A Novel Mathematical Model for Transit-time Ultrasonic Flow Measurement

Kang, L., Feeney, A. , Somerset, W., Su, R., Lines, D., Ramadas, S. N. and Dixon, S. (2019) A Novel Mathematical Model for Transit-time Ultrasonic Flow Measurement. In: 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 06-09 Oct 2019, pp. 1590-1593. ISBN 9781728145969 (doi: 10.1109/ULTSYM.2019.8925693)

[img]
Preview
Text
215496.pdf - Accepted Version

862kB

Abstract

The calculation of the averaged flow velocity along an ultrasonic path is the core step in ultrasonic transit-time flow measurement. The conventional model for calculating the path-averaged velocity does not consider the influence of the flow velocity on the propagation direction of the ultrasonic wave and can introduce error when the sound speed is not much greater than the flow velocity. To solve this problem, a new mathematical model covering the influence of the flow velocity is proposed. It has been found that the same mathematical expressions of the path-averaged flow velocity, as a function of the absolute time-of-flight (ToFs) of ultrasonic waves travelling upstream and downstream, can be derived based on either of the models. However, the expressions as a function of the time difference (the relative ToF) between the ultrasonic waves travelling upstream and downstream derived by the two models are completely different. Flow tests are conducted in a calibrated flow rig utilising air as flowing medium. Experimental results demonstrate that the path-averaged flow velocities, calculated using either the relative or the absolute ToFs based on the new model, are much more consistent and stable, whereas those calculated based on the conventional model have shown evident and increasing discrepancy when the flow velocity exceeds 15 m/s. When the flow velocity is around 39.45 m/s, the discrepancy is as high as 0.38 m/s. As the relative ToF can be more accurately, reliably and conveniently measured in real applications, the proposed mathematical model has a great potential for the increase of the accuracy of the ultrasonic transit-time flowmeters, especially for the applications such as the measurement of fluids with high flow velocities.

Item Type:Conference Proceedings
Additional Information:The authors would like to acknowledge the European Union’s SACUT project (Ref. No. 612118) under the Marie Curie Industry-Academia Pathways & Partnership (IAPP) action and the EPSRC grant EP/N025393/1 for funding the research.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Feeney, Dr Andrew
Authors: Kang, L., Feeney, A., Somerset, W., Su, R., Lines, D., Ramadas, S. N., and Dixon, S.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
ISSN:1948-5727
ISBN:9781728145969
Published Online:09 December 2019
Copyright Holders:Copyright © 2019 IEEE
First Published:First published in 2019 IEEE International Ultrasonics Symposium (IUS): 1590-1593
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record