Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles

Li, W., Yu, G. and Yu, Z. (2020) Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles. Applied Thermal Engineering, 179, 115686. (doi: 10.1016/j.applthermaleng.2020.115686)

[img]
Preview
Text
219562.pdf - Published Version
Available under License Creative Commons Attribution.

3MB

Abstract

The supercritical carbon dioxide (sCO2) based Brayton cycle is a proposed alternative to replace conventional Rankine cycles in terms of high cycle efficiency, compact turbomachinery and heat exchangers. In the sCO2 cycle, however, the existing heat exchangers have been challenged by large portion of heat transfer (approximately 60–70% of total cycle heat transfer) and high cycle efficiency required. In the present study, two novel heat exchangers were proposed by utilizing triply periodic minimal surface (TPMS) structures. i.e. the Gyroid structure and Schwarz-D surface, to enhance heat transfer and improve cycle efficiency. TPMS structures are a class of structures composed of two distinct inter-penetrating volume domains separated by an area-minimizing wall, which have been observed as biological membranes and co-polymer phases. Two heat exchangers along with a reference printed circuit heat exchanger (PCHE) were investigated numerically by computational fluid dynamics simulations when the hot and cold sCO2 fluids pass through them at various Reynolds numbers. Effects of geometrical shapes and Reynolds number on the hydraulic and thermal performances were identified. It was demonstrated that two heat exchangers with TPMS can improve overall thermal performance by 15–100%, and the Nusselt number is raised by 16–120% for a given pumping power in comparison with the PCHE. Hence, heat exchangers with TPMS have a very good potential to enhance sCO2 cycle efficiency.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Yu, Dr Guopeng and Li, Mr Weihong and Yu, Professor Zhibin
Authors: Li, W., Yu, G., and Yu, Z.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Applied Thermal Engineering
Publisher:Elsevier
ISSN:1359-4311
ISSN (Online):1873-5606
Published Online:06 July 2020
Copyright Holders:Copyright © 2020 The Authors
First Published:First published in Applied Thermal Engineering 179:115686
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
172394Thermally Driven Heat Pump Based on an Integrated Thermodynamic Cycle for Low Carbon Domestic Heating (Therma-Pump)Zhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/N020472/1ENG - Systems Power & Energy
171763Dynamic Organic Rankine Cycle for Recovering Industrial Waste HeatZhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/N005228/1ENG - Systems Power & Energy
300663Geothermally Sourced Power and Freshwater Generation for Eastern AfricaZhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/P028829/1ENG - Systems Power & Energy
300273An ORC power plant integrated with thermal energy storage to utilise renewable heat sources for distributed H&PProject Number; 102883Zhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/R003122/1ENG - Systems Power & Energy