content increased from 0% in sample 0FA to 24% in sample 24FA, a ~40% reduction in strength was observed at 56 days of carbonation (Fig. 6). This decline in total mass loss could be attributed to the lower formation of ettringite, as also revealed earlier by NMR, and the lower CO₂ absorption within samples including high contents of FA.

The amount of CO₂ sequestered (S_CO₂) by each concrete sample during the carbonation process was calculated by Equation 1, where R_sp represented the mass of the residual sample (i.e. the final mass at 900°C), and D^A_CO₂ and D^AC_CO₂ represented the mass loss associated with decarbonation after ambient and the accelerated carbonation curing, respectively. In this respect, D^A_CO₂ and D^AC_CO₂ included the CO₂ released from the decomposition of all carbonate phases (e.g. HMCs and calcite). Since the carbonation rate of RM was much more pronounced than that of ettringite and C-(A)-S-H (i.e. also reflected by the higher decrease in the intensities of RM peaks than those of ettringite and C-(A)-S-H), the CO₂ sequestration was assumed to be mainly associated with the carbonation of RM.

\[
S_{CO₂} = \frac{D_{CO₂}^{AC} - D_{CO₂}^A}{R_{sp}} \times 100\% \quad (1)
\]

As seen in Table 5, the highest CO₂ sequestration was revealed by sample 12FA (35.6%), corresponding to around 44.5 kg CO₂ in 1 m³ of concrete, which contained 125 kg RM. Since the CO₂ emissions associated with the production of 1 ton of RM cement is around 1.1 ton [62], the net CO₂ emissions in 1 m³ of concrete utilizing the same binder composition as sample 12FA is around 93 kg (i.e. 1.1×125 kg (the amount of CO₂ released from the production of 125 kg RM) - 44.5 kg (the amount of CO₂ sequestered via carbonation)). On the other hand, the approximate CO₂ emissions of a concrete sample involving the use of PC with an equivalent performance is around 198 kg/m³ (i.e. 0.66×300 kg (the amount of CO₂ released from the production of 300 kg PC, which was calculated in accordance with the ACI 211.1-91 standard) [63, 64]). Therefore, the use of carbonation curing for the long-term sequestration of CO₂ in concrete products do not only enable the reduction of overall CO₂ emissions associated with
cement production (i.e. especially if CO$_2$ is sourced from a waste/industrial outlet), but also facilitate the use of RM and various other by-products in the proposed formulations.

3.7 Microstructural analysis

The microstructures of samples cured under ambient conditions for 28 days are shown in Fig. 14; whereas those cured under HTPC for 28 days are shown in Fig. 15. Ambient curing and HTPC revealed a porous microstructure dominated by unhydrated particles in the 0FA and T.0FA samples (Fig. 14(a) and Fig. 15(a)). Unhydrated FA with a diameter of ~2-6 μm was observed in samples 12FA, 24FA and T.24FA, along with the formation of needle-like ettringite. The ball-bearing effect introduced by the spherical nature of these FA particles that filled the initially available pores could explain the improvements in workability, as well as the denser microstructures of samples 12FA, 24FA, T.12FA and T.24FA in comparison to samples 0FA and T.0FA. The formation of this denser microstructure could hinder CO$_2$ diffusion within these samples, thereby leading to a lower carbonation degree than samples 0FA and T.0FA, which was in line with the strength, XRD and TGA results.

The formation of carbonate phases such as HMCs during carbonation contributed to the densification of the microstructures of carbonated samples (Fig. 16), which were much more compact than the relatively porous microstructures observed under ambient curing (Fig. 14). A more detailed look into the microstructures of carbonated samples revealed the formation of artinite layers including needle-like crystals with a diameter of ~0.2-0.3 μm and length of ~3-6 μm within sample 0FA (Fig. 17(a)). Alternatively, the formation of hydromagnesite crystals with a diameter of ~3-4 μm was observed in samples 12FA and 24FA (Fig. 17(b) and (c)), highlighting the variations in carbonate formations in line with the binder composition. The formation of these carbonate phases and the continuous network they established could explain the development of strength observed during carbonation. Accordingly, the pore filling effect and the binding strength provided via the interlocking of large carbonate crystals corresponded to the improved performance of the prepared samples after the carbonation process. In line with XRD and TGA results, SEM images indicated the limited formation of HMCs in samples cured under HTPC when compared to those cured under ambient conditions (Fig. 18 vs. Fig. 17).
This study focused on the development of sustainable binders involving the use of RM activated-GGBS that included 12% and 24% FA. The performance of these binders was aimed to be improved by (i) enhancing the hydration of RM and the dissolution of GGBS and FA via the adjustment of the curing temperature and (ii) conversion of the unreacted phases and hydrates into carbonates with the ability to provide strength via the sequestration of CO₂. The findings revealed the following conclusions:

FA did not play a direct role in the hydration reaction and the partial replacement of GGBS by FA led to longer initial setting times and lower strengths. Alternatively, the inclusion of FA stimulated the formation of crystalline C-(A)-S-H, but restrained the production of ettringite. Coupled with the enhancement in sample workability and pore filling effect, the use of FA led to denser microstructures, which resulted in lower CO₂ diffusions and thereby reduced the formation of carbonate phases. This reduction in reaction degrees translated into lower compressive strengths when the FA content increased to 24%. Alternatively, the use of 12% FA in RM activated-GGBS samples resulted in comparable strengths to those of RM activated-GGBS samples, highlighting the feasibility of incorporating FA within RM activated-GGBS samples without compromising performance.

The use of HTPC as a part of the curing process significantly accelerated the hydration of MgO and produced high initial strengths during the first week of curing. However, the rapid precipitation of brucite hindered the dissolution of GGBS and FA and the consequent formation of hydration products. These limitations in reaction mechanisms were reflected as decreased formation of reaction products and thereby lower strengths at longer curing durations when compared with samples cured under ambient conditions.

The sequestration of CO₂ by subjecting the samples to accelerated carbonation enabled the transformation of unreacted phases and hydrates into dense carbonate phases such as HMCs (i.e. artinite and hydromagnesite) and calcite. These carbonation conditions translated into rapid strength gain and microstructural development within the first 14 days. The carbonation process led to a reduction in porosity and provided a binding network facilitated by the formation of carbonate phases, thereby improving sample performance by up to ~100%, despite the degradation of certain phases (i.e. ettringite and C-(A)-S-H).
Overall, the obtained results indicated that the use of carbonation curing for the long-term sequestration of CO\(_2\) in concrete products could enable the reduction of CO\(_2\) emissions associated with cement production (i.e. especially if CO\(_2\) is sourced from a waste/industrial outlet), and facilitate the use of RM and various other by-products in the proposed formulations, thereby reducing the consumption of natural resources in the production cement. Future studies will involve a detailed assessment of the changes in the pore structure during the hydration and carbonation processes to investigate the microstructural evolution of RM-activated alternative binders under carbonation conditions.

Acknowledgment

The authors would like to acknowledge the financial support from the Singapore MOE Academic Research Fund Tier 1 (RG 95/16) and the assistance of Mr. Douglas Kieo Yong Qiang for the completion of this research project.
References

[34] N.T. Dung, T.J.N. Hooper, C. Unluer, Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seeding, Cement and Concrete Composites 115 (2021) 103832.

[37] C. Unluer, A. Al-Tabbaa, Enhancing the carbonation of MgO cement porous blocks through improved curing conditions, Cement and Concrete Research 59 (2014) 55-65.

Table 1 Chemical composition and physical properties of RM, GGBS and FA.

<table>
<thead>
<tr>
<th></th>
<th>Chemical composition (%)</th>
<th>Physical properties</th>
<th>Specific surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO SiO₂CaO Al₂O₃ Fe₂O₃ R₂O SO₃ LOI Others</td>
<td>Specific gravity (g/cm³)</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>>91.5 2.0 1.6 1.0 - - - 4.0 -</td>
<td>3.0 16.3</td>
<td></td>
</tr>
<tr>
<td>GGBS</td>
<td>6.9 27.2 45.3 12.6 0.3 3.3 3.9 0.9 0.5</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0.8 58.6 1.2 30.4 4.7 3.5 - 0.6 0.2</td>
<td>- -</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Mix designs of concrete samples prepared in this study.

<table>
<thead>
<tr>
<th>Mix</th>
<th>RM (wt.%)</th>
<th>GGBS (wt.%)</th>
<th>FA (wt.%)</th>
<th>Mixture proportion (kg)</th>
<th>RM</th>
<th>GGBS</th>
<th>FA</th>
<th>Aggregates</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0FA</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12FA</td>
<td>20</td>
<td>68</td>
<td>12</td>
<td>125</td>
<td>425</td>
<td>75</td>
<td>1200</td>
<td>312.5</td>
<td></td>
</tr>
<tr>
<td>24FA</td>
<td>56</td>
<td>24</td>
<td></td>
<td>350</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Fresh properties of RM activated-GGBS-FA pastes.

<table>
<thead>
<tr>
<th>Mix</th>
<th>pH</th>
<th>Flow (%)</th>
<th>Initial setting (h)</th>
<th>Final setting (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0FA</td>
<td>12</td>
<td>163</td>
<td>7.75</td>
<td>17.5</td>
</tr>
<tr>
<td>12FA</td>
<td>12.07</td>
<td>190</td>
<td>10.25</td>
<td>16.5</td>
</tr>
<tr>
<td>24FA</td>
<td>11.97</td>
<td>201</td>
<td>10.75</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Table 4 The relative intensity of the simulated components in the 29Si spectra of the precursor mixtures, samples cured under ambient and HTPC conditions for 28 days, and samples after 28 days of ambient curing followed by 56 days of carbonation. The relative intensities of each site were determined via line-shape simulation using DMFIT [40].

<table>
<thead>
<tr>
<th>Curing condition</th>
<th>Mix</th>
<th>Amorphous Q^0/Q^1</th>
<th>Amorphous Q^4</th>
<th>Fly ash Q^4</th>
<th>Crystalline products Q^1</th>
<th>Crystalline products Q^2</th>
<th>Crystalline products $Q^4(3Al)$</th>
<th>Total C-S-H</th>
<th>Total C-S-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursors</td>
<td>0FA</td>
<td>77.7</td>
<td>22.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12FA</td>
<td>68.1</td>
<td>18.6</td>
<td>13.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>24FA</td>
<td>54.6</td>
<td>15.5</td>
<td>29.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ambient</td>
<td>0FA</td>
<td>37.3</td>
<td>23.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.5</td>
<td>2.7</td>
<td>0.0</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>12FA</td>
<td>34.3</td>
<td>19.9</td>
<td>12.9</td>
<td>0.7</td>
<td>2.2</td>
<td>2.7</td>
<td>0.0</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>24FA</td>
<td>24.4</td>
<td>15.7</td>
<td>30.8</td>
<td>0.7</td>
<td>1.6</td>
<td>4.7</td>
<td>0.0</td>
<td>6.9</td>
</tr>
<tr>
<td>HTPC</td>
<td>T.0F</td>
<td>44.0</td>
<td>22.6</td>
<td>0.0</td>
<td>0.2</td>
<td>0.3</td>
<td>3.0</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.12F</td>
<td>37.7</td>
<td>19.6</td>
<td>12.7</td>
<td>0.2</td>
<td>0.3</td>
<td>3.4</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.24F</td>
<td>29.9</td>
<td>15.5</td>
<td>30.7</td>
<td>0.2</td>
<td>0.4</td>
<td>3.7</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient and carbonation</td>
<td>0FA</td>
<td>47.3</td>
<td>22.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>8.8</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>12FA</td>
<td>40.0</td>
<td>19.7</td>
<td>12.9</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>4.5</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>24FA</td>
<td>33.1</td>
<td>16.2</td>
<td>29.5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>3.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Note: The values are relative intensities and are not percentages. The columns represent different components and conditions as specified in the table headers.
Table 5 Mass loss values of samples obtained by TG-DTG.

<table>
<thead>
<tr>
<th>Curing condition</th>
<th>Mix</th>
<th>Mass loss (wt.%)</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
<th>CO₂ sequestration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dehydration</td>
<td>Decomposition/</td>
<td>Decarbonation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C/M-S-H, Et¹, & HMCs</td>
<td>Dehydroxylation</td>
<td>Ht² & Portlandite</td>
<td>HMCs & Calcite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>0FA</td>
<td>4.7</td>
<td>3.2</td>
<td>3.4</td>
<td>-</td>
<td>2.7</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>12FA</td>
<td>4.2</td>
<td>3.8</td>
<td>4.0</td>
<td>-</td>
<td>1.8</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>24FA</td>
<td>3.9</td>
<td>3.3</td>
<td>3.7</td>
<td>-</td>
<td>3.8</td>
<td>14.7</td>
</tr>
<tr>
<td>HTPC</td>
<td>T.0FA</td>
<td>3.7</td>
<td>2.2</td>
<td>3.7</td>
<td>-</td>
<td>3.5</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>T.12FA</td>
<td>4.0</td>
<td>2.9</td>
<td>3.2</td>
<td>-</td>
<td>3.1</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>T.24FA</td>
<td>2.6</td>
<td>2.9</td>
<td>3.5</td>
<td>-</td>
<td>4.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Ambient and carbonation</td>
<td>0FA</td>
<td>5.0</td>
<td>2.4</td>
<td>3.2</td>
<td>3.4</td>
<td>7.9</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>12FA</td>
<td>4.5</td>
<td>1.5</td>
<td>3.8</td>
<td>4.1</td>
<td>7.4</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>24FA</td>
<td>4.3</td>
<td>1.8</td>
<td>3.9</td>
<td>3.9</td>
<td>6.7</td>
<td>20.5</td>
</tr>
<tr>
<td>HTPC and carbonation</td>
<td>T.0FA</td>
<td>4.6</td>
<td>1.3</td>
<td>3.4</td>
<td>2.6</td>
<td>6.6</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>T.12FA</td>
<td>4.1</td>
<td>1.6</td>
<td>3.1</td>
<td>2.5</td>
<td>5.2</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>T.24FA</td>
<td>3.5</td>
<td>1.8</td>
<td>2.9</td>
<td>2.7</td>
<td>4.9</td>
<td>15.8</td>
</tr>
</tbody>
</table>

¹ Ettringite
² Hydrotalcite
List of Figures

M: Mullite
P: Periclase
G: Gehlenite
SAS: Sodium aluminum silicate
Q: Quartz

Fig. 1 XRD patterns of RM, GGBS and FA
Fig. 2 SEM images of (a) RM, (b) GGBS and (c) FA
Fig. 3 Particle size distribution of RM, GGBS and FA
Fig. 4 Isothermal calorimetry data of pastes, showing: (a) heat flow and (b) cumulative heat
Fig. 5 Compressive strengths of samples cured under: (a) ambient and (b) HTPC conditions
Fig. 6 Compressive strengths of carbonated samples cured under: (a) ambient and (b) HTPC conditions.
B: Brucite
CA: Calcium aluminum silicate hydrate
M: Mullite
MA: Magnesium aluminum hydroxide hydrate
MSH: Magnesium silicate hydrate
Et: Ettringite
Ht: Hydrotalcite
K: Katoite
P: Periclase
Pl: Portlandite
F: Calcium fluoride
Q: Quartz
Fig. 7 XRD patterns of samples after 28 days of curing under: (a) ambient and (b) HTPC conditions.
A: Arctinite
B: Brucite
C: Calcite
CA: Calcium aluminum silicate hydrate
M: Mullite
MA: Magnesium aluminum hydrosilicate hydrate
MSH: Magnesium silicate hydrate
Et: Ettringite
H: Hydromagnesite
Ht: Hydrotalcite
P: Periclase
Pl: Portlandite
F: Calcium fluoride
Q: Quartz

24FA

12FA

0FA

0 10 20 30 40 50 60 70 80
2θ (°) CuKα
Fig. 8 XRD patterns of samples after: (a) 28 days of ambient curing followed by 56 days of carbonation and (b) 28 days of HTPC followed by 56 days of carbonation
Fig. 9 The (a) ^{27}Al and (b) ^{29}Si MAS NMR spectra of 0FA, 12FA and 24FA precursor mixes

(Experimental spectra, simulated line shapes and deconvoluted simulation components are given by black, red and blue lines, respectively. Spinning sidebands are marked by asterixes (*))
Fig. 10 The 27Al MAS NMR spectra of samples after 28 days of curing under: (a) ambient and (b) HTPC conditions; and (c) 28 days of ambient curing followed by 56 days of carbonation

(Spinning sidebands are marked by asterixes (*))
Fig. 11 The ^{29}Si MAS NMR spectra of samples after 28 days of curing under: (a) ambient and (b) HTPC conditions; and (c) 28 days of ambient curing followed by 56 days of carbonation

(Experimental spectra, simulated line shapes and deconvoluted simulation components are given by black, red and blue lines, respectively. Spinning sidebands are marked by asterixes (*))
Fig. 12 TG and DTG curves of samples after 28 days of curing under: (a) ambient and (b) HTPC conditions
Fig. 13 TG and DTG curves of ambient samples after 28 days of ambient curing followed by 56 days of carbonation
Fig. 14 SEM images of samples after 28 days of ambient curing: (a) 0FA, (b) 12FA and (c) 24FA
Fig. 15 SEM images of samples after 28 days of HTPC: (a) T.0FA, (b) T.12FA and (c) T.24FA
Fig. 16 SEM images of samples after 28 days of ambient curing followed by 56 days of carbonation: (a) 0FA, (b) 12FA and (c) 24FA
Fig. 17 Detailed microstructures of samples after 28 days of ambient curing followed by 56 days of carbonation: (a) 0FA, (b) 12FA and (c) 24FA
Fig. 18 Detailed microstructures of samples after 28 days of HTPC followed by 56 days of carbonation: (a) T.0FA, (b) T.12FA and (c) T.24FA