
The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/224039/

Deposited on 19 October 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk
On the common occurrence of sulphate with elevated δ^{34}S in European mine waters: sulphides, evaporites or seawater?

David Banks¹ Adrian J. Boyce¹², Neil M. Burnside¹, Ewa Janson³, Nieves Roqueñi Gutierrez⁴

¹ School of Engineering, University of Glasgow, James Watt Building South, Glasgow G12 8QQ, UK
² Scottish Universities Environmental Research Centre (SUERC), East Kilbride G75 0QF, UK
³ Główny Instytut Górnictwa (Central Mining Institute), plac Gwarków 1, 40-166 Katowice, Poland
⁴ School of Mining, Energy and Materials Engineering, University of Oviedo, Calle Independencia 13, 33004-Oviedo, Asturias, Spain

Corresponding author: David Banks. david.banks@glasgow.ac.uk

Highlights

- Mine water sulphate δ^{34}S characterised in three European coal mining regions.
- Shallow mine waters typically exhibit δ^{34}S characteristic of sulphide oxidation.
- High δ^{34}S in deeper mine waters suggests evaporite / marine derivation.
- Sulphate reduction fractionation may have contributed to elevated sulphate δ^{34}S.
- Is deep mine- / groundwater a dynamic sulphate reservoir analogous to ocean water?

Abstract

The stable isotopic (δ^{34}S, δ^{18}O, δ^{2}H) composition of mine waters has been examined from coal and metal mines, of varying depth, in Spain (Asturias), the UK (north Derbyshire / Yorkshire) and Poland (Bytom, Upper Silesia). δ^{18}O and δ^{2}H data confirm a meteoric origin for all waters. The mine waters have elevated sulphate concentrations relative to recent meteorically-derived groundwaters and have elevated SO_4^{2-}/Cl $^-$ ratios relative to marine water. In the shallower mines and Markham No. 3, the dissolved sulphate δ^{34}S is low, suggesting the sulphate is derived from the oxidation of sulphide minerals. In most of the deeper mines, the dissolved sulphate δ^{34}S is too high (>15‰), to be derived from simple pyrite oxidation. In the deep Polish and Spanish mine waters, the source of sulphate may be evaporite mineral dissolution, but such a mechanism is problematic in the case of the Caphouse (UK) mine. Fractionation associated with sulphate reduction may have contributed to elevated dissolved sulphate δ^{34}S.

Elevated sulphate in deep coal mine waters may not always be simply derived from pyrite oxidation. The consistent observation of elevated dissolved sulphate δ^{34}S in deep coal mines suggests a distinct genetic pathway, the origin of which as yet remains equivocal.

Key Words: Mine water, sulphate, sulphide, stable isotopes, evaporite, galena, seawater
Introduction

It is often assumed that, in the waters of flooded coal and sulphide ore mines, the dominant hydrochemical process is sulphide oxidation [1]; e.g., for pyrite:

\[
2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} = 2\text{Fe}^{2+} + 4\text{SO}_4^{2-} + 4\text{H}^+ \quad (1a)
\]
\[
\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} = 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+ \quad (1b)
\]

or for sphalerite

\[
\text{ZnS} + 2\text{O}_2 = \text{Zn}^{2+} + \text{SO}_4^{2-} \quad (2)
\]

The corollary to this assumption is that the majority of the sulphate found in mine waters is derived from sulphide oxidation, whether biologically or abiotically mediated. Hydrochemical data collected during the EU-funded LoCAL [2] project, from several mining environments in Poland, northern Spain (Asturias) and the United Kingdom, have previously been published in separate papers [3, 4, 5, 6]. This paper compares the inorganic chemical data from mine waters in all three areas, adds stable isotopic data and critically examines the assumption that the majority of the sulphate found in mine waters is derived from sulphide oxidation. In opposition to this primary hypothesis, the following opposing hypotheses are considered for the source of sulphate:

1. from marine inundation of the mine host rock (i.e. “fossil” seawater)
2. from dissolution of evaporite minerals, such as gypsum or anhydrite, within the host rock, subjacent or overlying strata (for example, the Permian Zechstein salt deposits, the Triassic Keuper / Mercia Mudstone gypsiferous marls, or Tertiary evaporites, that often overlie Carboniferous coal-bearing strata in a European geological context)
3. from downward density-driven flow of residual brines during evaporite formation in closed evaporitic basins
4. sulphate and other solutes have been concentrated by deep freezing during permafrost conditions associated with the Pleistocene glaciations, a hypothesis that has been advanced to explain deep saline formation waters in British Coal Measures rocks [7], as well as in the Canadian and Fennoscandian shields [8].

In each of the three countries under consideration (Figure 1), the LoCAL data revealed deep mining environments whose waters contain significantly elevated sulphate concentrations, but where the dissolved sulphate ^{34}S isotopic composition is not characteristic of pyrite oxidation. In the case of hypotheses 1, 3 and 4 one would expect elevated concentrations of sulphate to also be accompanied by correspondingly elevated chloride concentrations. In the case of
hypothesis 2, chloride would only be elevated if the evaporite deposit contained chloride minerals, but not if it was sulphate-dominated (e.g. gypsum).

![Overview map of Europe, showing the locations of the studied mines in the UK, Spain and Poland, together with other locations named in text.](image)

The practical importance of this study is that elevated sulphate concentrations, derived from pyrite oxidation (and implying a dissolved sulphate δ34S similar to sedimentary sulphide) are widely considered to be diagnostic of coal mine waters [9].

The Mines

Szombierki and Centrum mines, Bytom, Upper Silesian Coal Basin, Poland

Bytom town lies in the western part of the Katowice conurbation, overlying the Carboniferous age Upper Silesian Coal Basin (USCB) synform. The Namurian-Westphalian coal-bearing
sequence can reach up to 8500 m in thickness, and comprises sandstones, siltstones, claystones and coals, deposited in a Variscan foredeep basin. It can be subdivided, in descending order, into four Series: the Kraków Sandstones, the Mudstone Series, the Upper Silesian Sandstones, and the Paralic Series [10]. The coal-bearing strata are overlain by Permian, Triassic, Jurassic, Tertiary and Quaternary cover, the Permian and Jurassic strata only being encountered in the north and the Tertiary predominantly in the south. The Triassic strata are more extensive, reaching up to 200 m thick and comprising predominantly dolomites and limestones [11]. These Triassic strata can represent a productive potable groundwater aquifer, but also host workable lead-zinc ore (sulphide) deposits, which were extensively exploited in the Bytom Trough.

Figure 2. Schematic cross section of the Szombierki mine, showing numbered sampling locations, after [3].

Bytom’s Szombierki coal mine [3] was actively mined from 1870 until closure in 1999. It accesses an area of around 10.3 km², extending down to c. 950 m below ground level (bgl) / -690 m above sea level (asl). The main seams mined were within the Upper Silesian Sandstone and Paralic Series, with sulphur contents of 0.7 to 1.0% [12]. The mine is kept dewatered by underground pumping stations rather than submersible pumps, in order to control water ingress into adjacent (active) mines, such as the adjacent Centrum / Bobrek mine (50.3548°N, 18.8912°E, which is also dewatered). Szombierki colliery is dewatered via
the Ewa shaft (50.3382°N 18.9108°E), with rates of 1.1 to 2.7 million m³ yr⁻¹ (average 35 to 84 L s⁻¹) being recorded since its closure. The water is discharged via a pond termed Ws5, thence ultimately to the Bytomka River. Ewa shaft also receives influxes of water from the adjacent abandoned Bytom II mine at the 630 m level (location 5 on Figure 2) and from the isolated Karol mining area, which enters near location 7 (Figure 2). The mine water hydrochemistry has previously been described by [3].

Bolko Pb-Zn mine pumping station (formerly ‘Orzeł Biały’), Bytom, Upper Silesia, Poland

The coal-bearing sequence at Szombierki is overlain by Triassic cover of up to 230 - 250 m thickness, including terrigenous Bunter Sandstone facies and carbonates of Roethian and Muschelkalk type [13, 14, 15, 16]. The mid-Triassic Muschelkalk dolomites contain a lead-zinc sulphide ore body (including both oxidized calamine deposits and sulphide minerals: sphalerite and galena [17, 18, 19]) accessed by around five interconnected mines, ranging in depth from 64 - 100 m [20]. The ores are Mississippi Valley Type, deposited from basinal brines within karst-like features in brecciated Triassic dolomites [21]. The worked areas of the Triassic Pb-Zn mines and Szombierki mines overlap, but are vertically and hydraulically separate. Active Pb-Zn mining ceased in 1989. The 129 m deep Bolko shaft (50.3603°N, 18.9318°E) still acts as a central dewatering station for the Bytom Pb-Zn mine complex. Two galleries, the 1100 m long Western Gallery and 1225 m long Eastern Gallery drain water to a sump and pumping station at the base of the Bolko shaft [13]. In 2003 the average water flow into Bolko was 385 L s⁻¹ [20]. In 1999, the water from the western gallery contained 1040 - 1520 mg L⁻¹ sulphate, 370 - 800 mg L⁻¹ chloride and 5.3 – 12.9 mg L⁻¹ zinc, while the water from the eastern gallery was characterised by 930 - 1100 mg L⁻¹ SO₄²⁻, 180 - 220 mg L⁻¹ Cl⁻ and 10.7 - 15.6 mg L⁻¹ Zn [16].

Mieres, Asturias, Spain

The studied mines [4, 22, 23] form an interconnected complex of workings along the valley of the River Caudal and its major upstream tributary, the River Turón, in the vicinity of the town of Mieres, Asturias, northern Spain (Figure 1). They are located within the Asturian Central Coal Basin (ACCB), part of the ‘Cantabrian Zone’ of northern Spain, an easterly directed arcuate thrust and fold belt, formed during the Variscan orogeny [24]. During the early Carboniferous (Mississippian), the Cantabrian Zone comprised a stable, low-sedimentation marine platform; as the orogenic episode gathered momentum during the later Carboniferous, the zone became a foreland basin, infilled by Namurian turbiditic successions in the west and
black micritic limestones in the east [25]. In late Namurian and Westphalian times, coal-bearing sequences started to form in alluvial, deltaic and coastal and alluvial settings, and even in intermontane and limnic basins in the Stephanian. The coals range in grade from high-volatile bituminous to anthracite [26].

The studied mines are stratigraphically located within a heavily deformed and steeply dipping Westphalian coal-bearing sequence of shales, greywackes, mudstones, sandstones, conglomerates and limestones. The coals of the c. 3000 m thick Sama Group are generally low-sulphur (0.5 to 1% total S, with occasional outliers up to 2.3%), and overlie the c. 2700 m thick Lena Group [27].

At the downstream end of the mine complex, the Barredo shaft (43.2429°N 5.7747°W) is some 360 m deep and was active from 1926 to 1993. The Figaredo mine (43.2095°N 5.7672°W), in the valley of the River Turón, is 650 m deep [4], and was active until 2007. After 2008, the complex was allowed to partially flood, but water levels are maintained at c. +150 m asl, by pumping from both shafts, at a combined rate of 3.3 to 5.1 million m3 yr$^{-1}$ (average 4.1 million m3 yr$^{-1}$ or 130 L s$^{-1}$). The majority of pumping takes place at Barredo, via 4 submersible pumps: 3 at a depth of c. 100 m and 1 at 200 m depth. The pump at Figaredo is around 100 m deep. Further pumped dewatering occurs at two more mines, Santa Barbara (43.2138°N 5.7182°W) and San José (43.2086°N 5.7379°W), upstream of Figaredo in the Turón valley. The workings of the Barredo-Figaredo complex have an estimated volume of some 5.8 million m3 (up to the water level of +150 m asl) and underlie an area of some 16.4 km2 [22].

Shallow workings are also present, including the gravity-drained Mariana mine, driven into the hillside close to Barredo shaft. Rainfall in the area is around 1100 mm yr$^{-1}$. The mine water hydrochemistry has previously been described by [4].

Caphouse, Yorkshire, United Kingdom

Caphouse Colliery [28] is located near the town of Wakefield, West Yorkshire, United Kingdom. Several shafts are present on site, including the Hope (1.6254°W 53.6418°N), Inman, Furnace and Caphouse (1.6182°W 53.6440°N) shafts and two drifts [29, 30], which are hydraulically interconnected to a wider network of collieries [31, 32]. The colliery typically mined strata between the Flockton Thick and Beeston seams [33] of the Langsettian stage [34] of the Westphalian Lower Coal Measures. The strata comprise coals, mudstones, siltstones and sandstones and were deposited in a “fluvio-lacustrine setting in an embayment distant from the open ocean with limited marine influence” [28]. Caphouse Colliery closed in 1985 as a working mine, but now hosts the National Coal Mining Museum of England.
The 197 m deep Hope Shaft is pumped at an average rate of c.3000 m3 d$^{-1}$ (up to 76 L s$^{-1}$ for 12-16 h day$^{-1}$), to maintain mine water levels in the range c. 143-156 m bgl (+4 to -9 m asl). This ensures that the museum's underground visitor exhibits remain unflooded and that regional minewater levels are kept low enough to prevent uncontrolled surface minewater outbreaks. The pumped water is treated using a passive oxidation-settlement-wetland system prior to discharge to the river environment [35, 36, 37].

The Hope Shaft pumped minewater chemistry has been described previously [5, 38, 39]. It typically a sodium sulphate-(bicarbonate) water of circumneutral pH and with an H$_2$S odour. It has been suggested [39, 9] that the hydrochemistry results from mixture between an ambient sodium bicarbonate Coal Measures groundwater [40] and an acid sulphate mine water signature. During the past c. 12 years, the mine water quality has improved: SO$_4^{2-}$ concentrations have declined from c. 1200 mg L$^{-1}$ to c. 600 mg L$^{-1}$ and iron concentrations from c. 30 mg L$^{-1}$ to c. 15 mg L$^{-1}$. Since early 2015, chloride concentrations have increased, for reasons which are not clear, to over 300 mg L$^{-1}$.

Water seepages to the Secondary Egress Drift at Caphouse, from above the main mine water table, have previously been sampled and published by [38, 41].

Markham Colliery, Bolsover, Derbyshire, United Kingdom

Markham Colliery, located just north of Bolsover, Derbyshire, UK, comprised four main shafts. From the 1880s until its closure in c. 1993, it mined coal between the High Hazels and Blackshale seams of the Duckmantian and Langsettian stages of the Westphalian Coal Measures [42, 43]. Since 2012 until recently, an electrical submersible pump (ESP) was used to supply water from the only remaining accessible shaft (No. 3 shaft; 1.3285°W 53.2424°N), to a heat pump [6, 39]. No.3 shaft was constructed in 1886 to a depth of c. 496 m (the level of the Deep Soft seam), and later backfilled to 429 m (Ell Coal). The shaft hydraulically interconnects with the other Markham shafts (at c. 630 m deep, Shafts 1 and 4 are significantly deeper than No. 3) and thence to a several other nearby collieries across the NE Derbyshire region. Following colliery abandonment, minewater levels are still rising rapidly across the region. In May 2011, the water level in No. 3 shaft was 239.5 m bgl (-167.7 m asl); by February 2016 it was at 136 m bgl and by early 2018, the level was above 92 m bgl (-20 m asl). This equates to an average rise of over 20 m per year.

No. 3 shaft was test-pumped in 2011 with a pump set as deep as 340 m (we refer to this as the *Phase 1 Pumping Regime*), and the water was found to be of a highly saline (electrical
conductivity 40,000 µS cm⁻¹), sodium-chloride, reducing nature (ammoniacal nitrogen 14 mg L⁻¹ and negligible sulphate, indicating sulphate-reducing conditions) [6].

In 2012, an ESP was installed at c. 235 m depth to supply water at c. 14 - 15 °C to a heat pump system (Phase 2 Pumping Regime), with the cooled water being returned to the same shaft via a diffuser at 250 m bgl. The water from this depth was still saline (20,000 – 25,000 µS cm⁻¹, with sodium-chloride composition) and reducing (up to 9 mg L⁻¹ dissolved methane and 4 - 5 mg L⁻¹ ammoniacal nitrogen), but less so than during Phase 1 (it now contained 500 - 1700 mg L⁻¹ sulphate). In January 2015, the ESP was raised to 170 m bgl (with return diffuser at 153 m bgl; Phase 3 Pumping Regime), following which the abstracted water became cooler (13 - 14°C [39]), fresher (EC 2000 - 3000 µS cm⁻¹, but still Na-Cl dominated) and more oxidising (ammonium and methane negligible, significant decline in dissolved Fe and Mn, nitrate at 3 - 5 mg L⁻¹). It thus seems that the water in the Markham shaft is significantly stratified, with fresher, more oxidising recently recharged water ‘floating’ on denser, saline, reducing water [6, 39].

Shaft No. 3 releases significant quantities of methane gas (indeed, prior to 2012, when water levels were lower, it was used to commercially produce methane), which must be vented at the surface.

Fractionation of Sulphur Isotopes in Marine and Sedimentary Environments

Modern seawater sulphate has a δ³⁴S around +21‰ CDT [44]. This is higher than the riverine inputs to the world’s oceans (estimated as a global flux-weighted mean of 4.4 ±4.5‰ [45], which reflects weathering of sulphur-bearing minerals), due to the preferential removal of ³²S by the formation of sulphide minerals in marine sediments by sulphate reduction.

Sulphate precipitates or evaporite minerals derived from seawater [44] have a sulphur isotope composition similar to marine water, with only a very modest positive fractionation (cited between 0 to +2.4‰ by [46]).

Bacterially-mediated sulphate reduction (BSR) in anaerobic sediments typically produces a strong preferential concentration of ³²S in the sulphide minerals formed. Thus, sulphide minerals formed in anaerobic systems which are isotopically open to seawater sulphate have a lower δ³⁴S than the seawater. Fractionation (δ³⁴Sₘ₂O₄ – δ³⁴S₃H₂S₅) can reach as much as 70‰ in both laboratory studies and real sediments [46, 47, 48, 49, 50]. Thus, pyrite formed by microbial sulphate reduction in conditions that are replete with respect to seawater (i.e. isotopically “open” with respect to sulphate) often has a low to very low (typically negative) δ³⁴S [51]. Sulphide minerals formed in settings closed with respect to sulphate tend to have a
more positive $\delta^{34}\text{S}$ which more closely approaches that of the “parent” seawater, as the sulphate present becomes consumed [52]. Thus, pyrite formed under closed conditions, where sulphate is limited (e.g. epigenetic pyrite, formed after burial, after system closure) will thus usually be less depleted in ^{34}S. A typical $\delta^{34}\text{S}$ range for marine pyrite is often taken to be between -50 and +15‰ [44, 46]. A study of Cretaceous sediments found that pyrite formed in marine and coastal plain rocks where access to sulphate became progressively “closed” had typical $\delta^{34}\text{S}$ up to +18‰, and in some cases even higher [51]. In deeper, higher temperature, abiotic environments, thermochemical sulphate reduction (TSR) may predominate, using hydrocarbons or other reduced species as electron donors [53, 54]. Preferential enrichment of ^{32}S in the sulphide phase by TSR is less extensive (0 to 20‰ fractionation commonly cited [55, 56]), but methane-coupled TSR has been suggested as a mechanism for generating elevated $\delta^{34}\text{S}$ in fluid sulphates (and related sulphide minerals), with formation of sulphide ores in Zechstein carbonates of Lower Saxony [57] and the Zambian Copper Belt [58].

The seawater $\delta^{34}\text{S}$ is governed by the relative rates of mineral weathering input, removal by sulphide formation and removal as sulphate / evaporite minerals. It has thus exhibited systematic variations through geological time [59], with the following values estimated for the geological period relevant to the studied mines. Carboniferous seawater sulphate $\delta^{34}\text{S}$ has been estimated to typically range from +18 to +14‰ [46, 60], although values up to c. +23‰ have been reported from the Lower Carboniferous [60, 61]. Higher values are characteristic of the Mississippian period [62], declining through the Upper Carboniferous [63]. In the Permian seawater sulphate $\delta^{34}\text{S}$ tended to be less positive at +8 to +14‰ [46]. The late Permian German Zechstein evaporites tend to exhibit a range from +10 to +15‰, with an average of 11.5‰ being suggested for typical late Permian marine sulphate [64]. In the earliest Triassic, the marine sulphate $\delta^{34}\text{S}$ abruptly rose to +20 to +30‰, reflecting a transition from an environment of predominant “Zechstein”-type evaporitic sulphate precipitation to an extremely anoxic, euxinic environment, dominated by sulphide formation [65]. Seawater sulphate $\delta^{34}\text{S}$ subsequently decreased to below +20‰ in the Middle Triassic to stabilise around +16‰ in the Late Triassic [64]. Global trends in seawater sulphate are also followed by trends in the $\delta^{34}\text{S}$ of sulphide minerals produced from such seawater [46].

Seawater salinity has varied through geological time, but not by an order-of-magnitude. Palaeozoic and early Mesozoic chloride salinities are estimated [66] to have been higher than present, while later Mesozoic and Cenozoic salinities were similar to those at present. Concentrations of marine sulphate are generally believed to have been lower than at present [67, 68] through much of geological time, although similar to the present at the Permian-Triassic boundary [69, 70]. Given that the marine $\text{SO}_4^{2-}/\text{Cl}^-$ ratio has typically been lower in the
geological past than at present, a groundwater $\text{SO}_4^{2-}/\text{Cl}^-$ ratio exceeding modern seawater is a strong indicator of a lithological source of sulphate.

Finally, when sulphide minerals such as pyrite oxidise to sulphate (e.g. when exposed to the atmosphere via mining activities), whether biologically mediated or not [71], there is a general consensus that there is very little sulphur isotopic fractionation, and that the derived sulphate essentially reflects the isotopic composition of the parental sulphide [72].

Sulphide Sulphur Isotopic Composition in the Studied Mining Areas

In the UK, mean pyrite $\delta^{34}S$ of -32.5‰ and -17.7‰ were recorded in the Namurian Bowland Shales and Caton Shales, respectively [73]. Excluding a single sample (-30.0‰), nine samples of soluble sulphate from these shales returned a mean sulphate $\delta^{34}S$ of -1.7‰, with a range from -8.7 to +3.7‰.

The $\delta^{34}S$ of pyrite in the UK’s Coal Measures is very variable, but values of around 0‰ are typical. In Ayrshire (Scotland), the average $\delta^{34}S$ of pyrite in coal was +2.7‰ (range -26.3 to +11.6‰, with one higher outlier; [74]). In Northumberland, the average was +5.1‰ (range -5.4‰ to +12.8‰, with one higher outlier; [62]). A study [75] of a marine incursion in the Westphalian Coal Measures sequence of Yorkshire recorded pyrite $\delta^{34}S$ values ranging from -35.3‰ to +20.4‰. Low values were recorded in marine portions of the succession, (mean -1.2 ± 6.5‰), trending towards higher values in sediments beneath coal seams (+12.7 ± 7.7‰). In summary, UK Coal Measures pyrite typically has a $\delta^{34}S$ range from < -20‰ to around +12‰, but occasionally significantly higher.

In Poland, coals from the USCB are reported [76] to exhibit $\delta^{34}S$ ranging from -6.6‰ to +10.5‰ (mean +3.4‰) in the pyrite fraction, -5.9‰ to 13.7‰ (mean -1.9‰) in the sulphate fraction and from +3.9‰ to +15.9‰ (mean +7.0‰) in the organic fraction. A second study [77] reported a range from +3.5‰ to +9‰ in coals the southern USCB.

In the Zn-Pb sulphide ores in the Triassic rocks of the Silesia – Kraków area, the reported $\delta^{34}S$ range is large [21]. $\delta^{34}S$ values in galena, brunckite and sphalerite typically fall in the range -10 to +10‰, although a cluster of brunckite mineralisation yields highly negative values of -20 to -30‰ [18]. [19] confirm the large range of $\delta^{34}S$, but suggest a range from -2 to -15‰ for the later generations of sulphide mineralisation.

No documented values of sulphide $\delta^{34}S$ from the Spanish Asturian coalfield have been located.
Methods

In 2015-2016, water samples were systematically collected under the auspices of the LoCAL project,

- From the pumped Markham No. 3 shaft and the pumped Hope Shaft at Caphouse mine in the United Kingdom, at shaft-top sampling points on the pumped water pipeline.
- From discrete seepages to the Secondary Egress Drift, above the regional mine water table, at Caphouse mine. Some of these seepages had been previously sampled and described by [30, 38]. During the LoCAL project, these seepages, and the bulk water at the Caphouse Furnace Shaft at the bottom of the drift, were analysed for stable isotopes.
- From the Bolko Pb-Zn and Szombierki coal mines, at specific sampling locations underground (in the galleries of the Bolko mine at locations 2, 3, 4; and as shown in the Szombierki mine in Figure 2). Samples were also taken of the pumped bulk discharge from the Ewa shaft of the Szombierki mine (location 11) and of the pumped bulk discharge of the adjacent Centrum mine to the River Bytomka (location 13, 50.3513°N, 18.8821°E).
- From the Barredo mine (from three 100 m deep ESPs, a single 200 m deep ESP and from the bulk pumped mine water flux from all 4 ESPs), from the Figaredo and San José mine pumped discharges, from the shallow Mariana mine gravity flow of mine water. Samples were also taken from the River Turón upstream of the mine discharges and downstream of the San José mine discharge (but upstream of Figaredo [4]).

Furthermore, samples of meteoric water and run-off were collected for hydrochemical analysis and analysis of 18O and 2H isotopes. These samples were collected from:

- The Holme Brook stream (53.2389°N 1.4442°W) in Chesterfield, East Midlands, UK, representing presumed recent run-off. Stable isotopic data were also downloaded from the IAEA Global Network of Isotopes in Precipitation (GNIP) station [78] at Keyworth, East Midlands, UK (52.8833°N 1.0833°W, data set 1985 to 1996), for comparison.
- Local precipitation to Mieres in Spain. Stable isotopic data were also downloaded from the IAEA GNIP) stations [78] at Léon (42.5883°N 5.6511°W, data set 2000 to 2015) and Santander (43.4911°N 3.8006°W, data set 2000 to 2015), for comparison.
- Precipitation from sites at Bytom and Jaworzno in Poland. Stable isotopic data were also downloaded from the IAEA GNIP) station [78] at Kraków (50.0617°N 19.8486°E, data set 1975 to 2016), for comparison.
Key field parameters (pH, electrical conductivity, redox indicators, temperature) were made in the field using calibrated hand-held instruments by the different national LoCAL teams. Major ions were analysed at national laboratories using methods (typically ion chromatography [IC] and inductively coupled plasma optical emission spectrometry [ICP-OES]) documented in detail in publications by [5, 6] for the Caphouse and Markham (UK) sites, respectively, by [12] for the Polish sites and by [4] for the Spanish sites.

Stable isotopic analysis of water and precipitate samples from all sites was carried out at the Scottish Universities Environmental Research Centre (SUERC). For δ¹⁸O and δ²H analysis, field samples of water for were taken in duplicate or triplicate using clean 10 ml glass vials with screw caps, sealed with Parafilm. For δ¹⁸O analysis, each sample was over-gassed with a 1% CO₂-in-He mixture for 5 mins and left to equilibrate for a further 24 h. A sample volume of 2 ml was then analysed using standard techniques on a Thermo Scientific Delta V mass spectrometer set at 25°C. Final δ¹⁸O values were produced using the method established by [79]. For δ²H analysis, sample and standard waters were injected directly into a chromium furnace at 800°C [80], with the evolved H₂ gas analysed on-line via a VG Optima mass spectrometer. Final values for δ¹⁸O and δ²H are reported as per mille (‰) variations from the V-SMOW standard in standard delta notation. In-run repeat analyses of water standards (international standards V-SMOW and GISP, and internal standard Lt Std) gave reproducibility better than ±0.3‰ for δ¹⁸O, ±3‰ for δ²H

For δ³⁴S analysis, water samples were collected in 1 L plastic bottles. Samples were acidified to pH 3 - 4 using 10% HCl and then dosed with excess 5% BaCl₂ solution to precipitate sulphate as barium sulphate [81], which was allowed to settle. The precipitate was recovered from the flask and cleaned repeatedly in de-ionised water and dried. For analysis of the resulting precipitate, SO₂ gas was generated by combustion at 1065°C with excess Cu₂O and silica [82], then measured isotopically using a VG Isotech SIRA II mass spectrometer. Results are reported as per mille (‰) variations from the Vienna Canyon Diablo Troilite (V-CDT) standard in standard delta notation. Reproducibility of the results was monitored through the repeated analysis of standards NBS-123 (+17.1‰), IAEA-S-3 (-32.3‰), and SUERC’s internal standard CP-1 (-4.6‰), and was typically around ±0.3‰ during these analyses.

In the results section (below), isotopic results on duplicate or triplicate aliquots of sample are reported as the mean value.

For the Caphouse Hope Shaft and the Markham No. 3 shaft, the LoCAL project (2015 - 2016) data set is supplemented by earlier hydrochemical analyses (at commercial laboratories) of samples collected by the Coal Authority and the Markham site operator, respectively, as
described in [5, 6]. At these sites, stable isotope samples were only collected during the period of the LoCAL project (2015 - 16).

Figure 3. Histogram showing distribution of all δ^{34}S isotope determinations (average of duplicate/triplicate aliquots) made on dissolved sulphate in mine waters during the LoCAL project. The lowermost panel shows typical distribution of δ^{34}S in sedimentary sulphide and seawater/evaporites of different geological ages. Note: Bolko 1, 2 etc. refer to locations 1, 2 etc., as described in the legend of Table 1. Sites in solid boxes = shallow gravity-drained mine (Mariana, Caphouse drift), sites in dashed boxes = shallow Pb-Zn mine (Bolko).
Figure 4. $\delta^{18}O$ versus δ^2H for the Polish mine waters. Kraków monthly and weighted mean precipitation values derived from [78]. The inset shows the main cluster of mine waters. Some data subsets have been omitted from the inset and the main diagrams for clarity of viewing. LMWR = three variants of proposed local meteoric water line proposed by [78] for Kraków.
Table 1. Arithmetic mean of the hydrochemical characteristics of water samples from Bolko Pb-Zn mine in the period May 2015 – May 2016. Sample locations: (1) Main pumping station (124.4 m depth); (2) Isolating dam no. 2 – Western gallery; (3) Isolating dam no. 4 – Eastern gallery; (4) Isolating dam no. 3 – Eastern gallery.

<table>
<thead>
<tr>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.05</td>
<td>7.09</td>
<td>7.10</td>
<td>7.28</td>
</tr>
<tr>
<td>Temperature °C</td>
<td>12.5</td>
<td>12.0</td>
<td>12.4</td>
<td>12.8</td>
</tr>
<tr>
<td>Electrical conductivity (EC) µS cm⁻¹</td>
<td>2535</td>
<td>2584</td>
<td>2516</td>
<td>2494</td>
</tr>
<tr>
<td>Total dissolved solids (TDS) mg L⁻¹</td>
<td>1616</td>
<td>1770</td>
<td>1665</td>
<td>1646</td>
</tr>
<tr>
<td>Alkalinity meq L⁻¹</td>
<td>7.6</td>
<td>7.3</td>
<td>7.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Chloride mg L⁻¹ as Cl⁻</td>
<td>143</td>
<td>207</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Sulphate mg L⁻¹ as SO₄²⁻</td>
<td>1267</td>
<td>977</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Nitrate mg L⁻¹ as NO₃⁻</td>
<td>4.9</td>
<td>16.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Calcium mg L⁻¹ as Ca</td>
<td>376</td>
<td>320</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>Magnesium mg L⁻¹ as Mg</td>
<td>205</td>
<td>142</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Sodium mg L⁻¹ as Na</td>
<td>91</td>
<td>158</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Potassium mg L⁻¹ as K</td>
<td>10.9</td>
<td>14.0</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Iron (total) mg L⁻¹ as Fe</td>
<td>1.0</td>
<td>1.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Manganese mg L⁻¹ as Mn</td>
<td>1.35</td>
<td>0.36</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>Barium µg L⁻¹ as Ba</td>
<td>17</td>
<td>22</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Strontium mg L⁻¹ as Sr</td>
<td>1.47</td>
<td>1.22</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O V-SMOW ‰</td>
<td>-9.5</td>
<td>-9.5</td>
<td>-9.5</td>
<td>-9.7</td>
</tr>
<tr>
<td>δ²H V-SMOW ‰</td>
<td>-65.3</td>
<td>-67.3</td>
<td>-66.6</td>
<td>-66.5</td>
</tr>
<tr>
<td>δ³⁴S V-CDT ‰</td>
<td>+10.3</td>
<td>+1.9</td>
<td>+10.7</td>
<td>+6.6</td>
</tr>
<tr>
<td>Cl/Br Mass ratio</td>
<td>409</td>
<td>331</td>
<td>1182</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻/Cl⁻ Molar ratio</td>
<td>3.38</td>
<td>1.74</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>Na⁺/Cl⁻ Molar ratio</td>
<td>1.00</td>
<td>1.18</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>(Ca²⁺+Mg²⁺)/SO₄²⁻ Eq. ratio</td>
<td>1.35</td>
<td>1.36</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺/alkalinity Eq. ratio</td>
<td>2.58</td>
<td>2.23</td>
<td>3.22</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Arithmetic mean of the hydrochemical characteristics of water samples from Szombierki (Ewa) and Centrum mines in the period May 2015 – June 2016. Sample locations: ($) Bulk water chemistry from Szombierki in 2007 and 2008, cited by [11]; (5) Inflow from Bytom II mine, level 630, Ewa shaft, Szombierki; (6) Inflow to level 630m, Ewa shaft; (7) Inflow from abandoned Karol mine, level 630m, Ewa shaft; (8) Inflow from level 510m (measuring point on level 630m), Ewa shaft; (9) Main pumping station on level 630m, Ewa shaft; (10) Inflow to level 790m, Ewa shaft; (11) Discharge to Ws5 pond from Szombierki pumping station; (13) Discharge from Centrum mine to Bytomka river (see Figure 2 for locations).

<table>
<thead>
<tr>
<th>Unit</th>
<th>$</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.72</td>
<td>6.72</td>
<td>6.72</td>
<td>6.73</td>
<td>7.01</td>
<td>7.28</td>
<td>7.12</td>
<td>7.54</td>
<td>7.99</td>
</tr>
<tr>
<td>Temperature °C</td>
<td>24.5</td>
<td>22.4</td>
<td>22.9</td>
<td>26.5</td>
<td>22.5</td>
<td>24.5</td>
<td>23.6</td>
<td>23.2</td>
<td>13.9</td>
</tr>
<tr>
<td>TDS mg L⁻¹</td>
<td>8920</td>
<td>7015</td>
<td>3457</td>
<td>5162</td>
<td>3614</td>
<td>5928</td>
<td>4615</td>
<td>5454</td>
<td>3934</td>
</tr>
<tr>
<td>Alkalinity meq L⁻¹</td>
<td>11.7</td>
<td>13.4</td>
<td>14.6</td>
<td>14.4</td>
<td>12.8</td>
<td>14.2</td>
<td>13.4</td>
<td>13.2</td>
<td>7.3</td>
</tr>
<tr>
<td>Chloride mg L⁻¹ as Cl⁻</td>
<td>3400</td>
<td>2083</td>
<td>723</td>
<td>1100</td>
<td>893</td>
<td>1693</td>
<td>1433</td>
<td>1925</td>
<td>1543</td>
</tr>
<tr>
<td>Sulphate mg L⁻¹ as SO₄²⁻</td>
<td>1640</td>
<td>1453</td>
<td>1733</td>
<td>2600</td>
<td>1833</td>
<td>1967</td>
<td>1567</td>
<td>1729</td>
<td>993</td>
</tr>
<tr>
<td>Ammonium mg L⁻¹ as N</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate mg L⁻¹ as NO₃⁻</td>
<td>0.8</td>
<td>1.6</td>
<td>1.9</td>
<td>1.4</td>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
<td>1.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Calcium mg L⁻¹ as Ca</td>
<td>315</td>
<td>355</td>
<td>438</td>
<td>384</td>
<td>523</td>
<td>445</td>
<td>283</td>
<td>378</td>
<td>272</td>
</tr>
<tr>
<td>Magnesium mg L⁻¹ as Mg</td>
<td>200</td>
<td>109</td>
<td>238</td>
<td>217</td>
<td>263</td>
<td>184</td>
<td>214</td>
<td>175</td>
<td>138</td>
</tr>
<tr>
<td>Sodium mg L⁻¹ as Na</td>
<td>2400</td>
<td>1708</td>
<td>583</td>
<td>1423</td>
<td>670</td>
<td>1465</td>
<td>1197</td>
<td>1563</td>
<td>898</td>
</tr>
<tr>
<td>Potassium mg L⁻¹ as K</td>
<td>178</td>
<td>64</td>
<td>50</td>
<td>63</td>
<td>66</td>
<td>66</td>
<td>72</td>
<td>66</td>
<td>31</td>
</tr>
<tr>
<td>Iron (total) mg L⁻¹ as Fe</td>
<td>0.18</td>
<td>0.71</td>
<td>0.19</td>
<td>0.01</td>
<td>2.84</td>
<td>0.07</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>Manganese mg L⁻¹ as Mn</td>
<td>0.097</td>
<td>0.53</td>
<td>0.58</td>
<td><0.005</td>
<td>2.25</td>
<td>0.66</td>
<td>0.26</td>
<td>0.54</td>
<td>0.03</td>
</tr>
<tr>
<td>Barium µg L⁻¹ as Ba</td>
<td>0.076</td>
<td>0.033</td>
<td>0.043</td>
<td>0.038</td>
<td>0.054</td>
<td>0.032</td>
<td>0.041</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Strontium mg L⁻¹ as Sr</td>
<td>3.17</td>
<td>4.16</td>
<td>4.34</td>
<td>4.64</td>
<td>4.02</td>
<td>3.29</td>
<td>3.99</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O VSMOW ‰</td>
<td>-9.5</td>
<td>-9.4</td>
<td>-9.1</td>
<td>-9.3</td>
<td>-9.4</td>
<td>-9.3</td>
<td>-9.4</td>
<td>-9.5</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O HSMOW ‰</td>
<td>-65.9</td>
<td>-66.0</td>
<td>-65.3</td>
<td>-64.5</td>
<td>-65.1</td>
<td>-65.0</td>
<td>-66.0</td>
<td>-65.0</td>
<td></td>
</tr>
<tr>
<td>δ³⁴S CDT ‰</td>
<td>18.5</td>
<td>16.9</td>
<td>18.6</td>
<td>19.2</td>
<td>17.9</td>
<td>23.6</td>
<td>17.7</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>Cl⁻/Br⁻ Mass ratio</td>
<td>247</td>
<td>275</td>
<td>269</td>
<td>272</td>
<td>251</td>
<td>256</td>
<td>246</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻/Cl⁻ Molar ratio</td>
<td>0.34</td>
<td>0.88</td>
<td>0.87</td>
<td>0.76</td>
<td>0.48</td>
<td>0.40</td>
<td>0.35</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Na⁺/Cl⁻ Molar ratio</td>
<td>1.41</td>
<td>1.25</td>
<td>2.00</td>
<td>1.16</td>
<td>1.37</td>
<td>1.29</td>
<td>1.27</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>(Ca²⁺+Mg²⁺)/SO₄²⁻ Eq. ratio</td>
<td>0.84</td>
<td>1.15</td>
<td>0.68</td>
<td>1.25</td>
<td>0.91</td>
<td>0.98</td>
<td>0.92</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺/alkalinity Eq. ratio</td>
<td>1.26</td>
<td>1.49</td>
<td>1.36</td>
<td>2.27</td>
<td>1.64</td>
<td>1.12</td>
<td>1.47</td>
<td>1.87</td>
<td></td>
</tr>
</tbody>
</table>

* the temperature varies seasonally from 7.3 to 19.4°C in the Centrum mine discharge to the Bytomka River, according to our data, suggesting that the point of measurement may be influenced by air temperature conditions.
Table 3. Key concentrations and ratios in standard modern oceanic water (salinity c. 34.5 g L\(^{-1}\)), from [83, 84, 44] and also, where supplementary or different to these sources, from [85].

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Source [83] [84]</th>
<th>Source [85], where differing from previous column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dissolved solids</td>
<td>mg L(^{-1})</td>
<td>34483</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>meq L(^{-1})</td>
<td>2.29</td>
<td>2.33</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg L(^{-1}) as Cl(^-)</td>
<td>18980</td>
<td></td>
</tr>
<tr>
<td>Sulphate</td>
<td>mg L(^{-1}) as SO(_4^{2-})</td>
<td>2649</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>mg L(^{-1}) as N</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg L(^{-1}) as NO(_3^{-})</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg L(^{-1}) as Ca</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg L(^{-1}) as Mg</td>
<td>1262</td>
<td>1272</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg L(^{-1}) as Na</td>
<td>10556</td>
<td>10561</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg L(^{-1}) as K</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>mg L(^{-1}) as Br(^-)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>mg L(^{-1}) as Li</td>
<td>0.17</td>
<td>0.1</td>
</tr>
<tr>
<td>Barium</td>
<td>µg L(^{-1}) as Ba</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg L(^{-1}) as Sr</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cl(^-)/Br(^-)</td>
<td>Mass ratio</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>SO(_4^{2-})/Cl(^-)</td>
<td>Molar ratio</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>Na(^+)/Cl(^-)</td>
<td>Molar ratio</td>
<td>0.858</td>
<td></td>
</tr>
<tr>
<td>(Ca(^{2+})+Mg(^{2+}))/SO(_4^{2-}))</td>
<td>Eq. ratio</td>
<td>2.24</td>
<td>2.26</td>
</tr>
<tr>
<td>Ca(^{2+})/alkalinity</td>
<td>Eq. ratio</td>
<td>8.70</td>
<td>8.56</td>
</tr>
<tr>
<td>(\delta^{34}S_{\text{V-CODT}}, \text{from [44]})</td>
<td>‰</td>
<td>+20.6</td>
<td></td>
</tr>
</tbody>
</table>

Results - Poland

Typical hydrochemical analyses from the sampling campaign are provided in Tables 2, 3 and Figure 4, while the full results are provided by [86]. The sulphur isotopic results are summarised graphically for all sites in Figure 3.
Figure 5. Relationship between the molar $\text{SO}_4^{2-}/\text{Cl}^-$ ratio and the δ^{34}S of dissolved sulphate for the (a) Polish and (b) UK / Spanish water samples (arithmetic means shown for Spanish data).
The water pumped from Bolko shaft (Table 1) was a slightly brackish Ca\(^{2+}\)-Mg\(^{2+}\)-\(\text{SO}_4^{2-}\) water (total dissolved solids [TDS] c. 1700 mg L\(^{-1}\) and chloride 120 - 210 mg L\(^{-1}\) at the gallery sampling points) with circumneutral pH. The average molar \(\text{SO}_4^{2-}\)/Cl\(^{-}\) ratio varied from 1.7 to 3.4, depending on the gallery sampled. The chloride concentrations of a few hundred mg L\(^{-1}\) are higher than can be expected from salts in precipitation and the high Cl/Br ratio (relative to ocean water) suggests a possible derivation from halite dissolution [87]. \(\delta^{18}O\) and \(\delta^2H\) of the mine water exhibited negligible seasonal variability and no depth-related trends. The data fall on the meteoric water line very close to the current mean precipitation value (Figure 4). The bulk dissolved sulphate \(\delta^{34}S\) is around +10‰, although the water from individual gallery samples exhibit systematic differences, from location 2 on the Western Gallery (+2‰) to location 3 on the Eastern Gallery (+11‰). A single specimen of galena recovered from the mine was analysed and returned a \(\delta^{34}S\) value of +8.3‰.

The water pumped from Centrum mine (Table 2) was a somewhat brackish Na\(^{+}\)-Cl\(^{-}\)-(\(\text{SO}_4^{2-}\)) (TDS c. 3930 mg L\(^{-1}\); chloride 1540 mg L\(^{-1}\)) with slightly alkaline pH. The water is less sulphate-rich (c. 990 mg L\(^{-1}\)) than Szombierki. The \(\text{SO}_4^{2-}\)/Cl\(^{-}\) molar ratio (0.23 to 0.26) is around five times higher than seawater (0.052, Table 3).

The water pumped from Ewa shaft (Table 2) was warm (24.5°C) Na\(^{+}\)-Cl\(^{-}\)-(\(\text{SO}_4^{2-}\)) and brackish (mean TDS c. 5500 - 6000 mg L\(^{-1}\); chloride 1700 - 1900 mg L\(^{-1}\)), with circumneutral pH. The salinity appears to have declined since 2007 - 2008 [11]. The water is very sulphate-rich (1700 - 1900 mg L\(^{-1}\)). The average molar \(\text{SO}_4^{2-}\)/Cl\(^{-}\) ratio varied from 0.34 to 0.88 in Szombierki, depending on location, again significantly higher than seawater (0.052). Water chemistry varies, depending on sampling point in the mine: the water entering from Bytom II is particularly Na\(^{+}\)-Cl\(^{-}\)-rich, while that from Karol mine is especially warm (26.5°C) and \(\text{SO}_4^{2-}\)-rich (2600 mg L\(^{-1}\)).

The Cl/Br ratios in the coal mine waters are slightly less than standard ocean water ([87], Table 3).

\(\delta^{18}O\) and \(\delta^2H\) of mine waters from both Szombierki and Centrum exhibited negligible seasonal variability and fall on the meteoric water line, very close to the current mean precipitation value. The average dissolved sulphate \(\delta^{34}S\) in the combined dewatering flow from Szombierki is rather high at +17.7 to +17.9‰, while that from Centrum is +14.4‰, both showing little temporal variation. There is some systematic location-dependent variation in dissolved sulphate \(\delta^{34}S\) in Szombierki mine, with average values varying from +16.9‰ to +23.6‰ in the deepest inflow (location 10).
Overall, in the Polish mines, there is a negative correlation between the sulphate/chloride molar ratio and the $\delta^{34}S$ (Figure 5), such that the higher the sulphate concentration (relative to chloride), the lower the ^{34}S content of the sulphate.

Results - Spain

Typical hydrochemical analyses from the sampling campaign are provided in Table 4 and Figure 6, while additional results are provided by [86].

Table 4. Arithmetic mean of the hydrochemical characteristics of water samples from the Barredo-Figaredo-San José complex. Depths (100m, 200m) refer to pump depth in shaft. For the bulk Barredo minewater for all four installed submersible pumps, the mean $\delta^{18}O$, δ^2H and $\delta^{34}S$ values were -7.5‰, -44‰ and +16.7‰ respectively. < = below detection limit. nd = not determined. The first data column shows results for the River Turón upstream of the mines. ORP = oxidation-reduction potential.
Figure 6. δ^{18}O versus δ^2H for the Spanish (Asturian) mine waters. The inset shows the main cluster of mine waters. Some data subsets have been omitted from the inset and the main diagrams for clarity of viewing. Other north-Spanish (Leon and Santander) monthly and weighted mean precipitation data derived from [78]. LMWR = three variants of local meteoric water line proposed by [78].

The water pumped from Barredo shaft (Table 4) was a warm (22 - 23°C), relatively fresh Na+-HCO$_3$-SO$_4^{2-}$ water (typical mean TDS c. 1200 - 1400 mg L$^{-1}$; chloride 13 - 19 mg L$^{-1}$), with slightly alkaline pH. The waters from Figaredo and San José were broadly similar, but with progressively lower temperatures, TDS, Na$^+$, SO$_4^{2-}$ and alkalinity contents as one moves up
hydraulic gradient through the mine system. In the water from the shallow Mariana mine (in Mieres, close to Barredo), still lower Na+, SO\textsubscript{4}2-, alkalinity and temperatures are observed and the water has a Ca2+-Na+-Mg2+-HCO\textsubscript{3}-SO\textsubscript{4}2- composition. Other trends which can be observed from the deepest Barredo water, via Figaredo and San José, to the shallow Mariana minewater, are a slight tendency to decreasing chloride (although concentrations are low in all mine waters), decreasing Na+/Cl- and SO\textsubscript{4}2-/Cl- ratios (Figure 5), and increasing NO\textsubscript{3}- concentrations, suggesting decreasing proportions of deep warm sodium-bicarbonate groundwater and increasing proportions of shallow infiltration. \(\delta^{18}\)O and \(\delta^{2}H\) of the mine waters exhibited low seasonal variability and plot on the meteoric water line very close to the mid-point between the current mean precipitation values for Léon and Santander (Figure 6), but at the \(^{18}\)O/\(^{2}H\)-depleted end of the data range for locally sampled precipitation.

The \(\delta^{34}\)S values of the different mine waters differ significantly. Barredo returns values in the range +13.4 to +18.5‰, and Figaredo in the range +12.4 to +18.8‰. Mariana mine returns much lower values of +2.1 to +4.4‰, of the same order of magnitude of the River Turón upstream of the mine sites and indicative of sulphide weathering. In the Spanish mines there is a positive correlation between \(\delta^{34}\)S and SO\textsubscript{4}2-/Cl- ratio (Figure 5), implying that the greater the sulphate concentration relative to chloride, the higher the \(\delta^{34}\)S.

Results – United Kingdom

Results are presented in Table 5, Figure 7, and additionally in [86].

As previously stated, the water pumped from Markham shaft was initially (in 2011, \textit{Phase 1 Pumping Regime}) a sodium chloride brine, with total dissolved solids (TDS) exceeding 20 g L-1 in one sample, characterised by sulphate-reducing conditions (SO\textsubscript{4}2-/Cl- ratio lower than seawater, and elevated barium [6]). As time progressed, and mine water levels continued to rise in the shaft following mine abandonment, the pump installation was raised to 235 m bgl at the end of 2012 (\textit{Phase 2 Pumping Regime}) and the water became less saline (Table 5). After the pumping/reinjection arrangement was raised to 170 m bgl in February 2015 (\textit{Phase 3 Pumping Regime}), the water’s salinity decreased about 10-fold but still retaining a dominant Na+-Cl- chemistry (Table 5). Na+/Cl- ratios are close to seawater (Table 3) in Phases 1, 2 and 3, suggesting a marine origin for the salinity. SO\textsubscript{4}2-/Cl- ratios are somewhat variable in Phases 2 and 3, but are on average higher than seawater, increasingly so in Phase 3 (Figure 8), suggesting a significant lithological source for sulphate.
Table 5. Arithmetic mean of the hydrochemical characteristics of pumped mine water samples from the Caphouse (Hope shaft) and Markham (No. 3 shaft) mines. Only two samples available for Phase 1 at Markham (from 250 and 340 m depth), so the range is shown, rather than the mean. The LoCAL project (2015) data set is supplemented by earlier commercial analyses of samples collected by the site operators.

<table>
<thead>
<tr>
<th></th>
<th>Markham No. 3 shaft</th>
<th>Caphouse Hope shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.6 – 7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Temperature °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC µS cm⁻¹</td>
<td>24200 - 40900</td>
<td>22270</td>
</tr>
<tr>
<td>Alkalinity meq L⁻¹</td>
<td>5.46</td>
<td>8.38</td>
</tr>
<tr>
<td>Chloride mg L⁻¹ as Cl⁻</td>
<td>6940 - 11700</td>
<td>6198</td>
</tr>
<tr>
<td>Sulphate mg L⁻¹ as SO₄²⁻</td>
<td>14 - 716</td>
<td>1306</td>
</tr>
<tr>
<td>Ammonium mg L⁻¹ as N⁻</td>
<td>4.7 – 14.3</td>
<td>4.4</td>
</tr>
<tr>
<td>Nitrate mg L⁻¹ as NO₃⁻</td>
<td>3.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Calcium mg L⁻¹ as Ca⁻</td>
<td>528 - 879</td>
<td>391</td>
</tr>
<tr>
<td>Magnesium mg L⁻¹ as Mg⁻</td>
<td>160 - 641</td>
<td>194</td>
</tr>
<tr>
<td>Sodium mg L⁻¹ as Na⁻</td>
<td>3830 - 8550</td>
<td>3910</td>
</tr>
<tr>
<td>Potassium mg L⁻¹ as K⁻</td>
<td>78 - 106</td>
<td>90</td>
</tr>
<tr>
<td>Iron (total) mg L⁻¹ as Fe⁻</td>
<td>10.8 - 81</td>
<td>15.5</td>
</tr>
<tr>
<td>Iron (dissolved) mg L⁻¹ as Fe⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese mg L⁻¹ as Mn⁻</td>
<td>1.13 – 2.63</td>
<td>3.67</td>
</tr>
<tr>
<td>Barium µg L⁻¹ as Ba⁻</td>
<td>0.35 – 19.2</td>
<td>0.15</td>
</tr>
<tr>
<td>Strontium mg L⁻¹ as Sr⁻</td>
<td>8.27 – 14.1</td>
<td>4.96</td>
</tr>
<tr>
<td>δ¹⁸O V-SMOW ‰</td>
<td>-8.1</td>
<td></td>
</tr>
<tr>
<td>δ²H V-SMOW ‰</td>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>δ³⁴S V-CDT ‰</td>
<td>+5.5</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻/Cl⁻</td>
<td>0.0007 – 0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>Na⁺/Cl⁻</td>
<td>0.85 – 1.13</td>
<td>0.98</td>
</tr>
<tr>
<td>(Ca²⁺+Mg²⁺)/SO₄²⁻</td>
<td>6.5 - 136</td>
<td>1.74</td>
</tr>
<tr>
<td>Ca²⁺/alkalinity Eq. ratio</td>
<td>1.23</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Stable isotope samples were only collected during the Phase 3 pumping under the auspices of the LoCAL project in 2015 - 16. δ¹⁸O and δ²H data obtained during Phase 3 plot very slightly above the local meteoric water line and also close to the mean average values for precipitation at Keyworth, Nottinghamshire (Figure 7), indicating that the water (although not necessarily the salinity) is meteoric in origin. Samples for dissolved sulphate δ³⁴S were only collected after Feb 2015 (Phase 3), and low values of between +3.9 and +6.3‰ were obtained.

In the samples collected from the Caphouse Drift (above the regional water table), sulphate δ³⁴S values of +6.7‰ to +9.9‰ were typical, with two slightly higher values (+12.5‰ and +16.4‰). The seepages into the Drift are from very specific horizons and may thus carry a
sulphur isotope composition specific to the shales or coals in the immediate vicinity. Water δ^{18}O and δ^2H plot very slightly above the local meteoric water line (Figure 7).

The water pumped from the Caphouse Hope Shaft is a bulk mine water, draining from numerous seams and blocks of mine workings in the vicinity. The SO_4^{2-} concentration has declined quasi-exponentially over time (Figure 8); this is presumed to reflect the flushing out of pyrite oxidation products from the mine workings following abandonment [5, 88, 89]. The water chemistry is, however, still $\text{Na}^+\text{-SO}_4^{2-}$ in nature, with SO_4^{2-} still significantly exceeding Cl^-. Both $\text{SO}_4^{2-}/\text{Cl}^-$ and Na^+/Cl^- ratios significantly exceed seawater (Table 3) indicating lithological (non-marine) sources in all samples for Na^+ (tentatively, feldspar weathering) and SO_4^{2-} (usually ascribed to pyrite oxidation, although this explanation is evidently ruled out by the ^{34}S data) in the water. Since May 2015, the chloride content has risen from typical values of 100 - 150 mg L$^{-1}$ to values in excess of 300 mg L$^{-1}$ (leading to declines in the $\text{SO}_4^{2-}/\text{Cl}^-$ and Na^+/Cl^- ratios; Figure 8), suggesting an increased component of deeper saline water in the minewater. Mine water δ^{18}O and δ^2H compositions plot in close proximity to the local meteoric water line (Figure 7). High dissolved sulphate δ^{34}S values of $+19.7\%_o$ to $+23.8\%_o$ were typical.
Figure 7. $\delta^{18}O$ versus δ^2H plot for the UK mine waters and the stream water from the Holme Brook in Chesterfield. Keyworth monthly and weighted mean values derived from [78]. The inset shows the main cluster of mine waters. Some data subsets have been omitted from the inset for clarity of viewing. LMWR = three variants of Keyworth local meteoric water line proposed by [78].
Figure 8. Evolution of molar Na+/Cl− and SO42-/Cl− ratios at Caphouse (Hope) pumping shaft and Marking No. 3 pumping shaft. Note the logarithmic scale for SO42-/Cl−. The Phases relate to the different pump depths at Markham.

Interpretation – Poland

The various components of the waters pumped from the Pb-Zn mines via Bolko shaft appear to have different origins. The water itself appears to be of modern meteoric origin (δ18O and δ2H isotopes; Figure 4). Typical dissolved sulphate δ34S values in the range +1.4 ‰ to +12.1‰ (mean +10.3‰ from main pumping station), lie within the plausible range of the S-isotopic composition of sulphide minerals from Mesozoic Polish ore bodies (this study found +8.3 ‰ in galena from Bolko – Figure 3). Given that the mines are relatively shallow and actively
dewatered and that the host carbonates are permeable, it seems reasonable to assume that the system is relatively oxidising in nature (as evidenced by the higher nitrate than in the deeper coal mines – Table 1 and 2). The δ³⁴S is compatible with the majority of the sulphate having an origin in sulphide oxidation. It should be noted that the various sampling points in the mine galleries have rather specific δ³⁴S values, potentially reflecting specific ore bodies. The somewhat elevated chloride content of the water (120 - 210 mg L⁻¹) appears too high to be explained by salts in rainfall, while the very high Cl⁻/Br⁻ ratios suggest a possible derivation of chloride from evaporite (halite) dissolution. While the sulphate concentrations are well in excess of chloride, a modest component of evaporite-derived sulphate might have a tendency to slightly elevate the δ³⁴S of the water.

The water from Szombierki mine also appears to be dominated by modern meteoric waters (δ¹⁸O and δ²H isotopes; Figure 4). The Cl⁻/Br⁻ ratios are similar to ocean water (Table 3), suggesting that chloride (and thus a modest proportion of the sulphate) may be derived from residual seawater in the formation. The dissolved sulphate has rather high δ³⁴S, typically in the range +16‰ to +20‰, although waters from the deepest level (790 m level, location 10) in Ewa shaft have even higher values of +24‰ to +26‰ (Figure 3). The sulphate-to-chloride ratios are too high for the sulphate to be derived directly from past marine inundations or evaporite basin brines (based on chloride content, only 6 to 20% of the sulphate could be derived from a marine source). The lower range of values (+16‰ to +20‰) from the majority of Szombierki mine waters are too elevated to be derived purely from sulphide oxidation, but they are within a range where they could plausibly be derived from post-Carboniferous evaporite minerals (possibly combined with a sulphide oxidation component).

The Upper Silesian Coal Basin has been subject to past marine and evaporite sedimentation; there are thus several potential evaporite sources in the post-Carboniferous stratigraphy for sulphate with a higher δ³⁴S. Thick Permian (Rotliegend, Zechstein) and Triassic evaporites are known throughout much of central Poland, although Upper Silesia arguably lies at the very outer geographical margins of palaeogeographic reconstructions of these basins [90]. However, gypsum, anhydrite and post-evaporitic fabrics (Zellenkalk / Rauhwacke) have been mapped [91] as potential constituents of the Middle-Upper Triassic (Muschelkalk-Keuper facies) sequence of the Upper Silesian Basin [92, 93, 94, 95, 91]. Indeed, Triassic evaporite basin brines are suggested as the most likely source fluids for the Triassic-hosted Pb-Zn ores of the Silesia-Kraków region [96].

Jurassic-Cretaceous brines and Tertiary evaporites are also known in the Upper Silesian region [97, 98]. Gypsum-/anhydrite-bearing strata of Badenian (middle Miocene) age are found in marine (Paratethys) formations in narrow foreland basin environments peripheral to
the Carpathian orogen of southern Poland. Extensive Miocene deposits are found to the south of Katowice, but modest inliers have also been mapped around Bytom [99], suggesting previous Miocene cover. The δ34S of evaporites of this age in Poland and globally range between +18 to +25.7‰ [97], with several examples of Miocene evaporite sulphate minerals from the Upper Silesian region in the range +21 to +25‰ being cited by [98, 97].

Polish researchers have previously found a wide variety of sulphate δ34S from Upper Silesian coal mine waters. These have been interpreted with the additional assistance of dissolved sulphate δ18O:

- Mine water from the 420 m level of Bolesław Śmiały coal mine had a δ34S value of +3.0‰ [97]. Similarly, [100] found a δ34S of +5.8% in mine water sulphate of the Niwka-Modrzejów mine. Both of these were interpreted as reflecting oxidation of sedimentary sulphide minerals in the coal-bearing (Carboniferous) strata.
- Mine water from the deeper 530 m level of Bolesław Śmiały coal mine had a value of +30.7‰. Also, waters from the 330 and 540 m levels in Budryk mine exhibited values of +32.4 to +40.8‰. These were interpreted as being derived from early Triassic-Röt evaporites [97].
- Mine water from the 600 and 690 m levels of Dębieńsko coal mine had a δ34S of +24.0 to +24.8‰ and was interpreted as being characteristic of derivation from Miocene Zawada Basin evaporites.

On balance, the most likely source for the dissolved sulphate δ34S in the Szombierki mine waters is a gypsum / anhydrite evaporite, potentially of Mid-Late Triassic age, which typically exhibits δ34S of +15 to +20‰ globally. Fractionation due to methane-coupled TSR, associated with the formation of Pb-Zn ores in Zechstein carbonates, has been suggested as a mechanism elevating δ34S in dissolved sulphates in geological environments analogous to Bytom [57]. Hydrocarbons generated during coal basin maturation could plausibly function as electron donors during such a process.

Figure 5 illustrates an inverse correlation between non-marine sulphate excess and δ34S, which implies that the highest SO4^2-/Cl^- ratios are found in the shallow Pb-Zn mines, which are characterised by relatively fresh (low Cl^-) waters in addition to excess sulphate derived from sulphide oxidation (low δ34S). The deeper Szombierki waters are characterised by higher salinity (chloride potentially from marine inundation), a lower (but still elevated relative to marine ratios) SO4^2-/Cl^- ratio related to gypsum/anhydrite dissolution (high δ34S). The waters from Centrum mine appear to be intermediate.
Interpretation – Spain

The fact that the Spanish mine water plots at the 18O-2H-depleted end of the data range for locally sampled precipitation (Figure 6), suggests that it is meteoric water-derived, but with a predominance of winter recharge and/or a preference for groundwater recharge at higher altitude to the system. Figure 5 does not show the same inverse relationship between non-marine sulphate excess and δ^{34}S for the Spanish data as was observed in the Polish data. Indeed, all the studied coal mines show very high non-marine sulphate excesses over chloride (molar ratios 11 - 17). The generally very low chloride concentrations (typically 12 - 15 mg L$^{-1}$), even in the deeper mine waters, are typical of derivation from meteoric recharge and preclude marine or residual evaporative brines as sources of the sulphate in the waters. There does, however, appear to be a bimodal dissolved sulphate δ^{34}S distribution (Figure 3) suggesting two distinct sources. The shallow Mariana mine (above the regional mine water table) had dissolved sulphate δ^{34}S values between +2 to +5‰, which strongly suggest that the sulphate in the water is derived from sulphide oxidation in the coal-bearing strata. The low chloride content, and δ^{18}O and δ^2H isotopic compositions suggest that the water is derived from relatively recent meteoric recharge. The high Na$^+$/Cl$^-$ ratio most likely indicates enhanced hydrolysis of silicates (e.g. plagioclase), possibly by protons released from pyrite oxidation. The River Turón upstream samples exhibit similarly low δ^{34}S values, again suggesting sulphate is likely derived from near-surface oxidation of sedimentary sulphide minerals. Dissolved sulphate δ^{34}S values are much higher (+12 to +19‰.) in waters from the deeper Barredo and Figaredo mines. This may suggest derivation in large part from evaporite minerals in post-Carboniferous rocks. A short distance to the north of Mieres, the folded Carboniferous sediments of the ACCB are unconformably overlain by a sequence of post-Variscan Permo-Triassic to Cretaceous sedimentary rocks. Keuper facies evaporites are present in the Triassic sequence, e.g. gypsum within the Upper Triassic and Lower Jurassic sequence of the Trancisión Formation [101]. The area was then deformed by the Late Cretaceous-Miocene Pyrenean-Cantabrian Orogen, with Tertiary sediments being deposited in foreland basins [102]. These Tertiary sediments are predominantly terrigenous clastic and alluvial fan deposits. However, in the Oviedo basin, the lowermost Toral Formation (Eocene) contains lacustrine clays and evaporite deposits, including gypsum [103]. Thus, it is conceivable that the Carboniferous rocks of the Mieres area were once overlain by Triassic or Eocene gypsum-bearing sediments, which could have dissolved to release sulphate to the subjacent rocks. Alternatively, sulphate could be derived from the mid-Carboniferous (Namurian) Barcaliente Formation, comprising micritic carbonates, with evaporite
pseudomorphs and breccias [25]. Whatever the age, an evaporite source appears the most plausible explanation for the majority of the sulphate δ³⁴S in the waters of the deeper Figaredo and Barredo mines.

Interpretation – United Kingdom

The water pumped at Markham No. 3 shaft (*Phase 1 Pumping Regime* [6, 39]) was initially rather saline (up to c. 20 g L⁻¹) and dominated by sodium and chloride. This indicates the present of a deep saline body of groundwater in the Coal Measures aquifer (as has been described in numerous localities in the UK [7, 104, 105]). This deep saline water was deficient in sulphate, indicating sulphate-reducing conditions at depth, although no δ³⁴S data are available from this phase of pumping to confirm this interpretation. During the shallower *Phase 2 Pumping Regime*, the water samples (2012 – 2013) were less saline, with a higher sulphate content; Figure 8). As the still shallower *Phase 3* pumping regime commenced (Feb 2015 onwards), the water’s SO₄²⁻/Cl⁻ ratio increased dramatically to a value in excess of modern seawater (Figure 8) and then gradually declined (but still typically demonstrating a modest sulphate excess compared to seawater).

Isotopic determinations at Markham were only made during the third pumping phase. Hydrogen and oxygen isotopic composition indicates indicated a water origin compatible with modern meteoric recharge. Dissolved sulphate δ³⁴S was generally low (+3.9 to +6.3‰) and within the range of sedimentary pyrite, suggesting that sulphate during this phase originated from pyrite oxidation. We thus hypothesise that as mine water levels recovered in Markham colliery, a redox and salinity stratification developed, with, in ascending order: (i) a deep saline, sulphate-depleted brine, of tentative marine origin, with prevailing highly reducing (sulphate reduction and methanogenic) conditions (*Phase 1 Pumping Regime*); (ii) a saline, less-reducing, sulphate-rich water, of tentative marine origin (*Phase 2 Pumping Regime*); (iii) a much fresher water, more influenced by modern recharge, with a sulphate content dominated by pyrite oxidation, with some admixture with deeper brines (*Phase 3 Pumping Regime*).

The Caphouse Secondary Egress Drift is above the regional water table, with seepages of water related to perched water or unsaturated zone flow in specific stratigraphic horizons. The hydrogen and oxygen isotopic composition indicates a water compatible with modern meteoric recharge (average δ¹⁸O = -8.2‰, δ²H = -53‰). The sulphur isotopic composition exhibits a variability which reflects the local nature of the seepages, but broadly within the range of sedimentary pyrite observed in UK Coal Measures. We thus conclude that the waters in the Caphouse Drift have a sulphate content predominantly derived from local sulphide mineral oxidation.
The pumped Hope Shaft at Caphouse Colliery acts as a regional sink for water from a network of coal mines in the vicinity, working a number of stratigraphic horizons. The water has a chloride content of >100 mg L⁻¹ (and up to >300 mg L⁻¹) which is significantly in excess of that observed in typical shallow Coal Measures waters of the area (10 - 40 mg L⁻¹ [40]). This suggests a small component derived from a deep saline water body. However, the water is of a Na⁺-SO₄²⁻ type, with very high excess sodium and sulphate concentrations (relative to seawater Na⁺/Cl⁻ and SO₄²⁻/Cl⁻ ratios). The hydrogen and oxygen isotopic composition indicates a water compatible with modern meteoric recharge. The sulphate δ³⁴S is very high (typically +20 to +24‰), much higher than the seepages from Caphouse Egress Drift, accessing broadly the same sedimentary strata. The Hope shaft’s dissolved sulphate δ³⁴S is not compatible with a derivation from oxidation of sedimentary sulphide. The high SO₄²⁻/Cl⁻ ratio is also incompatible with any derivation from recent or past marine intrusion or from evaporite basin brines. The relatively low chloride content also rules out the brine derivation from freeze-concentration during the Pleistocene ice age [7]. The high sulphate could plausibly be derived from dissolution of evaporite gypsum or anhydrite mineralisation.

Arguably, the Caphouse Hope mine water dissolved sulphate δ³⁴S is close to the upper end of the range suggested for Lower Carboniferous seawater / evaporites [60, 61], although evaporites of this age are not documented from the Yorkshire area.

However, sulphate evaporites are known in the Middle and Upper Permian (Zechstein) Marls and Mid-Late Triassic (Mercia Mudstone) sequences of the East Yorkshire area that plausibly could have once overlain the Coal Measures. The early Triassic in Eastern England was characterised by red-bed, predominantly fluvial, lacustrine and aeolian Sherwood Sandstone deposition (although some gypsum and anhydrite is documented, e.g. as cement, within the Sherwood Sandstone of the area [106, 107]).

The origin of saline waters (with high sulphate δ³⁴S, typically of +17.2 to +17.5‰) in the Triassic Sherwood Sandstone of the Selby region of Yorkshire was investigated [108] and possible sulphate sources isotopically characterised. It was found that Triassic Mercia Mudstone evaporites were characterised by a δ³⁴S of +15.5 to +17.9‰. Sulphate evaporites within Upper and Middle Permian Marls exhibited typical δ³⁴S in the range +8.2 to +10.2‰. The authors also sampled Coal Measures brines from mines in the Selby area (with chloride ranging from 3 to 10 g L⁻¹ and sulphate 54 to 57 g L⁻¹): these were characterised by a δ³⁴S of +3.9 to +11.7‰. The authors concluded that Triassic evaporites were the most likely source of salinity in the Sherwood Sandstone aquifer.

Opposing the argument for Permo-Triassic evaporites as the source of dissolved sulphate in the Hope shaft mine water is Caphouse’s location at the very edge of the Permian-Triassic
saline basin palaeogeography [109, 110, 111, 112]. Moreover, throughout much of the Triassic, evaporitic and marine sulphate $\delta^{34}S$ values were around +15 to +17‰, while during the Permian they were even lower.

The global marine sulphate $\delta^{34}S$ was in excess of +20‰ during the earliest Triassic. Subsequent to the earliest Triassic, global marine sulphate did not reach +20‰ before the Tertiary, according to [113]. The elevated dissolved sulphate $\delta^{34}S$ in Caphouse Hope Shaft’s mine water thus seems incompatible with the obvious candidate sources for evaporite derivation.

The water pumped from Caphouse Hope shaft does, however, have an odour of hydrogen sulphide [5], indicating sulphide-reducing niches somewhere within the mine or aquifer system connected to the Hope shaft. If sulphide is being formed and precipitated within the Caphouse mine/aquifer system, the residual fluid would become enriched in ^{34}S. Thus, one can propose two alternative scenarios for the generation of the very high $\delta^{34}S$ in the Caphouse Hope Shaft mine water:

1) Generation of sulphate and acidity by pyrite oxidation. Acidity consumed by weathering of silicate and carbonate minerals. Admixture with sodium-bicarbonate, high pH Coal Measures groundwater [40, 114]). Dissolved sulphate in water enriched in ^{34}S by ongoing sulphide mineral precipitation in sulphate-reducing niches in mine (and/or in the aquifer over geological time).

2) Dissolution of sulphate from Permian or Triassic gypsum or anhydrite (which have subsequently been removed by erosion). Admixture with ambient groundwater. Dissolved calcium removed from solution by processes of either cation exchange or precipitation of calcite [114, 115]. Dissolved sulphate in water enriched in ^{34}S by fractionation associated with sulphite reduction, as above.

A mechanism of sulphate reduction to explain high $\delta^{34}S$ values in groundwaters has been invoked by, for example, [116], in the context of deep Jurassic and Cretaceous aquifer brines in Poland. For this to be a convincing explanation for the mine water pumped from Caphouse’s Hope Shaft (which, being a regional pumping station, is difficult to envisage as a system closed with respect to sulphur), however, the rate of sulphate reduction would need to be of at least a similar order of magnitude to the rate of sulphate dissolution / generation and throughflow from other parts of the mine or aquifer system. Given the large water throughflows, the high sulphate content of the water, and the seeming lack of closure with respect to sulphate, this seem intuitively unlikely.
Conclusions

Mine waters in three study areas have been sampled and analysed for hydrochemical parameters and the stable isotopes 18O, 2H (water molecule) and 34S (dissolved sulphate). The hydrochemistry of these mines has been published in detail elsewhere [3, 4, 5, 6, 39] and this paper focusses on the stable isotope data. In all cases, the δ^{18}O, δ^2H data are compatible with waters being derived from relatively recent meteoric recharge.

The sulphate δ^{34}S data do suggest that the conventional assumption [1] that dissolved sulphate in minewater is usually derived from oxidation of sulphide minerals is incorrect (or, at least, incomplete) in many of the mines studied. In each of the mine areas, a bimodal distribution of sulphate δ^{34}S is observed. Sulphate δ^{18}O would have undoubtedly enhanced the value of this data set and aided interpretation: this parameter is highly recommended in addition to δ^{34}S in subsequent studies.

In all three regions, deep regional coal mine waters have been documented with elevated dissolved sulphate δ^{34}S compositions, unlikely to be derived directly from sulphide oxidation, leading us to suspect that such a phenomenon is more widespread than previously recognised.

In shallow mines, presumed to be well-flushed with recent recharge water, the dissolved sulphate δ^{34}S suggests oxidation of sulphide minerals as the main sulphate source. Examples include the Mariana coal mine (Asturias, Spain), the Caphouse Secondary Egress Drift (Yorkshire, UK) and the Bolko Pb-Zn sulphide mine (Bytom, Poland). Also, in the relatively deep Markham mine (Derbyshire, UK), low salinity water in the upper part of the stratified mine water body had a dissolved sulphate δ^{34}S compatible with oxidation of pyrite.

At Szombierki coal mine, Bytom, Poland, sulphate δ^{34}S are compatible with derivation from dissolution of gypsum/anhydrite evaporite minerals in overlying Triassic strata.

At Figaredo and Barredo coal mines, Asturias, Spain, the sulphate δ^{34}S are compatible with derivation from dissolution of gypsum/anhydrite evaporite minerals. Sources have not been clearly identified, but Upper Triassic / Lower Jurassic, or Eocene evaporites are known from the region.

At Caphouse coal mine (Hope Pumping Shaft), the dissolved sulphate δ^{34}S is too high to be readily explained by evaporite dissolution, and such an evaporite source has not been clearly identified in the area. The fact that dissolved H$_2$S is observed in pumped water lead us to speculate whether an initial sulphate source (either derived from primary sulphide oxidation, or evaporites) has been preferentially depleted in the light isotope (32S) by bacterial sulphate reduction to sulphide within the mine or aquifer system, over geological or anthropic time,
leaving the residual water enriched in 34S. We acknowledge that the quantitative aspects of this hypothesis are problematic, given (a) the mine water’s high sulphate content and (b) the large pumping rate and throughflow of water in the mine workings.

In all three regions studied, deep mine waters have been found which have sulphate δ^{34}S values that appear too high to attribute solely to pyrite oxidation. Thus, contrary to accepted belief, isotopic evidence suggests that we should not automatically assume that sulphate in mine waters from coal mines is inevitably derived from pyrite oxidation. The practical implications of this finding are that: (1) a dissolved sulphate δ^{34}S similar to sedimentary pyrite is not a diagnostic characteristic of coal mine waters; (2) elevated sulphate concentrations may be characteristic of deep groundwaters in Carboniferous sedimentary basins and not be restricted to, or characteristic of, mining environments.

It is tempting, in these cases, to postulate a component of dissolved sulphate derived from dissolution of overlying or subjacent evaporite minerals to account for these elevated sulphate δ^{34}S values. In the Polish and Spanish cases, this explanation is certainly plausible (although it is arguably somewhat too plausible to be a demonstrable hypothesis). The fact that viable evaporite sources have not been identified for the Caphouse (Hope) mine water suggests there are aspects of mine water sulphate isotope geochemistry that we still do not fully understand. Fractionation by bacterial sulphate reduction processes (and enrichment of residual waters in 34S) may play a role. In the geological past, under conditions where the coal-bearing strata were deeply buried, methane-coupled thermal sulphate reduction and associated fractionation could also have played a role in producing fluids with a high δ^{34}S [57]. Indeed, a future study might usefully examine any relationship between coal grade and the δ^{34}S of dissolved sulphate and sedimentary pyrite, within a single coal basin.

We tentatively postulate that the deep groundwater/minewater environment may represent an isotopically enriched reservoir for sulphate sulphur, directly analogous to the ocean. In this reservoir there may be a dynamic, and shifting, equilibrium between inputs of sulphate from shallow weathering of sulphide and sulphate minerals, and removal of sulphate by precipitation of sulphate minerals and bacterial (or thermal) sulphate reduction, which preferentially remove 34S-depleted sulphide in deep anoxic hydrochemical niches, leaving the remaining groundwater reservoir isotopically enriched in 34S.
Acknowledgements

The authors would like to thank Ian Watson and Lee Wyatt for supplying Coal Authority hydrochemical data, especially for Caphouse colliery; Anne McGarity at University of Glasgow for major/minor ion analyses at the UK sites; and Alison McDonald at SUERC for isotopic analyses.

Data Availability

A data file of raw hydrochemical and isotopic data [86] is available via the Mendeley repository.

Funding Sources

Funding: This work was supported by the Low-Carbon After-Life (LoCAL) project under the European Commission Research Fund for Coal and Steel [Grant RFCR-CT-2014-00001]. AJB was funded by SUERC and the NERC NEIF Facility at SUERC. Isotopic analyses were carried out at the ICSF at SUERC [Grant: NERC Facility contract F14/G6/11/01]. NMB was funded by the University of Glasgow’s Lord Kelvin Adam Smith Research Fellowship.

References

[84] Lenntech, "Lithium and water: reaction mechanisms, environmental impact and health effects," Lenntech, [Online]. Available:

