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Counting relations for curves using equivariance

Chris Athorne1

1School of Mathematics & Statistics, University of Glasgow

Abstract

We generalise a classical argument for deducing algebraic models of
Riemann surfaces from the Riemann-Roch theorem. The method involves
counting arguments based on equivariant resolutions.

1 Introduction

The relationship between curves and their Jacobians is of fundamental impor-
tance in a range of topics in mathematical physics from classical nonlinear oscil-
lators to integrable systems on both continuous and discrete spaces. [1, 9, 15, 17]
The simplest nontrivial example is the Weierstraß } function defined on the

Jacobian of a nonsingular cubic curve. In this instance the curve and its Ja-
cobian are isomorphic and the } function and its derivative parametrise the
curve itself [8, 18]. The } function describes both the oscillations of the classi-
cal pendulun as well as quasiperiodic solutions to soliton equations such as the
Korteweg-de Vries equation [12, 11].
For nonsingular higher genus curves, the role of the } function is played by

a multiplicity of functions, }ij = }ji for 1  i, j  g, g being the genus of
the curve [4, 5]. These functions live on the Jacobian and satisfy complicated
di↵erential relations analogous the the Weierstraß di↵erential equation which
can, however, be greatly simplified by noting an equivariant property which
follws from simple coordinate changes for the underlying curve. At root this
follows from the fact that the g holomorphic di↵erentials on the Jacobian are
a C basis for an irreducible g dimensional sl2 representation (at least in the
hyperelliptic case). The di↵erential relations for the }ij functions decompose
into finite dimensional irreducibles that can be generated from their highest
(lowest) weight elements by lowering and raising operators [2, 3].
An important consideration is to understand the (di↵erential) ideal of gener-

ating relations for the }ij and their higher derivatives [14].
As a precursor to such a description we consider here relations between func-

tions on the curve itself.
The Riemann-Roch theorem imposes constraints on the dimensions of linear

spaces of functions with prescribed poles on a compact, nonsingular Riemann
surface [8, 13]. Consequently the module of such functions is not free and the
question of describing all possible relations arises. Each function is a coordinate
on the surface and the relations constitute models of the surface in projective
spaces.
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This paper starts by rehearsing a classical argument for the genus one surface
with a set of divisors of the form nP for integer n � 0 to arrive at the cubic
model [16]. We then generalise this to the case of two-point divisors where a
more complicated set of relations obtains, setting up an equivariant resolution
of the coordinate ring in order to show that an explicit, finite set of quadratic
and cubic relations generates all relations.
The equivariant property in this case di↵ers from that mentioned earlier in

the introduction and corresponds to creation and annihilation of poles.
Finally we generalise the argument to two-point divisors on curves of the

(n, s) type for n and s coprime.

2 Riemann-Roch

We start with a statement of the classical Riemann-Roch theorem for a compact,
nonsingular Riemann surface X of genus g.
A divisor D on X is a formal, finite sum of points, P 2 X each with an

associated integer order, np 2 Z:

D =
finiteX

P2X

nPP, nP 2 Z.

The degree of D is

deg(D) =
X

P2X

nP .

A divisor is e↵ective if nP � 0 for all P 2 X.

A meromorphic function on X: f : X ! PC1 has a finite number of poles
and zeros with associated negative and non-negative orders and hence a divisor:

(f) =
X

P2X

ordP (f)P.

Such divisors are called principal.
Likewise a one-form ! on X is meromorphic if, in local coordinates on X, it

is holomorphic except at a finite number of zeros or poles. Again it has divisor

(!) =
X

P2X

ordP (!)P.

C-vector spaces of meromorphic functions are associated with any e↵ective
divisor D,

L(D) = {f : (f) +D � 0}

and C-vector spaces of holomorphic one-forms

R(D) = {! : (!)�D � 0}

Let l(D) and r(D) be the C-dimensions of L(D) and R(D). Then the state-
ment of the Riemann-Roch theorem for any e↵ective D of degree n is

l(D)� r(D) = n� g + 1.
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The number r(D) lies between 0 and g, the genus of the Riemann surface. As
n increases by one so either l(D) increases by one or r(D) decreases by one.
One application of this result is to determine the algebraic forms of curves

representing the Riemann surface.
Consider the simplest non trivial case of genus one and divisors nP for n � 0.

For n = 0 there is only the one-dimensional space of constants so l(0P ) = 1
and r(0P ) = 1. For n = 1, l(1P ) = 1 still, as there are no functions with but a
single pole, and hence r(1P ) = 0. For n � 2, r(nP ) must remain at 0 and l(nP )
increments with n. There must be a function with a double pole, x2, one with
a third order pole, y3 and so on.

D 0.P 1.P 2.P 3.P 4.P 5.P 6.P 7.P 8.P 9.P
dim 1 1 2 3 4 5 6 7 8 9

1 0 x2 y3 x
2
2 x2y3 x

3
2 x

2
2y3 x

4
2 y

3
3

y
2
2 x2y

2
3 x

3
2y3

At degree six we find two new functions: x
3
2 and y

2
3 . Since the dimension of

l(6P ) = 6 there must be a linear relation over C between them:

y
2
3 � ↵6x

3
2 = ↵5x2y3 + ↵4x

2
2 + ↵3y3 + ↵2x2 + ↵0,

the ↵i all being complex constants.
We scale x2 in order to set ↵6 = 1 and write the relation

� = y
2
3 � x

3
2 ⇠ 0

where by ⇠ we mean equivalence up to elements of L(5P ) ⇢ L(6P ).
At 8.P, 9.P, . . . relations arise of the form

x2y
2
3 � x

4
2 = x2� ⇠ 0

where ⇠ now means equivalence up to elements of L(7P ) ⇢ L(8P ) and so on.
The single relation, � ⇠ 0, su�ces to satisfy the Riemann-Roch constraint at
all degrees. We obtain one new function each time the degree increments:

x
n
2 at 2n.P

y3x
n�1
2 at (2n+ 1).P

Thus the coordinate ring of the Riemann surface is C[x2]� y3C[x2].
In order to generalise we redescribe this situation using an exact resolution

for the coodinate ring [6, 7]. Let R = C[x2, y3] be graded by weights where x2

has weight two and y3 weight three, so the monomial xp
2y

q
3 has weight 2p+ 3q.

Then

R =
1M

n=0

R
[n][x2, y3].

Let dn = dimR
[n] = # partitions of n into 2’s and 3’s. The Hilbert series for

R is

H(t) =
1X

n=0

dnt
n = (1� t

2)�1(1� t
3)�1

.
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Let d̃n = dim(R/(�))[n] and

H̃(t) =
1X

n=0

d̃nt
n
.

There is the exact sequence

0! R
[n�6] �·! R

[n] ⇡! (R/(�))[n] ! 0

implying,
dn�6 � dn + d̃n = 0.

Summing over powers of t:

H̃(t) = (1� t
6)H(t)

=
1� t+ t

2

1� t

= 1 + t
2 + t

3 + t
4 + t

5 + t
6 + t

7 + . . . .

as expected from the Riemann-Roch theorem.
We wish to generalise this argument firstly to two-point divisors on the genus

one surface.

3 Divisors on the genus one curve at two points

We now have divisors D = nP + mQ for n,m � 0. At degrees two and three
we have linearly indpendent functions with exactly two or three poles: xij 2
L(iP + jQ), i + j = 2; yij 2 L(iP + jQ), i + j = 3. Using these we construct
functions of higher degree according to the following table:

0.P 1.P 2.P 3.P 4.P 5.P 6.P 7.P
0.Q 1 0 x20 y30 x

2
20 x20y30 x

3
20, x

2
20y30

y
2
30

1.Q 0 x11 y21 x11x20 x11y30, x11x
2
20,

x20y21 y30y21

2.Q x02 y12 x
2
11, x02y30,

x20x02 x11y21, ⇤
x20y12

3.Q y03 x11x02 x02y21,

x11y12, ⇤
x20y03

4.Q x
2
02 x11y03,

x02y12 ⇤
5.Q x02y03

6.Q x
3
02, y

2
03 x11x

2
02,

y12y03

7.Q x
2
02y03
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At degrees four and five we see there must be quadratic relations in x and y

and at degree six relations quadratic in y but cubic in x. We want to show that
these exhaust all relations.
Let

0! {L(rP + sQ)|r  n, s  m, r + s < n+m}

! L(nP +mQ)
⇡! S

[n,m] ! 0

be exact. Then the relations are elements of R[n] lying in the kernel of ⇡. Thus
we write

x20x02 � x
2
11 ⇠ 0

to mean ⇡(x20x02 � x
2
11) = 0.

We start with the quadratic relations. We can normalise the x’s and y’s so
that these are all the 2⇥ 2 minors of


x20 x11 y30 y21 y12

x11 x02 y21 y12 y03

�

and show that if we factor out these 1 + 6 + 3 = 10 relations we recover the
previous situation by a counting argument based on an appropriate exact se-
quence. we can then employ an equivariance argument to show that the full set
of relations are a complete set.
Let � now represent the ideal generated by the ten relations

x20x02 � x
2
11, x20y21 � x11y30, . . . , y30y12 � y

2
21, . . .

in the polynomial ring R = C[x20, x11, x02, y30, y21, y12, y03]. We wish to con-
struct a resolution of the quotient module R/� graded by degree where deg x =
2 and deg y = 3. Such a resolution looks like:

0 !
4M

R
[n�13]

�4!
3M
 

2M
R

[n�11] �
3M

R
[n�10]

!

�3!
2M
 
R

[n�9] �
6M

R
[n�8] �

3M
R

[n�7]

!

�2! R
[n�4] �

6M
R

[n�5] �
3M

R
[n�6]

�1! R
[n] ⇡! (R/�)[n] ! 0. (1)

In order to define �1 such that im �1 = ker⇡, let {e0, e1} and {f0, f1, f2} be
bases of two and three dimensional vector spaces, E and F respectively. Let

!1 = x20e0 + x11e1 + y30f0 + y21f1 + y12f2

!2 = x11e0 + x02e1 + y21f0 + y12f1 + y03f2

and
⌦ = !1 ^ !2 = ⌦[4]

e,e + ⌦[5]
e,f + ⌦[6]

f,f
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where

⌦[4]
e,e = (x20e0 + x11e1) ^ (x20e0 + x11e1)

⌦[5]
e,f = (x20e0 + x11e1) ^ (y21f0 + y12f1 + y03f2)

+(y30f0 + y21f1 + y12f2) ^ (x11e0 + x02e1)

⌦[6]
f,f = (y30f0 + y21f1 + y12f2) ^ (y21f0 + y12f1 + y03f2).

Then we implement the relations of the ideal by working over the exterior
products of E � F , with coe�cients in R, and taking the wedge product with
⌦ :

. . .! R
[n�4]

3̂

f,f,f

�R[n�5]
3̂

e,f,f

�R[n�6]
3̂

e,e,f

⌦^·! R
[n]

5̂

e,e,f,f,f

⇡! . . .

Here the subscripts of the
V

symbol denote mixtures of e’s and f ’s present in
the basis so, for example,

R
[n�5]

3̂

e,f,f

= {f(x, y) ei ^ fj ^ fj |f has weight n� 5, i = 1, 2 and j, k = 1, 2, 3}.

This gives our sequence (exact on the right):

. . .
�2! R

[n�4] �
6M

R
[n�5] �

3M
R

[n�6] �1! R
[n] ⇡! . . .

Now we will define �2 such that im �2 = ker�1. The kernel of ⌦ ^ · inV3(E � F ) is {!1 ^ ↵1 + !2 ^ ↵1|↵1,↵2 2
V2}. Hence the map

✓
↵1

↵2

◆
! (!1,!2) ^

✓
↵1

↵2

◆

does the job:

. . .!
2M
0

@R
[n�9]

2̂

e,e

�R[n�8]
2̂

e,f

�R[n�7]
2̂

f,f

1

A

(!1,!2)^·! R
[n�4]

3̂

f,f,f

�R[n�5]
3̂

e,f,f

�R[n�6]
3̂

e,e,f

�1! . . .

This gives
2M
 
R

[n�9] �
6M

R
[n�8] �

3M
R

[n�7]

!

for the domain of �2.

The kernel of the map (!1,!2) ^ · is

{(�11 ^ !1 + �12 ^ !2)� (�21 ^ !1 + �22 ^ !2)|�12 = �21,�ij 2
1̂

}

and we map into this kernel from
L3V1 by:
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0

@
�11

�12

�22

1

A!
✓

!1 !2 0
0 !1 !2

◆
^

0

@
�11

�12

�22

1

A

Thus for the domain of �3 we have

3M
 
�

2M
R

[n�11] �
3M

R
[n�10]

!
.

Continuing in this way we arrive at the resolution of the coordinate ring
described in (1).
Using similar notation to earlier, the Hilbert series for R is

H(t) =
1X

0

dnt
n = (1� t

2)�3(1� t
3)�4

and the dimension at degree n of the coordinate ring,

d̃n = dn � (dn�4 + 6dn�5 + 3dn�6) + 2(dn�9 + 6dn�8 + 3dn�7)

�3(2dn�11 + 3dn�10) + 4dn�13.

The Hilbert series for the cordinate ring is therefore

H̃(t) =
1 + t+ 2t2 + 4t3 + 4t4

(1� t)3(1 + t+ t2)(1 + t)2

= 1 + 3t2 + 4t3 + 5t4 + 6t5 + 14t6 + 8t7 + 18t8 + . . . .

In this expression the coe�cients are the number of entries remaining on the
anti-diagonals of the nP +mQ diagram once all quadratic relations have been
factored out. The relations cubic in x and quadratic in y have not yet been
factored out and the magnitudes of the emboldened coe�cients reflect this.

4 Equivariance

We note that there is an sl2 action on the divisor diagram which adds and
subtracts poles, leaving the degree unaltered,

exi,j = ixi�1,j+1 fxi,j = jxi+1,j�1

eyi,j = iyi�1,j+1 fyi,j = jyi+1,j�1

(where a separator as been added to the indices for clarification) under which
the ideal � is invariant.
The sequence we have described in the previous section is equivariant in the

sense that the following diagram commutes (for appropriate representations, ⇢n
etc., of sl2 on the terms of the sequence, A⇤ of the form

LpVq)

. . .! An+1
�n+1! An ! . . .

# ⇢n+1 # ⇢n

. . .! An+1
�n+1! An ! . . .

7



In particular highest weight elements in An+1 map to highest weight elements
in An. (⌦ ^ · is an invariant map and so preserves dimensions of irreducibles.)
Each antidiagonal in the original divisor diagram becomes a direct sum of

irreducible representations, of which the quadratic relations are cases, and once
those quadratics are factored out we are left only with the irreps in

Nn x of
dimension 2n+1 and in

Nn y of dimension 3n+1.We apply the earlier argument
to factor out the highest weight elements of the form y

2
30 � x

3
20 and hence the

remaining identities.
For instance the relation R60 = y

2
30 � x

3
20 ⇠ 0 under the action of e gives

the relation R51 = y30y21 � x
2
20x11 ⇠ 0. There is a syzygy y21R60 � y30R51 =

x
2
20(y30x11 � y21x20) ⇠ 0.
This leaves us with the Hilbert series

1 + 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + . . .

consistent with the Riemann-Roch theorem.
To establish the equivariance of the resolution (1) we must find the maps ⇢n

and define an action on the vector spaces E and F . We do this in such a way
as to make ⌦ ^ · invariant. Namely, let

e(e0) = 0 f(e0) = �e1
e(e1) = �e0 f(e1) = 0

e(f0) = 0 f(f0) = �f1
e(f1) = �2f0 f(f1) = �2f2
e(f2) = �f1 f(f2) = 0.

Then

e(!1) = !2 e(!2) = 0

f(!1) = 0 f(!2) = !1

and consequently
e(⌦) = f(⌦) = 0.

Then we have (writing say for e)

!
V3 ⌦^·!

V5 !
⇢1 = e # # ⇢0 = e

!
V3 ⌦^·!

V5 !

At the next place

!
L2V2 (!1,!2)^·!

V3 !
⇢2 # # ⇢1

!
L2V2 (!1,!2)^·!

V3 !

for

⇢1 = e, ⇢2 =

✓
e 0
1 e

◆

8



and so on,
✓

!1 !2 0
0 !1 !2

◆
^ ·

!
L3V1 !

L2V2 !
⇢3 # # ⇢2

!
L3V1 !

L2V2 !✓
!1 !2 0
0 !1 !2

◆
^ ·

for

⇢3 =

0

@
e 0 0
1 e 0
0 2 e

1

A

This equivariance property reduces the problem to consideration of the top
row only of the divisor diagram, which involves the x20 and y30 functions only
and relations y230 � x

3
20 ⇠ 0.

We can describe the coordinate ring as

R/� = C[x20, x02]� x11C[x20, x02]� y30C[x20]� y03C[x02]

�y12C[x20, x02]� y21C[x20, x02].

Writing a double Hilbert series for this coordinate ring of the form

C(s, t) =
1X

n,m=0

s
n
t
m dimS

[n,m]

from the above decomposition, we find,

C(s, t) =
1

(1� t2)(1� s2)
+

st

(1� t2)(1� s2)
+

s
3

(1� s2)
+

t
3

(1� t2)

+
st

2

(1� t2)(1� s2)
+

s
2
t

(1� t2)(1� s2)

=
1

(1� t)(1� s)
� s� t.

This gives the value unity at all places except n+m = 1 which is correct.

5 Explicit relations

We can use the equivariance property to undersatnd the explicit relations be-
tween the x’s and the y’s.
For example, the relation at D = 2P + 2Q must be

x20x02 � x
2
11 = �12y21 + �21y12 + �20x02 � 2�11x11 + �02x20 + �00.

Application of e or f yields relations involving �21y03 or �12y30 respectively
which must be trivial. Hence �12 = �21 = 0. In addition we get

0 = e(�20)x02 � 2�11x02 � 2e(�11)x11 + 2�02x11 + e(�02)x20 + e(�00)

9



0 = 2�20x11 + f(�20)x02 + f(�11)x11 + �11x20 + f(�02)x20 + f(�00).

Again, these relations must be trivial and hence the coe�cients �ij form a three
dimensional representation,

e : �20 ! 2�11, �11 ! �02, �02 ! 0

f : �02 ! 2�11, �11 ! �20, �20 ! 0

and �00 is invariant. We can define x̃ij = xij � �ij and �̃00 = �00 + �02�20 � �
2
11

to write
x̃20x̃02 � x̃

2
11 = �̃00.

Thinking of the xij as coordinates on the Riemann surface this relation is one
of the defining relations for a model of the curve embedded in some projective
space of su�ciently high dimension.
On the other hand we may start with any model of the curve and write down

explicit functions satisfying these relations.
For example, suppose we start with a pair of points (XP , YP ) and (XQ, YQ)

on the curve
Y

2 = g(X)

where g(X) is either cubic or quartic. We define a polar form for the (more
general) quartic case:

g(X) = g0X
4 + 4g1X

3 + 6g2X
2 + 4g3X + g4,

namely

gpol(X,Z) = g0X
2
Z

2+2g1XZ(X+Z)+g2(X
2+4XZ+Z

2)+2g3(X+Z)+g4.

Now let

x20 =
YPY � gpol(X,XP )

(XP �X)2

x11 =

p
2(YPYQ + gpol(XP , XQ))

YP + YQ

✓
(YP + YQ)Y � YPYQ

2(XP �X)(XQ �X)

� gpol(X,XP ) + gpol(X,XQ)� gpol(XP , XQ)

2(XP �X)(XQ �X)

◆

x02 =
YQY � gpol(X,XQ)

(XQ �X)2

Then one verifies that x20 2 L(2P ), x11 2 L(P +Q), x02 2 L(2Q) and

x20x02 � x
2
11 + cx11 + d = 0

for appropriate constants c and d depending on P and Q.
The argument leading to the quadratic relation for the xij can be simplied

slightly. Write x3 and y4 for the 3 and 4 dimensional irreducible representations
associated with the x and the y. Denote by [·]n the projection onto the n

dimensional irrep. Then we have

[x3 ⌦ x3]1 = [�4 ⌦ y4]1 + [�3 ⌦ x3]1 + �1

10



for some constant irreps �4, �3 and �1 of dimensions specified by the subscripts.
However, since y4 has elements in L(3P ) and L(3Q) it must be that �4 = 0.
Now consider the next set of relations

x20y12� 2x11y21+x02y30 = ↵31x20x11+�11x
2
11+�02x20+�11x11+�20x02+ �00

x20y03� 2x11y12+x02y21 = ↵13x02x11+�
0
11x

2
11+�

0
02x20+�

0
11x11+�

0
20x02+ �

0
00

Application of f to the first and e to the second tells us that ↵31 = �11 = ↵13 =
�
0
11 = 0.
Considering the terms linear in the x similarly leaves only the possibility,

[x3 ⌦ y4]2 = [�2 ⌦ x3]2 + �2

for some set of two constants �2.
Likewise

[x3 ⌦ y4]4 = [↵2 ⌦ [x3 ⌦ x3]5]4 + [�3 ⌦ y4]4 + [�4 ⌦ x3]4 + �4.

All the fundamental relations can be so described.
The relations quadratic in the y’s, will be

y30y12 � y
2
21 2 Span{x02y30, x11y21, x20y12, x20y21, x11y30, . . .}
2 Span{x11y21, x11y30, . . .}

y30y12 � y
2
21 = ↵21x11y21 + ↵30x11y30 + . . .

0 = ↵21(x20y21 + x11y30) + ↵30x20y30 + f(↵21)x11y21 + . . .

0 = 2↵21x20y21 + ↵30x20y30 + f(↵21)x11y21 + . . .

so that ↵21 = ↵30 = 0.
The three quadratic relations in the y therefore must be written

[y4 ⌦ y4]3 = [↵3 ⌦ [x3 ⌦ x3]5]3 + [�2 ⌦ y4]3 + [�3 ⌦ x3]3 + �3

Finally using the same ideas we arrive at an expression for the identities cubic
in x’s and quadratic in y’s:

[y4 ⌦ y4 � x⌦ x⌦ x]7 = [↵2 ⌦ [x3 ⌦ y4]6]7 + [�3 ⌦ [x3 ⌦ x3]5]7

+[�4 ⌦ y4]7 + [�5 ⌦ x3]7 + ✏7

Alternatively by writing

Y = y30 + 3ty21 + 3t2y12 + t
3
y03

X = x20 + 2tx11 + t
2
x02

and A
(p) for an arbitrary polynomial of degree p in t, the above seven equations

can be succinctly written

Y
2 �X

3 = A
(1)

XY +A
(2)

X
2 +A

(3)
Y +A

(4)
X +A

(6)
.

Using (·)0 for di↵erentiation with respect to t we may similarly write the other
relations:

2XX
00 �X

02 = X
00
B

(2) �X
0
B

(2)0 +XB
(2)00 +B

(0)

and so on.
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6 The (n, s) curve

The (n, s) curve, for n and s coprime, arises when we have a coordinate ring
generated by functions belonging to divisor spaces with special divisors of degree
n and s. We take these to be the n+ 1 functions,

xn,0, xn�1,1, . . . , x0,n

and the s+ 1 functions,
ys,0, ys�1,0, . . . y0,s

generating the polynomial ring

R = C[xn,0, xn�1,1, . . . , x0,n, ys,0, ys�1,0, . . . y0,s].

Let {e0, e1, . . . en�1} and {f0, f1, . . . fs�1} be bases of n and s dimensional
vector spaces E and F respectively and define one-forms

!1 =
n�1X

i=0

xn�i,iei +
s�1X

j=0

ys�j,jfj

!2 =
n�1X

i=0

xn�1�i,i+1ei +
s�1X

j=0

ys�1�j,j+1fj

and an associated two-form

⌦ = !1 ^ !2.

We wish to factor out the relations formed by the 2⇥ 2 minors of


xn,0 xn�1,1 . . . x1,n�1 ys,0 ys�1,1 . . . y1,s�1

xn�1,1 xn�2,2 . . . x0,n ys�1,1 ys�2,2 . . . y0,s

�
.

Under the sl2 action

exi,j = ixi�1,j+1 fxi,j = jxi+1,j�1

eyi,j = iyi�1,j+1 fyi,j = jyi+1,j�1

and

ee0 = 0 ef0 = 0

eei = �(n� i)ei�1 fei = �(i+ 1)ei+1

efi = �(m� i)fi�1 ffi = �(i+ 1)fi+1

we find
!1

e! !2
e! 0

0
f !1

f !2

so that ⌦ is invariant.
We get an equivariant exact sequence as before but longer.

12



We define the map �1 by considering

R
[p�2n]

n�2̂

e

ŝ

f

M
R

[p�n�s]
n�1̂

e

s�1̂

f

M
R

[p�2s]
n̂

e

s�2̂

f

⌦^·! R
[p]

n̂

e

ŝ

f

⇡! (R/�)[p]

where the notation
Vp

e

Vq
f denotes p+ q forms with p e’s and q f ’s.

The general term is

. . .!
qM
0

@
M

i+j=q+1

R
[p�ni�sj]

n�î

e

^
s�ĵ

f

1

A ⌦(q)^·!
q�1M

0

@
M

i+j=q

R
[p�ni�sj]

n�î

e

^
s�ĵ

f

1

A

for q = 2, . . . , n+ s where the map ⌦(q) ^ · is given by the (q � 1)⇥ q matrix

⌦(q) =

0

BBB@

!1 !2 0 . . . . . . 0
0 !1 !2 0 . . . 0
...

...
...

0 0 . . . . . . !1 !2

1

CCCA

acting on the left.
The expression for H̃(t) is then

H̃(t) =

0

@1�
n+sX

q=2

(�1)q(q � 1)

0

@
X

i+j=q

✓
n

i

◆✓
s

j

◆
t
ni+sj

1

A

1

AH(t)

where
H(t) = (1� t

n)�n�1(1� t
s)�s�1

.

We need to simplify this expression to render it intelligible. Start by rewriting
it as a sum over all integer q � 0 putting t

n = u and t
s = v:

H̃(t) =

0

@
n+sX

q=0

(�1)q�1(q � 1)
X

i+j=q

✓
n

i

◆✓
s

j

◆
u
i
v
j

1

AH(t)

= (u@u + v@v � 1)

0

@
n+sX

q=0

(�1)q�1
X

i+j=q

✓
n

i

◆✓
s

j

◆
u
i
v
j

1

AH(t)

= �(u@u + v@v � 1) ((1� u)n(1� v)s)H(t)

=
(1� u)n(1� v)s + nu(1� u)n�1(1� v)s + sv(1� u)n(1� v)s�1

(1� u)n+1(1� v)s+1

=
1

(1� tn)(1� ts)
+

nt
n

(1� tn)2(1� t)s
+

st
s

(1� tn)(1� ts)2

=
d

dt

✓
t

(1� tn)(1� ts)

◆

=
1X

m=0

(# partitions of m into n’s and s’s)(m+ 1)tm
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The maps establishing equivariance are, again for the e generator,

E
(q) :

qM
(. . .)!

qM
(. . .)

E
(q) =

0

BBBBB@

e 0 . . . 0
1 e 0 0
0 2 e 0 . . . 0
...

...
0 . . . q � 1 e

1

CCCCCA

and this allows us to conclude the argument as before.

7 Conclusions and directions

We have described the ideal of relations for two point functions following from
the Riemann-Roch theorem for a compact, nonsingular Riemann surface and
shown it is generated by a small set of quadratic polynomials and by relations
of the form y

n ⇠ x
s
. This is not a suprising result but it illustrates the role of

an equivariance property that is useful in other contexts also.
It will be instructive to see how the same ideas may apply to p-point divisors

where, for large enough p, relations due to addition formulae must come into
play. In such a case there will exist equivariance under slp.
The application to the Jacobian, alluded to in the introduction, the classifi-

cation of all di↵erential relations between }ij-functions is more challenging. In
this case the divisor, D, is a codimension one variety on the Jacobian and the
dimension of the space of meromorphic functions of pole order n is l(nD) = n

g
.

The }ij ,}ijk and so on have (for the hyperelliptic case at least) an equivariant
structure where sl2 acts on derivative indices rather than poles and there is
added complexity owing to the derivations which map functions in L(nD) to
functions in L((n+ 1)D).
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