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regime kBT � µ.

The experiment starts with the production of a 4He∗

BEC with N = 40(4) × 103 atoms which is loaded in
a 3D optical lattice of amplitude V = 9.5 ER [19],
with ER/h = h/8md2 = 20.7 kHz and d = 775 nm.
The overall harmonic trap is isotropic, with a frequency
ω/2π = 300(20) Hz. By tuning the lattice amplitude,
we set U/J ' 10 (U/h = 4350 Hz and J/h = 450 Hz).
The interaction energy is µ = n0U , where the lattice
filling n0 at the trap center is close to one in this work
(0.9 ≤ n0 ≤ 1.6). The critical temperature for Bose-
Einstein condensation is TBEC = 5.9(2)J/kB [19].

We measure 3D single-atom-resolved distributions
with the He∗ detector after a free fall of ∼ 325 ms
(see Fig. 1b) [19]. Since interactions do not affect the
expansion from a lattice with less than two atoms per
site [19, 20], the long free fall maps the in-trap momen-
tum distribution on the measured spatial distribution.
Recording the 3D momentum distributions provides a
natural separation of the condensate from its depletion.
Indeed, the k -space density of a lattice BEC is made
of periodically-spaced (period kd) sharp peaks of width
∼ 1/Rbec, while the non-condensed fraction – quantum
depletion and thermal phonons – extends over the entire
Brillouin zone of width kd. Because Rbec ' 23 d � d
here, the contribution of the non-condensed fraction is
negligible in the k -space volume ∼ R−3

bec occupied by the
condensate. We exploit this property to perform the inte-
gral of Eq. 1 over different volumes Ωk , which allows us to
investigate the HBT correlations in the two components
separately (see Fig. 2). We determine the correlation
properties along one lattice axis at a time, with a small
transverse integration of ±∆k⊥ ≤ 1/Rbec to increase the
signal-to-noise ratio [32].

An example of measured correlation functions g
(2)
Ωk

(δk)
in the two components is plotted in Fig. 2. We find that

g
(2)
Ωk

(δk) is constant and equal to 1 in the condensate (see
Fig. 2a), i.e., no bunching is observed. This is consistent
with the fully coherent nature of the condensate [22]. In
contrast, a well-contrasted bunching is visible in the non-
condensed fraction (see Fig. 2b).

To exploit our data, we fit the bell-shaped 1D cuts

g
(2)
Ωk

(δkj) (j = {x, y, z}) of the bunching bump along
the reciprocal lattice axes with Gaussian functions. We

find that g
(2)
Ωk

is isotropic, a property consistent with the
isotropy of the trap geometry. In the analysis of the
bunching bump, we account for the transverse integra-
tion ∆k⊥ and the resolution of the He∗ detector (rms
width σ = 2.8(3)× 10−3kd) to extract the bunching am-
plitude g(2)(0)− 1 and width σk [32]. Note that the data
shown in Fig. 2b is the raw data before the deconvolu-
tion with the point spread function of the detector, i.e.
the amplitude of the bump in Fig. 2b is smaller than the
bunching amplitude g(2)(0) − 1 shown in Fig. 3 because
of the resolution of the detector. Based on this protocol,
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Figure 2. Two-body HBT correlations in a strongly interact-
ing lattice Bose gas at T = 2.9J . The plots are 1D cuts
through the 3D correlation function along the lattice axis
ux with ∆k⊥ = 10−2kd. (a) Two-body correlation function

g
(2)
Ωk

(δk) in the condensate. Inset: the red sphere depicts the

volume Ωk (|k| < 0.04kd) over which the correlations are cal-

culated. We find g
(2)
Ωk

(δkx) = 1.0(1) for the condensate mode,
i.e. no bunching as expected when one mode only is popu-

lated. (b) g
(2)
Ωk

(δk) in the non-condensed fraction. Inset: the

green region depicts the volume Ωk (0.1kd < |k| < 0.5kd) over
which the correlations are calculated. Note that the conden-
sate is excluded from this volume. One observes a well con-
trasted bunching whose bell shape is fitted with a Gaussian
function (dashed line) to quantify the bunching properties.

we investigate the bunching properties across the BEC
transition, while keeping the ratio U/J = 10. The tem-
perature T is varied by heating the gas in a reproducible
manner [19] and calibrated by comparison with ab-initio
Quantum Monte-Carlo calculations [32]. The results are
plotted in Fig. 3.

Firstly, we find that the bunching amplitude is con-
stant with temperature and equal to g(2)(0)− 1 = 1.0(1)
(see Fig. 3a). At large temperatures T > TBEC, this
observation corresponds to the usual HBT bunching of
weakly-interacting thermal bosons. Below TBEC, the
bunching can be understood within Bogoliubov theory,
along the lines of our introduction. Indeed, the Bo-
goliubov approximation is believed to be accurate at
kBT � µ: in homogenous systems without a lattice
[33, 34], it was shown to be reliable up to values of the
quantum depletion (∼ 15%) similar to that of our ex-
periment. Measuring g(2)(0) ' 2 for kBT/µ ≤ 0.4 con-
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Figure 3. (a) Bunching amplitude g(2)(0) − 1 as a func-
tion of the reduced temperature kBT/µ. The measurements

are consistent with g(2)(0) = 2, i.e. with a chaotic statis-
tics at any temperature. The vertical blue dashed line in
both panels signals TBEC. (b) Two-body correlation width
σk plotted as a function of kBT/µ. For each temperature,
the value of the temperature-dependent interaction energy
µ(T ) = n0(T )U in the experiment is calculated from the lat-
tice filling n0 at the trap center. σk is expressed in units

of (Rµ)−1 =
√
mω2/2µ(T ). Rµ coincides with the BEC ra-

dius at T = 0, Rµ(T = 0) = Rbec. The red square cor-
responds to a numerical calculation of the correlation width
σB
k for a harmonically-trapped one-dimensional interacting

Bose gas in the Bogoliubov approximation, with parame-
ters consistent with the three-dimensional experiment (see
main text and [32]). The dashed black line is the predic-

tion σideal
k =

√
h̄ω/kBT for non-interacting bosons at thermal

equilibrium, for which σideal
k Rµ =

√
2µ/kBT .

firms the chaotic statistics of the Bogoliubov phonons.
Moreover, this result extends to temperatures as low as
kBT/µ = 0.17 where an equal fraction of atoms belong to
the quantum depletion and to the Bogoliubov phonons.
It suggests that g(2)(0) = 2 also for the quantum deple-
tion, albeit for the different mechanism sketched in the
introduction, i.e. a partial trace over the atom pairs in
the quantum depletion.

Secondly, the bunching width σk is systematically

smaller than that of ideal bosons σideal
k , in the same

trap at the same temperature (see Fig. 3b). This dif-
ference is more pronounced at small values of kBT/µ as
a result of interactions. For T > TBEC, one expects to
observe the width corresponding to a thermal gas with
interactions that broaden the in-trap size with respect
to that of an ideal thermal gas. This prediction is com-
patible with our observation of σk slightly below σideal

k .
Note that we could not increase the temperature beyond
kBT ∼ 0.9µ while keeping the atoms in the lowest lat-
tice band. In the opposite low-temperature regime, the
value σk ' 2/Rµ corresponds to an in-trap size close to
that of the condensate Rbec = Rµ(T = 0). To be quan-
titative, we have numerically solved the simplified case
of a trapped 1D interacting Bose gas in the Bogoliubov
approximation with parameters consistent with our 3D
experiment. More specifically, we use in the numerics
the ratio µ/h̄ω = 51 identical to that of the experiment
µ/h̄ω∗ = 〈n0〉U/h̄ω∗, and the 1D integral of Eq. 1 is
calculated for the non-condensed atoms only (excluding
the region kRbec < 10) using a 3D-like weight ∝ k2 [32].
The numerical result σB

k (red square) is compatible with
our measured low-temperature σk. Since the value of σBk
crucially depends on the collective nature of the excita-
tions and can be unambiguously attributed to the spatial
extension of the Bogoliubov phonons and quantum de-
pleted atoms within the condensate [32], we ascribe the
measured width to the same physical origin. A quanti-
tative comparison with theory at any temperature would
require more sophisticated techniques that go beyond the
Bogoliubov approximation used here.

In conclusion, we have observed and fully characterized
the atom bunching occurring in the non-condensed frac-
tion of a strongly interacting Bose gas. We have shown
that this bunching phenomenon directly reflects the in-
terplay of interactions and quantum statistics, through
the properties of phonons and of the quantum deple-
tion. Our results thus demonstrate that momentum-
momentum correlations provide information about the
quantum state of strongly interacting bosons, extending
the interest of HBT-like experiments beyond the case of
ideal particles. This method will be used to look for
two-body correlations at opposite momenta that are ex-
pected for the quantum depletion and other many-body
phenomena [35]. Such a measurement will demand to
achieve the large signal-to-noise required at finite tem-
perature [27], but will be of great importance to directly
reveal pairing mechanisms.
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