Multiscale homogenization for linear mechanics

Rodríguez-Ramos, R., Ramírez-Torres, A. , Bravo-Castillero, J., Guinovart-Díaz, R., Guinovart-Sanjuán, D., Cruz-González, O. L., Sabina, F. J., Merodio, J. and Penta, R. (2019) Multiscale homogenization for linear mechanics. In: Merodio, J. and Ogden, R. (eds.) Constitutive Modelling of Solid Continua. Series: Solid mechanics and its applications (262). Springer: Cham, pp. 357-389. ISBN 9783030315467 (doi:10.1007/978-3-030-31547-4_12)

Full text not currently available from Enlighten.

Abstract

In this work, some results related to multiscale heterogeneous media under the asymptotic homogenization framework are collected. A multiscale asymptotic expansion is proposed and local problems and analytical effective coefficients are derived for fibrous and wavy laminated composites. The solution of the local problem is based on the application of Muskhelishvili’s complex potentials in the form of Taylor and Laurent series. Numerical implementation is done to compute the effective coefficients for elastic and viscoelastic composites. Comparisons with other theoretical approaches are shown.

Item Type:Book Sections
Status:Published
Glasgow Author(s) Enlighten ID:Penta, Dr Raimondo and Ramirez Torres, Dr Ariel
Authors: Rodríguez-Ramos, R., Ramírez-Torres, A., Bravo-Castillero, J., Guinovart-Díaz, R., Guinovart-Sanjuán, D., Cruz-González, O. L., Sabina, F. J., Merodio, J., and Penta, R.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Publisher:Springer
ISSN:0925-0042
ISBN:9783030315467

University Staff: Request a correction | Enlighten Editors: Update this record