Accuracy of inference on the physics of binary evolution from gravitational-wave observations

Barrett, J. W., Gaebel, S. M., Neijssel, C. J., Vigna-Gomez, A., Stevenson, S., Berry, C. P.L. , Farr, W. M. and Mandel, I. (2018) Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 477(4), pp. 4685-4695. (doi: 10.1093/mnras/sty908)

Full text not currently available from Enlighten.

Abstract

The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf–Rayet stellar-evolutionary phases. We find that ∼1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Berry, Dr Christopher
Authors: Barrett, J. W., Gaebel, S. M., Neijssel, C. J., Vigna-Gomez, A., Stevenson, S., Berry, C. P.L., Farr, W. M., and Mandel, I.
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Monthly Notices of the Royal Astronomical Society
Publisher:Oxford University Press
ISSN:0035-8711
ISSN (Online):1365-2966
Published Online:12 April 2018
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record