
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/218291/

Deposited on: 16 June 2020
Title: Destructuration of saturated natural loess: From experiments to constitutive modelling

Authors: Yukai Fu\textsuperscript{1,2}, Zhiwei Gao\textsuperscript{3*}, Yi Hong\textsuperscript{4}, Tonglu Li\textsuperscript{1,2}, Akhil Garg\textsuperscript{5}

*Corresponding author

Information of authors:

Yukai Fu
\textsuperscript{1} Department of Geological Engineering, Chang’an University, Xi’an 710054, Shaanxi, China.
\textsuperscript{2} Water Cycle and Geological Environment Observation and Research Station for the Chinese Loess Plateau, Zhengning, Gansu, China.
Email: fw@chd.edu.cn.

Zhiwei Gao\textsuperscript{*}
*Corresponding author.
\textsuperscript{3} James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK. Email: Zhiwei.gao@glasgow.ac.uk.
Tel: +44 141 3303927.

Yi Hong
\textsuperscript{4} Key Laboratory of Offshore Geotechnics and Material of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China. Email: yi_hong@zju.edu.cn.

Tonglu Li
\textsuperscript{1} Department of Geological Engineering, Chang’an University, Xi’an 710054, Shaanxi, China.
\textsuperscript{2} Water Cycle and Geological Environment Observation and Research Station for the Chinese Loess Plateau, Zhengning, Gansu, China.
Email: dcdgx08@chd.edu.cn.

Akhil Garg
\textsuperscript{5} Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Email: agarg@tdtu.edu.vn.
Abstract

It has been well recognized that unsaturated natural loess shows significant volume contraction upon wetting due to its metastable internal structure. But the structural effect on stress-strain relationship of saturated natural (undisturbed) loess is much less explored. Few attempts have been made in proposing a constitutive model for saturated natural loess. This study presents both laboratory tests and constitutive modelling of a saturated natural loess, with special focus on the structural effect and evolution of structure damage during loading. Oedometer and drained triaxial compression tests have been carried out on undisturbed and remolded saturated loess samples. It is found that the natural soil structure has dramatic influence on mechanical behavior of loess, including the compressibility, dilatancy and shear strength. Destructuration, which is the damage of soil structure with deformation, is observed in both oedometer and triaxial tests. A constitutive model is proposed for saturated loess based on the experimental observations. The model is established within the theoretical framework of subloading and superloading surface concepts. Destructuration of loess is assumed to be affected by both plastic volumetric and shear strain. A new method for determining the initial degree of structure is proposed. The model can reasonably predict the compression and shear behavior of both undisturbed and remolded saturated loess.

Keywords: Destructuration, saturated clayey loess, critical state, constitutive model, drained triaxial compression tests
1. Introduction

Loess, a typical structured soil, is widely distributed in Northwest China. The natural loess was often formed with open and potentially metastable structure due to the arid and semi-arid depositional environment. Such internal structure has significant influence on mechanical behavior of loess, particularly under the unsaturated condition. For instance, loess is found to have very high shear strength under arid condition due to matrix suction and natural cementation (Barden et al., 1973; Dijkstra, 2001; Xu et al., 2018). It can show large collapse compression upon wetting, which is related to the reduction in suction and collapse of the soil structure (Derbyshire, 2001; Dijkstra, 2001; Delage et al., 2005; Sánchez et al., 2005; Mašín, 2017). There has been extensive research on the stress-strain relationship and internal structure of unsaturated loess (Barden et al., 1973, Grabowska-Olszewska, 1975; Derbyshire et al., 1994; Derbyshire, 2001; Dijkstra, 2001; Jiang et al., 2014). It is shown that the natural structure plays an important role in controlling the collapsibility and shear strength of loess under unsaturated conditions (Derbyshire et al., 1994; Wen and Yan, 2014; Rogers et al., 1994; Muñoz-Castelblanco et al., 2011; Garg et al., 2019). But much less attention has been paid to the effect of internal structure on the stress-strain relationship of saturated loess. Recent studies have highlighted the structural effect on thermos-plasticity of saturated loess (Ng et al., 2019; Zhou and Ng, 2018). There are two possible reasons for neglecting the effect of structure on saturated natural loess behavior. Firstly, most of the loess is found in arid and semi-arid areas of the world, where deep layers of unsaturated soils exist. Secondly, it is believed that the loess structure may be completely damaged during the wetting process, and therefore, there should be negligible influence of structure on the mechanical behavior of saturated loess.

Though there is little research on the structural effect on loess behavior after wetting from an unsaturated state, there is abundant experimental evidence that the mechanical response of saturated natural loess
(below the natural ground water table) is dramatically influenced by the structure (Xu and Coop, 2016; Xu et al., 2018; Lu et al., 2019; Cheng et al., 2019; Cheng et al., 2020). Evolution of the soil structure during loading is called destructuration (Rouainia and Muir Wood, 2000). Destructuration causes extra volume contraction, strength reduction and stiffness degradation of the natural soil. Such soil response is of great importance for geotechnical engineering practice. For instance, it is found that some of the landslides in loess is related to not only the collapse compression of unsaturated loess under wetting but also the destructuration of the saturated loess during mechanical loading (Tu et al., 2009; Jiang et al., 2014; Xu et al., 2018). It is therefore of great significance to investigate the effect of the natural structure on mechanical behavior of saturated loess, for understanding the development of deep-seated landslides in saturated loess (Tu et al., 2009; Xu et al., 2018). In addition, a proper constitutive model for natural loess is useful for both interpreting the structural effect on soil response and solving real boundary value problems such as the development of landslides and failure of loess foundations.

As far as authors are aware, very few attempts have been made in modelling the mechanical behavior of natural saturated loess. Liu et al. (2013) have proposed a constitutive model for loess but the model has only been used in simulating the undrained effective stress path of a loess. Its capability in modelling the soil response under other loading conditions has not been verified. Many constitutive models have also been developed for structured soils (e.g. Asaoka et al., 1998, 2000; Asaoka et al., 2000; Zhang et al., 2007; Baudet and Stallebrass, 2004; Huang et al., 2011; Ye and Ye, 2016; Yang et al., 2020; Yin et al., 2011a; Yin et al., 2011b) but are rarely against the mechanical response of natural loess.

In view of the afore-mentioned issues, this study aims to obtain better understanding on the behavior of
saturated natural loess through experiments and constitutive modelling. A series of oedometer and drained triaxial compression tests on both natural (undisturbed) and remolded loess samples have been carried out. The natural samples were obtained in the Loess Plateau of China. Based on the experimental observations, a constitutive model for natural loess is proposed within the theoretical framework of subloading and superloading surface concepts (Asaoka et al., 1998, 2000, 2002; Zhang et al., 2007; Ye and Ye, 2016). An important feature of the model is that it considers the effect of both plastic volumetric and shear strain on destructuration. A new method for determining the initial degree of structure is developed. The proposed model is validated against the experimental results. In the following experimental investigation and constitutive modelling, all the stress quantities are the effective ones.

2. Experiments

2.1. Sample preparation and test setup

Intact loess was sampled from south Loess Plateau of China in Jingyang County, Shaanxi Province (Xu and Coop, 2016), with the aid of a thin-wall tuber. The sampling location is in the platform of a farmland, where the groundwater table is close to the ground level due to long-term irrigation activities. The sampling depth was about 41 m. The loess samples were extracted from the fifth loess layer (L5) belonging to Q2 (Middle Pleistocene epoch) (Fig. 1). All the undisturbed specimens were cut in situ from loess blocks, which were cautiously excavated after clearing the surface soil at least 0.5 m thick. Samples were wrapped by plastic film, put in PVC boxes and then carefully transported to the laboratory. Sawdust was placed between the sample and PVC box to avoid sample damage. There was no history of slope failure at the sampling site. The axial stress is perpendicular to the deposition plane in the triaxial tests of this study. The physical properties of the natural soil are shown in Table 1. The soil mineral constitution is
similar to that of the soil reported in Xu and Coop (2016). The particle size distribution is shown in Fig. 2. The silt content (5–50 µm) is about 72%, clay content (<5 µm) is about 22% and sand content is (>50 µm) 6%. The soil is thus classified as clay with low plasticity (CL).

In order to study the destructuration characteristics of undisturbed saturated loess, the mechanical response of both undisturbed and remolded loess was tested through oedometer and drained triaxial compression tests. The size of each specimen in an oedometer test was 61.8 mm in diameter and 20 mm in height. Each triaxial specimen was 61.8 mm in diameter and 125 mm in height. The soil samples were saturated by increasing the back pressure. Additional $K_0$-consolidation tests were carried out to determine the $K_0$ values for undisturbed and remolded soils (Table 1).

### 2.2. Results of oedometer tests

There were two major objectives for the oedometer tests: (a) investigating the stress-strain relationship and destructuration of undisturbed loess in one-dimensional compression and (b) developing a method to determine the initial degree of structure of undisturbed loess. To achieve the second objective, the remolded loess was loaded and unloaded to make it have similar void ratio $e$ with that of the undisturbed sample at the initial state of oedometer tests ($\sigma_v \approx 13$ kPa). More discussion on determination of the initial soil structure will be given in the constitutive modelling section. Since the undisturbed and remolded samples have similar $e$ at the initial state, the difference between their $e - \sigma_v$ curves shown in Fig. 3 is mainly caused by the structure of natural loess. After the initial state, the undisturbed specimen always show a larger void ratio than the remolded specimen under the same $\sigma_v$. The two void ratios are getting closer as $\sigma_v$ increases, due to the progressive damage of the soil structure. It is expected that the structure
of undisturbed specimens would be completely damaged at sufficiently high $\sigma_v$, making the $e - \sigma_v$ curve of natural loess merge with the normal consolidation line (NCL) of remolded soil.

2.3. Results of drained triaxial compression tests

Three sets of drained triaxial compression tests were carried out on undisturbed and remolded Jingyang loess under different confining pressure $\sigma_r$ (300, 400 and 500kPa). Figs. 4-6 show the triaxial test results. Strain hardening response of undisturbed loess is observed in all the tests. There is no obvious peak in most of the $\varepsilon_a - q$ curves, where $\varepsilon_a$ is the axial strain and $q$ is the deviatoric stress defined as the difference between axial stress $\sigma_a$ and confining pressure $\sigma_r$. There is slight decrease in $q$ for the natural loess with $\sigma_r = 300$ kPa after at $\varepsilon_a \approx 1\%$. This could be caused by localized failure inside the sample. Were there no imperfection in the sample, continuous strain hardening response would be observed. At the same confining pressure, undisturbed samples show much higher shear stiffness throughout the tests due to their structure. The difference in the initial shear stiffness for undisturbed and remolded soils reduces as $\sigma_r$ decreases. This is due to the destructuration during the isotropic consolidation. When the confining pressure $\sigma_r$ is very large, there will no significant damage of the soil structure during the consolidation process. This will make the mechanical response of remolded and undisturbed loess very similar. It is expected that the soil structure would have been completely damaged at the critical state with infinitely large shear strain. It implies that $\varepsilon_a - q$ curves for undisturbed and remolded soils should merge together at large $\varepsilon_a$. But it is extremely difficult to shear the soil to critical state in the laboratory. In this study, the tests were terminated before $\varepsilon_a$ reaches 20% due to significant strain localization (either shear band or bulging) in the samples. Generally, the undisturbed samples show more volumetric contraction due to destructuration, except for the tests with $\sigma_r = 300$ kPa.
3. A constitutive model of saturate loess accounting for destructuration

A new constitutive model is presented to describe the mechanical behavior of natural loess. The model is proposed based on the one developed by Zhang et al. (2007), which accounts for the effect of structure, density and stress-induced anisotropy under cyclic loading on mechanical behavior of clays. Specifically, the destructuration evolution law in Zhang et al., (2007) is modified to better describe the stress-strain relation of saturated natural loess, which considers the effect of plastic shear strain. The structure of natural loess includes both cementation and fabric anisotropy (Rouainia and Muir Wood, 2000). For the same of simplicity, the soil cohesion is not considered in this study.

3.1. Description of the model

In order to describe the effect of density (or overconsolidation) and structure of geomaterials, Asaoka et al. (1998, 2000) and Zhang et al. (2007) incorporated the concepts of subloading and superloading yield surfaces into the framework of critical state soil mechanics (Muir Wood, 1990). A brief description of the normal yielding surface, subloading surface and superloading surface is shown in Fig. 7. The similarity ratio of the superloading surface to the normal yield surface, \( R^* \), and the similarity ratio of the superloading surface to the subloading surface, \( R \), are given as:

\[
R = \frac{p}{\bar{p}} = \frac{q}{\bar{q}} = \frac{p_m}{\bar{p}_m} \quad (0 < R \leq 1) \quad \text{and} \quad R^* = \frac{\bar{p}}{p} = \frac{\bar{q}}{q} = \frac{p_m}{\bar{p}_m} \quad (0 < R^* \leq 1)
\]  

(1)

where \((p, q), (\bar{p}, \bar{q})\) and \((\bar{p}, \bar{q})\) denote the stress states on the subloading yield surface, normal yield surface and superloading surface, respectively. The current stress state \((p, q)\) always lies on the subloading yields surface, which is inside or the same as the normal yield surface when the soil is overconsolidated or normally consolidated, respectively. The superloading surface is larger than or identical to the normal yield surface for a structured or remodeled soil, respectively. For a remolded and normally consolidated
soil, \( R = R^* = 1 \) and all the three yield surfaces become identical. The stress invariants involved in Eq. (1) are defined as

\[
p = \frac{1}{3} \sigma_{ii}, \quad \bar{p} = \frac{1}{3} \bar{\sigma}_{ii}, \quad \hat{p} = \frac{1}{3} \hat{\sigma}_{ii}
\]

\[
q = \sqrt{\frac{3}{2}} s_{ij} s_{ij}, \quad \bar{q} = \sqrt{\frac{3}{2}} \bar{s}_{ij} \bar{s}_{ij}, \quad \hat{q} = \sqrt{\frac{3}{2}} \hat{s}_{ij} \hat{s}_{ij}
\]

\[
s_{ij} = \sigma_{ij} - p \delta_{ij}, \quad \bar{s}_{ij} = \bar{\sigma}_{ij} - \bar{p} \delta_{ij}, \quad \hat{s}_{ij} = \hat{\sigma}_{ij} - \hat{p} \delta_{ij}
\]

where \( \sigma_{ij} \) is the stress tensor, \( s_{ij} \) is the deviatoric stress tensor and \( \delta_{ij} (=1 \) for \( i=j \) and =0 otherwise) is the Kronecker delta tensor.

The expressions for the three yield surfaces are

\[
f = \ln \frac{p}{p_m} + \ln \frac{M^2 + \eta^*^2}{M^2} = 0
\]

\[
\hat{f} = \ln \frac{\hat{p}}{\hat{p}_m} + \ln \frac{M^2 + \hat{\eta}^*^2}{M^2} = 0
\]

\[
\bar{f} = \ln \frac{\bar{p}}{\bar{p}_m} + \ln \frac{M^2 + \bar{\eta}^*^2}{M^2} = 0
\]

where \( f, \hat{f} \) and \( \bar{f} \) are the expressions for the subloading, normal and superloading yield surfaces, respectively; \( M \) is critical state stress ratio of remolded soil in triaxial compression; \( \eta^* \) is the anisotropic stress ratio defined as

\[
\eta^* = \frac{\frac{3}{2} \left( \frac{s_{ij}}{p} - \beta_{ij} \right) \left( \frac{s_{ij}}{p} - \beta_{ij} \right)}{\sqrt{2}}
\]

where \( \beta_{ij} \) is a tensor for describing the anisotropy, which is expressed as below in triaxial compression

\[
\beta_{ij} = \begin{bmatrix}
\beta_a & 0 & 0 \\
0 & \beta_r & 0 \\
0 & 0 & \beta_r
\end{bmatrix}
= \frac{2}{3} \begin{bmatrix}
\zeta_0 & 0 & 0 \\
0 & -\zeta_0/2 & 0 \\
0 & 0 & -\zeta_0/2
\end{bmatrix}
\]

where \( \zeta_0 \) is the initial variable of anisotropy; \( \beta_a \) and \( \beta_r \) are the components of \( \beta_{ij} \) in the axial and
radial directions, respectively. In the present study, the stress-induced anisotropy is neglected and the anisotropic tensor $\beta_{ij}$ remains unchanged during loading. Similar to $\eta^*$, $\hat{\eta}^*$ and $\bar{\eta}^*$ are expressed as

\[
\hat{\eta}^* = \sqrt{\frac{3}{2}} \left( \frac{\delta_{ij}}{p} - \beta_{ij} \right) \left( \frac{\delta_{ij}}{p} - \beta_{ij} \right) \quad \text{and} \quad \bar{\eta}^* = \sqrt{\frac{3}{2}} \left( \frac{\delta_{ij}}{p} - \beta_{ij} \right) \left( \frac{\delta_{ij}}{p} - \beta_{ij} \right)
\]

Eq. (5) can be rewritten as below based on the similarity ratios in Eq. (1)

\[
f = \ln \left( \frac{M^2 + \eta^{2}}{M^2} \right) + \ln \left( \frac{p \hat{\rho}_m \hat{\rho}_m}{\hat{\rho}_m \hat{\rho}_m} \right) = \ln \left( \frac{M^2 + \eta^{2}}{M^2} \right) + \ln \left( \frac{p R^*}{\hat{\rho}_m R} \right) = 0
\]

or

\[
f = \ln \left( \frac{M^2 + \eta^{2}}{M^2} p \right) + \ln R^* - \ln R - \ln \hat{\rho}_m = 0
\]

An associated flow rule is adopted in the model and the plastic strain increment $d\varepsilon_{ij}^p$ is expressed as

\[
d\varepsilon_{ij}^p = \langle \Lambda \rangle \frac{\partial f}{\partial \sigma_{ij}}
\]

where $\Lambda$ is the plastic loading index and $\langle \cdot \rangle$ are the McCauley brackets with $\langle \Lambda \rangle = \Lambda$ for $\Lambda > 0$ and $\langle \Lambda \rangle = 0$ otherwise.

As the anisotropy is assumed to be unchanged in this study, the condition of consistency of the subloading yield surface can be expressed as below based on Eqs. (2)-(4) and (12):

\[
df = \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} + \left( \frac{1}{R^*} dR^* - \frac{1}{R} dR - \frac{1}{\hat{\rho}_m} d\hat{\rho}_m \right) = 0
\]

In Eq. (14), the latter term describing the evolution of internal structure and plastic hardening $\left( \frac{1}{R^*} dR^* - \frac{1}{R} dR - \frac{1}{\hat{\rho}_m} d\hat{\rho}_m \right)$ can be expressed as a product of plastic loading index $\Lambda$ and plastic modulus $h_p$. The forms of $\Lambda$ and $h_p$ will be given later in this section. Isotropic hardening is used for the normal yield surface, with the plastic volumetric strain $\varepsilon_v^p$ chosen as the sole internal variable to characterize the evolution of internal structure associated with plastic hardening. The hardening law adopted in the proposed model is identical to that of the Modified Cam-Clay model (Muir Wood, 1990), as follows:

\[
d\hat{\rho}_m = \frac{1}{c_p} \hat{\rho}_m d\varepsilon_v^p = \langle \Lambda \rangle \frac{1}{c_p} \hat{\rho}_m \frac{\partial f}{\partial \sigma_{ii}}
\]
\[ c_p = \frac{\lambda - \kappa}{1 + e_0} \]  
(16)

where \( d \varepsilon^p_i \) is the plastic volumetric strain increment, \( \lambda \) is the compression index, \( \kappa \) is the swelling index and \( e_0 \) is the initial void ratio.

The evolution law of \( R \) in the original model for structured soil is expressed as (Asaoka et al. 2002)

\[ dR = U \| d \varepsilon^p_i \|, \quad U = -\frac{mM}{c_p} \ln R \]  
(17)

where \( m \) is a positive model parameter determining the evolution rate of overconsolidation and \( \| d \varepsilon^p_i \| \) is expressed as below

\[ \| d \varepsilon^p_i \| = \langle \Lambda \rangle \left\| \frac{\partial f}{\partial \sigma_i} \right\| = \langle \Lambda \rangle \sqrt{\frac{\partial f}{\partial \sigma_i} \frac{\partial f}{\partial \sigma_j}} \]  
(18)

The evolution equation for the degree of structure, \( R^* \), is given as below in the original model by Asaoka et al. (2002)

\[ dR^* = U^* \| d \varepsilon^p_i \|, \quad U^* = \frac{aM}{c_p} R^*(1 - R^*) \]  
(19)

where \( a \) is a parameter used to control the rate of destructuration.

Assuming that the total strain increment \( d \varepsilon_{ij} \) is the summation of the elastic \( d \varepsilon_{ij}^e \) and plastic ones \( d \varepsilon_{ij}^p \) \((d \varepsilon_{ij} = d \varepsilon_{ij}^e + d \varepsilon_{ij}^p)\), one can get the increment of stress tensor \( d \sigma_{ij} \) as below based on Eq. (13)

\[ d \sigma_{ij} = E_{ijkl} d \varepsilon_{kl}^e = E_{ijkl} (d \varepsilon_{kl} - d \varepsilon_{kl}^p) = E_{ijkl} \left( d \varepsilon_{kl} - \Lambda \frac{\partial f}{\partial \sigma_{kl}} \right) \]  
(20)

where \( E_{ijkl} \) is the elastic stiffness matrix defined as (Hong et al., 2020)

\[ E_{ijkl} = (K - 2\frac{G}{3}) \delta_{ij} \delta_{kl} + G(\delta_{kl} \delta_{ij} + \delta_{il} \delta_{kj}) \]  
(21)

where \( G \) and \( K \) denote the elastic shear and bulk modulus, respectively. They are the same as that for the Modified Cam-Clay model, as function of current effective mean stress:
where \( \nu \) is the Poisson’s ratio, which is assumed a constant for both undisturbed and remolded soils. No attempt is made in this model to consider the non-linearity of soil stiffness at small strains, because this model is mainly developed for predicting the plastic deformation and the shear strength of saturated loess, where the plastic behavior at large strain dominates.

The plastic loading index \( \Lambda \) can be obtained as below based on Eqs. (14)-(20)

\[
\Lambda = \frac{\partial f}{\partial \sigma_{ab}} F_{abij} \frac{\partial f}{\partial \sigma_{ij}} d\varepsilon_{ij} = \Theta_{ij} d\varepsilon_{ij}
\]

where the plastic modulus \( h_p \) is (Asaoka et al., 2002)

\[
h_p = \frac{1}{c_p} \left\{ \frac{\partial f}{\partial \sigma_{ii}} - M \left[ \frac{\partial f}{\partial \sigma_{ij}} \right] \left[ 2
\end{equation}

The constitutive equation for the model can be finally obtained as below based on Eqs. (20) and (24)

\[
d\sigma_{ij} = \left( E_{ijkl} - h(\Lambda) E_{ijmn} \frac{\partial f}{\partial \sigma_{mn}} \Theta_{kl} \right) d\varepsilon_{kl}
\]

where \( h(\Lambda) \) is the Heaviside step function with \( h(\Lambda) = 1 \) for \( \Lambda > 0 \), and \( h(\Lambda) = 0 \) when \( \Lambda \leq 0 \).

3.2 Modified evolution law of \( R^* \)

In the previous research (Asaoka et al. 2002), the damage rate of structure variable \( R^* \) is related to the full plastic strain increment tensor \( \| d\varepsilon_{ij}^p \| \), as shown in Eq. (19). To better describe the liquefaction of sand under cyclic load, Zhang et al. (2007) adopted a new evolution equation of \( R^* \) in which only the plastic deviatoric strain increment \( d\varepsilon_{d}^p \) is considered. However, the destructuration under loading is inevitably accompanied by plastic volumetric strain \( d\varepsilon_{v}^p \) for undisturbed soils, which is supported by existing
experimental studies (Baudet and Stallebrass, 2004; Callisto and Rampello, 2004). Furthermore, the contribution of $d\varepsilon^p_v$ and $d\varepsilon^p_d$ to structure destruction is different for different soils. Therefore, $d\varepsilon^p_d$ in the destructuration equation has been replaced with the plastic destructuration strain rate $d\varepsilon^p_s$, which simultaneously considers the effect of both $d\varepsilon^p_v$ and $d\varepsilon^p_d$, as proposed by Rouainia and Muir Wood (2000). Thus, Eq. (19) becomes

$$dR^* = U^* d\varepsilon^p_s$$  \hspace{1cm} (27)

where

$$d\varepsilon^p_s = \sqrt{(1 - B)(d\varepsilon^p_v)^2 + B(d\varepsilon^p_d)^2} \quad \text{with} \quad d\varepsilon^p_d = \langle \Lambda \rangle \frac{2 \partial f}{3 \partial s_{ij} \partial s_{ij}}$$  \hspace{1cm} (28)

where $B$ is a parameter used to control the relative contribution of $d\varepsilon^p_v$ and $d\varepsilon^p_d$ to the destructuration rate. The value of parameter $B$ is limited from zero to one. Smaller $B$ means more contribution of $d\varepsilon^p_v$ to the destructuration, and vice versa. For the new model with the modified evolution law for $R^*$, the complete constitutive equation is still expressed as Eq. (26), but the formulation for $h_p$ needs to be replaced by the equation below:

$$h_p = \frac{1}{c_p} \left\{ \partial f \left[ a(1 - R^*) \sqrt{(1 - B)(\partial f/\partial s_{ij})^2 + \frac{2}{3} B \| \partial f \| \| \partial s_{ij} \|}^2 + \frac{\ln R}{R} \| \partial f \| \| \partial s_{ij} \| \right] \right\}$$  \hspace{1cm} (29)

4. Determination of the model parameters and initial state variables

The proposed model includes eight material parameters and three initial state parameters. Five of the model parameters, $e_r$ (void ratio at the reference pressure $p_r$ on the NCL in $e$-$lnp$ plane for remolded soil), $\lambda$, $\kappa$, $M$ and $\nu$ are the same as those in the Modified Cam-clay (MCC) model (Table 2). These five parameters can be determined based on conventional oedometer and triaxial tests results on remolded
loess, following standard procedures (Muir Wood, 1990). In addition to the five MCC model parameters, the rest three new parameters \(m, a\) and \(B\) should be determined from the test data on undisturbed loess. It is advised to determine the initial values of \(\zeta_0\), \(R_0\) and \(R_0^*\), prior to the determination of the three new model parameters. The details of these procedures are presented in the following sections.

4.1 Determination of initial variables \(\zeta_0\)

The variable \(\zeta_0\) describes the initial anisotropy of undisturbed loess. It should be mentioned that the initial fabric of remolded loess is isotropic due to the loading history, and therefore, \(\zeta_0\) is 0 for this soil. The value of \(\zeta_0\) for undisturbed loess can be estimated approximately according the method proposed by Wheeler et al. (2003) and then adjusted for the best prediction for triaxial compression test data. For a \(K_0\)-consolidation test, the following dilatancy can be obtained based on Eqs. (5) and (13)

\[
\frac{d\varepsilon_p^p}{d\varepsilon_d^p} = \frac{M^2+(\eta_{u0}-\zeta_0)^2-2\eta_{u0}(\eta_{u0}-\zeta_0)}{2(\eta_{u0}-\zeta_0)} \approx \frac{d\varepsilon_p}{d\varepsilon_d} = \frac{3}{2}
\]

(30)

where \(\eta_{u0} = \left[\frac{3(1-K_{0u})}{1+2K_{0u}}\right]\) is the stress ratio \((q/p)\) of \(K_0\)-consolidated undisturbed samples, with \(K_{0u}\) being the lateral earth pressure coefficient. The value of \(K_{0u}\) measured in this study is 0.31 (Table 2). Note that the value of \(\zeta_0\) determined using Eq. (30) is an approximate one as it assumes that the elastic strain increment is 0. Therefore, it needs to be adjusted for better simulation of the test results. In this study, the value of \(\zeta_0\) calculated using Eq. (30) is 1.0, which is then adjusted to capture the strength and dilatancy behavior of undisturbed loess in drained triaxial compression tests (Table 2).

4.2 Size of the initial subloading yield surface \(p_{m0}\) and initial variables \(R_0\) and \(R_0^*\)

Since the current stress state always lies on the subloading surface, the initial size of the subloading surface \(p_{m0}\) is calculated based on the initial stress state of a test (for both undisturbed and remolded soils) based
on Eq. (5) and Eq. (8), which is expressed as

\[ p_{m0} = p_0\left(\frac{M^2 + (\eta_0 - \zeta_0)^2}{M^2}\right) \]  \hspace{1cm} (31)

where \( p_0 \) and \( \eta_0 \) denote the initial mean stress and initial stress ratio.

The two initial state parameters \( R_0 \) and \( R_0^* \) represent the initial degree of overconsolidation and structure, respectively. Both can be determined from oedometer tests or isotropic consolidation tests of remolded and undisturbed loess samples. The determination method of \( R_0 \) is as following, which is similar to the method in Ye and Ye (2016)

\[ R_0 = \frac{p_{m0}}{\bar{p}_{m0}} \]  \hspace{1cm} (32)

where \( p_{m0} \) is calculated from Eq. (31) and \( \bar{p}_{m0} \) denotes the pre-consolidation pressure for the undisturbed soil in isotropic consolidation tests. \( \bar{p}_{m0} \) can also be calculated from the oedometer tests for the undisturbed soil using the equations below

\[ \bar{p}_{m0} = p_{vu}\left(\frac{M^2 + (\eta_{vu} - \zeta_0)^2}{M^2}\right) \]  \hspace{1cm} (33)

\[ \eta_{vu} = \frac{p_{vu}}{q_{vu}} \]  \hspace{1cm} (34)

where \( p_{vu} \) \( [(1 + 2K_{0u})\sigma_{vu}/3] \) and \( q_{vu} \) \( [(1 - K_{0u})\sigma_{vu}] \) are the mean and deviatoric stress corresponding to the \( \sigma_{vu} \) and the lateral earth pressure coefficient for undisturbed soil \( K_{0u} \cdot \sigma_{vu} (=662\text{kPa}) \) is the pre-consolidation pressure for the undisturbed soil in oedometer tests (the value of \( \sigma_v \) at the maximum curvature point on the \( e - \log\sigma_v \) curve for undisturbed loess shown in Fig. 3. The value of \( \bar{p}_{m0} \) calculated by Eq. (34) is 528.3 kPa.

The initial structure degree of \( R_0^* \) can be determined from the \( e - \log\sigma_v \) curves of oedometer tests for the undisturbed and remolded samples which have similar \( e \) at the initial state \((\sigma_v \approx 13 \text{ kPa})\). Because
the remolded loess samples were prepared with the similar void ratio as the natural loess samples before test loading, the difference between their $e - \log \sigma_v$ shown in Fig. 3 is solely caused by the structure and the initial structure degree of $R_0^*$ can be calculated from the pre-consolidation pressure of the undisturbed and remolded samples as following

$$R_0^* = \hat{p}_{m0}/\bar{p}_{m0}$$  \hspace{1cm} (35)

where $\bar{p}_{m0}$ is determined by Eq. (33) and $\hat{p}_{m0}$ denotes the pre-consolidation pressure for the remolded soil in isotropic consolidation tests. $\hat{p}_{m0}$ can be calculated based on the $e - \log \sigma_v$ curves of oedometer tests for the remolded samples:

$$\hat{p}_{m0} = p_{vr}[M^2 + \eta_{vr}^2]/M^2$$ \hspace{1cm} (36)

$$\eta_{vr} = p_{vr}/q_{vr}$$ \hspace{1cm} (37)

where $p_{vr} = (1 + 2K_{0r})\sigma_{vr}/3$ and $q_{vr} = (1 - K_{0r})\sigma_{vr}$ are the mean and deviatoric stress corresponding to the $\sigma_{vr}$ and the lateral earth pressure coefficient for remolded soil $K_{0r}$. For the remolded loess in this study, $\sigma_{vr} = 111$ kPa (the value of $\sigma_v$ at the maximum curvature point on the $e - \log \sigma_v$ curve of remolded loess shown in Fig. 3) and $K_{0r} = 0.4$ (Table 1). The value of $\hat{p}_{m0}$ calculated from Eq. (36) is 119.2 kPa.

### 4.3 Determination of parameters $m$, $a$ and $B$

As shown by Ye and Ye (2016), the larger the value of $m$, the larger the curvature of $e - \log \sigma_v$ curve and the larger the value of $a$, the faster the $e - \log \sigma_v$ curve of undisturbed soil revert back to the NCL of remolded soil. Therefore, the values of $m$ and $a$ can be determined to capture the oedometer tests results for undisturbed loess by assuming that $B = 0.5$, because $B$ is found to have insignificant influence on the
model prediction for the soil response in such tests (Fig. 8). With the best-tuned parameters of $m$ and $a$, the parameter $B$ can then be obtained by calibrating the model against the stress-strain relationship in drained triaxial compression tests. Fig. 9 shows the effect of $B$ on the model simulation in drained triaxial tests. It is evident that smaller $B$ results in higher shear stiffness and peak shear strength, but smaller volumetric contraction in drained triaxial compression. This is associated with a slower destructuration rate at a smaller $B$ ($R^* \text{ increases more slowly with the axial strain } \varepsilon_a$). Finally, the values for $m$, $a$ and $B$ may have to be fine-tuned to get optimum prediction of the soil response under various loading conditions. But this adjustment is found to be very minor as the influence of $B$ on model simulation in 1D or isotropic compression is insignificant. All the model parameters for Jingyang loess are summarized in Table 2. It is noticed that some advanced methods for parameter identification have been developed (Jin and Yin, 2020; Jin et al., 2020; Yin et al., 2016; Yin et al., 2017). For practical applications, these methods can make the parameter determination more efficient.

5. Model validation

This section presents the validation of the proposed model against the measured compression and shear behavior of both undisturbed and remolded saturated loess from Jingyang, China. Figs. 10-12 show the comparison between the predicted stress-strain relationship and volumetric behavior by the proposed model and the experimental data of undisturbed Jingyang loess. Since the sizes of the initial yield surfaces are determined based on the soil condition at low vertical effective stress, simulations for the triaxial compression tests on natural loess are performed in two steps. First, the soil is loaded in isotropic compression to the confining pressure, during which the structure damage is considered. The soil is then loaded following the stress path in drained triaxial compression. The strain in the figures for triaxial
compression are set to be 0 at the beginning of the triaxial tests (Figs. 10-12). In general, the model gives satisfactory prediction for the test results of undisturbed samples under different confining pressures, with slight overestimation of volumetric contraction at $\sigma_r=300$ kPa and $\sigma_r=400$ kPa. Figs. 13-15 show the model prediction for remolded loess in triaxial compression. For all the confining pressures, the model tends to overestimate the amount of volumetric contraction. Better model prediction can be achieved by using an improved yield function that is able to produce variable shapes of yield surfaces (Yao et al., 2012; Gao et al., 2017).

The measured and predicted $e - \log \sigma_v$ curves of oedometer tests for the undisturbed and the remolded specimens are compared in Fig. 16. The test data implies that the soil structure is not completely damaged even at $\sigma_v = 4800$ kPa, as the $e - \log \sigma_v$ curve for remolded loess still slightly deviates from that of the undisturbed loess (Figs. 3 and 16).

6. Conclusions

The review of the literature has shown a lack of experimental and theoretical investigation into the structural effects on compression and shear behavior of saturated natural loess. This study presents a series of oedometer and triaxial tests on undisturbed and remolded loess, and a constitutive model for describing the destruction of saturated loess in the light of the experimental evidences. A new simple method for determining the initial degree of structure has been proposed. Based on the experimental investigation and the associated theoretical development, the following conclusions can be drawn:

(a) Destructuration occurs in both oedometer tests (i.e., volumetric change dominates) and triaxial compression tests (i.e., shear strain being much larger than the volumetric strain). Significant
structural effect on the stiffness, shear strength and dilatancy of natural loess is observed. Destructuration occurs as the soil deforms, causing extra volumetric contraction of the soil and reduction of the stiffness.

(b) The experimental data indicate that the destructuration is caused by both plastic volumetric strain and plastic shear strain. An improved destruction law, which considers the contribution of both plastic volumetric strain and plastic shear strain on destructuration, is therefore employed based on existing research. This proposed destruction law is then implemented into a critical state elasto-plastic model with the subloading and superloading surface concept. Comparison between the model prediction and test data shows that the new destructuration law can describe the stress-strain behavior of natural loess satisfactorily.

(c) A new method for determining the initial structure parameter $R_0^*$ is proposed. It is calculated based on the yield stress for remolded and undisturbed soils in oedometer tests. The model validation shows that good prediction of the undisturbed soil response can be obtained using the $R_0^*$ calculated using the new method. This method could also be applicable for other structured fine-grained soils.

The current model assumes that the soil structure is initially anisotropic for natural loess but does not evolve, which may not represent the reality (Rouainia and Wood, 2000; Kobayashi Ichizo et al., 2003; Zhang et al., 2007; Huang et al., 2011; Jiang et al., 2012; Yang et al., 2015; Zhang et al., 2016; Yang et al., 2018). Future work will be done to extend this model for modelling the soil anisotropy evolution.

**Acknowledgements**

This work was financially supported by National Natural Science Foundation of China (41790442 and 5177922) and Qianjiang Talent Plan (QJD1602028).
References


Derbyshire E, Dijkstra TA, Smalley IJ, et al. (1994) Failure mechanisms in loess and the effects of


List of Tables

Table 1  Physical properties of Jingyangloess (L5)

Table 2  Initial state and model parameters for Jingyang loess (L5)
<table>
<thead>
<tr>
<th>Physical property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity, $G_s$</td>
<td>2.71</td>
</tr>
<tr>
<td>Initial dry density, $\rho_d$ (g/cm$^3$)</td>
<td>1.6</td>
</tr>
<tr>
<td>Natural water content, $w$ (%)</td>
<td>11.3</td>
</tr>
<tr>
<td>Liquid limit, $w_L$ (%)</td>
<td>28.8</td>
</tr>
<tr>
<td>Plastic limit, $w_p$ (%)</td>
<td>19.3</td>
</tr>
<tr>
<td>Lateral earth pressure coefficient $K_0$ (remolded)</td>
<td>0.40</td>
</tr>
<tr>
<td>Lateral earth pressure coefficient $K_0$ (undisturbed)</td>
<td>0.31</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Compression index, $\lambda$</td>
<td>0.102</td>
</tr>
<tr>
<td>Swelling index, $\kappa$</td>
<td>0.011</td>
</tr>
<tr>
<td>Critical state stress ratio in triaxial compression, $M$</td>
<td>1.13</td>
</tr>
<tr>
<td>Poisson’s ratio, $\nu$</td>
<td>0.31</td>
</tr>
<tr>
<td>Reference void ratio, $e_r (e$ at $p = 100$ kPa on NCL of remolded soil in the $e$-$\ln p$ plane)</td>
<td>0.68</td>
</tr>
<tr>
<td>Degradation parameter of overconsolidation state, $m$</td>
<td>10.0</td>
</tr>
<tr>
<td>Degradation parameter of structure, $a$</td>
<td>0.75</td>
</tr>
<tr>
<td>Scale parameter for structure degradation, $B$</td>
<td>0.50</td>
</tr>
<tr>
<td>Pre-consolidation pressure of remolded/undisturbed soils in oedometer tests, $\sigma_{vr} / \sigma_{vu}$ (kPa)</td>
<td>111 / 662</td>
</tr>
<tr>
<td>Initial variable of anisotropy, $\zeta_0$</td>
<td>0.50</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 (a) Loess layers and sampling point and (b) undisturbed loess samples for oedometer and triaxial compression tests.

Figure 2 Particle size distribution of the loess sample.

Figure 3 Oedometer test results on remolded and undisturbed Jingyang loess (L5)

Figure 4 Drained triaxial test data on remolded and undisturbed Jingyang loess (L5) with $\sigma_t=300$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 5 Drained triaxial test data on remolded and undisturbed Jingyang loess (L5) with $\sigma_t=400$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 6 Drained triaxial test data on remolded and undisturbed Jingyang loess (L5) with $\sigma_t=500$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 7 Subloading, normal and superloading yield surfaces in $p-q$ plane

Figure 8 Effect of parameter B on the model simulation for the response of undisturbed loess in oedometer tests: (a) $\sigma_v - e$ relationship and (b) $\varepsilon_a - R^*$ relationship

Figure 9 Effect of parameter $B$ on the model simulation for the response of undisturbed loess in drained triaxial compression with $\sigma_t=400$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship and (c) $\varepsilon_a - R^*$ relationship

Figure 10 Model prediction of the stress-strain relationship of undisturbed Jingyang loess (L5) in drained triaxial compression with $\sigma_t=300$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 11 Model prediction of the stress-strain relationship of undisturbed Jingyang loess (L5) in drained triaxial compression with $\sigma_t=400$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship
Figure 12 Model prediction of the stress-strain relationship of undisturbed Jingyang loess (L5) in drained triaxial compression with $\sigma_r=500$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 13 Model prediction of the stress-strain relationship of remolded Jingyang loess (L5) in drained triaxial compression with $\sigma_r=300$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 14 Model prediction of the stress-strain relationship of remolded Jingyang loess (L5) in drained triaxial compression with $\sigma_r=400$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 15 Model prediction of the stress-strain relationship of remolded Jingyang loess (L5) in drained triaxial compression with $\sigma_r=500$ kPa: (a) $\varepsilon_a - q$ relationship; (b) $\varepsilon_a - \varepsilon_v$ relationship

Figure 16 Model prediction of the oedometer tests on (a) undisturbed Jingyang loess (L5) and (b) remolded Jingyang loess (L5).
Fig. 1

(a) Loess layer

(b) Sample location

Loess sample (oedometer tests)

Loess sample (triaxial tests)
Fig. 2
Fig. 3

Vertical effective stress (log scale) $\sigma_v$ (kPa)

Void ratio $e$

NCL $\sigma_{vyr}=111$ kPa

$\sigma_{vul}=662$ kPa

Test data of Sample 1 (remolded soil)
Test data of Sample 2 (remolded soil)
Test data of Sample 1 (undisturbed soil)
Test data of Sample 2 (undisturbed soil)
Fig. 4a

(a) $\sigma_i = 300\text{kPa}$

Deviantic stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)

Test result for undisturbed loess
Test result for remolded loess
Fig. 4b

(b) $\sigma_r=300\text{kPa}$

- Volumetric strain $\varepsilon_v$ (%)
- Axial strain $\varepsilon_a$ (%)

- Pink line: Test result for undisturbed loess
- Blue line: Test result for remolded loess
Fig. 5a

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)

Test result for undisturbed loess
Test result for remolded loess

(a) $\sigma_0=400$ kPa
Fig. 5b

(b) $\sigma_i=400\text{kPa}$

- Test result for undisturbed loess
- Test result for remolded loess

Volumetric strain $\varepsilon_v$ (%) vs. Axial strain $\varepsilon_a$ (%)
Fig. 6a

(a) $\sigma_r = 500\text{kPa}$

- Pink line: Test result for undisturbed loess
- Blue line: Test result for remolded loess

Deviatoric stress $q$ (kPa) vs. Axial strain $e_a$ (%)
Fig. 6b

Volumetric strain $\varepsilon_v$ (%) vs. Axial strain $\varepsilon_a$ (%)

- Pink line: Test result for undisturbed loess
- Blue line: Test result for remolded loess

(b) $\sigma_v = 500$ kPa
Fig. 7

Superloading surface
Subloading surface
Normal yielding surface

$q$
$p$

$(\hat{p}, \hat{q})$
$(\bar{p}, \bar{q})$

$p_m$
$\hat{p}_m$
$\bar{p}_m$
Fig. 8a

Void ratio $e$

Vertical effective stress (log scale) $\sigma_v$ (kPa)

- Proposed model ($B=1.0$)
- Proposed model ($B=0.5$)
- Proposed model ($B=0$)
Fig. 9a

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)
Fig. 9b

Volumetric strain $\epsilon_v$ (%) vs Axial strain $\epsilon_a$ (%) for different models:
- Proposed model ($B=1.0$)
- Proposed model ($B=0.5$)
- Proposed model ($B=0$)
Fig. 9c

Structure state variable $R^*$ vs. Axial strain $\varepsilon_a$ (%)

- Proposed model ($B=1.0$)
- Proposed model ($B=0.5$)
- Proposed model ($B=0$)
Fig. 10a

(a) $\sigma_i = 300\text{kPa}$

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)

- Test result for undisturbed loess
- Proposed model for undisturbed loess
Fig. 10b

(b) $\sigma_r = 300$ kPa

Volumetric strain $\varepsilon_v$ (

Test result for undisturbed loess

Proposed model for undisturbed loess

Axial strain $\varepsilon_a$ (%)
Fig. 11a

Deviatoric stress $q$ (kPa)

Axial strain $e_a$ (%)

(a) $\sigma_i=400$ kPa

Test result for undisturbed loess

Proposed model for undisturbed loess
Fig. 11b

Volumetric strain $\varepsilon_v$ (%) vs. Axial strain $\varepsilon_a$ (%) for (b) $\sigma_t = 400$ kPa.

- Pink line: Test result for undisturbed loess
- Blue line: Proposed model for undisturbed loess
Fig. 12a

(a) $\sigma_f = 500kPa$

- **Test result for undisturbed loess**
- **Proposed model for undisturbed loess**

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)
Fig. 12b

(b) $\sigma_i = 500\text{kPa}$

Volumetric strain $\varepsilon_v$ (%) vs. Axial strain $\varepsilon_a$ (%)

- Pink line: Test result for undisturbed loess
- Blue line: Proposed model for undisturbed loess
Fig. 13a

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)

- Test result for remolded loess
- Proposed model for remolded loess

(a) $\sigma_i = 300$ kPa
Fig. 13b

(b) $\sigma_i = 300$ kPa

Volumetric strain $\varepsilon_v$ (%) vs. Axial strain $\varepsilon_a$ (%)

- Test result for remolded loess
- Proposed model for remolded loess
Fig. 14a

(a) $\sigma_t = 400$ kPa

![Graph showing deviatoric stress vs. axial strain for remolded loess and proposed model.]

- Test result for remolded loess
- Proposed model for remolded loess

Axial strain $\varepsilon_a$ (%) vs. Deviatoric stress $q$ (kPa)
Fig. 14b

(b) $\sigma_r = 400$ kPa

Volumetric strain $\varepsilon_v (%)$

Axial strain $\varepsilon_a (%)$

Test result for remolded loess
Proposed model for remolded loess
Fig. 15a

(a) $\sigma_1=500\,\text{kPa}$

- **Test result for remolded loess**
- **Proposed model for remolded loess**

Deviatoric stress $q$ (kPa)

Axial strain $\varepsilon_a$ (%)
Fig. 15b

(b) $\sigma_i = 500\text{kPa}$

- Test result for remolded loess
- Proposed model for remolded loess

Volumetric strain $\varepsilon_v (%)$

Axial strain $\varepsilon_a (%)$
Fig. 16a

Void ratio $e$

Vertical effective stress (log scale) $\sigma_v$ (kPa)

- Test result of sample 1#
- Test result of sample 2#
- Proposed model for undisturbed loess
Fig. 16b

Void ratio $e$

Test result of sample 1#
Test result of sample 2#
Proposed model for remolded loess

Vertical effective stress (log scale), $\sigma_v$ (kPa)