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Abstract

A novel quantum algorithm implementing a discrete-velocity method for the
collisionless Boltzmann equation is introduced. The algorithm is designed for
application on a quantum computer with a number of quantum bits feasible
in the near future (e.g. 40 − 50). Following the quantum-circuit model of
quantum computation, the present works shows the quantum-circuit imple-
mentations for the convection or transport part of the kinetic model, inspired
by work on quantum algorithms for the Dirac equation. The present work
represents the advection step as a quantum walk process, implemented as
a series of multiple-input controlled-NOT gates. A detailed discussion on
the background to this new method is presented, including how a rarefied-
flow problem can be encoded as the quantum state of a qubit register in a
quantum computer. A complexity analysis is presented showing potential
benefits of the proposed algorithm. Based on the concept of quantum paral-
lelism, the extension to multiple species is demonstrated to not increase the
number of required gate operations. A key aspect of the developed algorithm
is the implementation of boundary conditions. This work describes how the
specular-reflection boundary conditions can be effectively imposed with a
quantum circuit implementation. The developed method is then applied to
the supersonic flow around a blunt body as well as the free-molecular flow
escaping from a rectangular container. As validation, the flow along the stag-
nation streamline of the blunt-body flow is compared with exact solutions
for a piston-driven flow, showing excellent agreement. Finally, directions for
future work are discussed in this work.
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1. Introduction

In recent years the field of quantum computing (QC)[1] has grown into
an active and diverse field of research and significant progress has been made
with building quantum computers. For a small number of applications, quan-
tum algorithms have been developed that would lead to a significant speed-up
relative to classical methods when executed on a suitable quantum com-
puter. Despite this research effort, progress in defining suitable applications
for quantum computers has been relatively limited. Two decades after their
invention, Shor’s algorithm for factoring composite integers[2] and Grover’s
algorithm for quantum search[3] are still among the main applications. Appli-
cations to computational science and engineering problems beyond quantum
chemistry have only recently begun to appear[4, 5, 6, 7]. Further applications
have been developed which take advantage of the unique capabilities of quan-
tum computing platforms, e.g. methods for the solution of linear systems of
equations[8], numerical gradient estimation[9], the Poisson equation[10] and
the wave equation[11].

The present work aims to investigate the potential of quantum computing
and suitably designed algorithms for future computational fluid dynamics
applications. In the absence of the required quantum hardware, large-scale
parallel simulations on parallel classical computers are required in developing
such algorithms. For this purpose, a recently developed quantum computer
simulation capability introduced in the MΦC framework[12, 13, 7] is used.

The novel quantum algorithm introduced here implements a discrete-
velocity method for the collisionless Boltzmann equation. The full Boltz-
mann equation is of particular interest for the study of rarefied flows. Parti-
cle interactions are accounted for in a complex, computationally demanding
particle-collision term. In the collisionless Boltzmann equation this term
is neglected, limiting the application to (nearly) free-molecular flows. The
discrete-velocity method discretizes the state-space of the Boltzmann equa-
tion with a three-dimensional mesh for a three-dimensional flow, leading to
a six-dimensional solution space (seven dimensions when time is included).
This leads to very large computer memory requirements which often make
this approach impractical for applications in 3D. The key benefit on the
quantum algorithm is in the representation of the high-dimensional solution
space as a quantum state, realized using a limited number of quantum bits
(qubits) in a coherent state in the quantum computer considered. Further
benefit of the proposed algorithm is its extension to application to multiple-
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species simulations. While in a classical implementation, doubling the num-
ber of species means doubling the required memory, the quantum algorithm
handles this by the addition of a single quantum bit. Furthermore it will
be shown that no additional quantum gates are required when doubling the
number of species, in contrast to the extra computational work required in
the classical implementation.

In the near future, the most likely scenario for the introduction of quan-
tum computing hardware is through the quantum co-processor model, i.e.
where one or more quantum processing units (QPUs) are loosely coupled
to a classical computer with one or more CPUs. In current designs, the
quantum processor requires storage at low temperatures in a cryostat lead-
ing to a distinct physical separation between the classical and quantum
hardware. Coupling takes place by exchanging classical information. In
case the quantum hardware involves multiple quantum processors, quantum-
entanglement based coupling can be used between these QPUs. In the near
term, the most likely hardware layout involves only a single QPU coupled to
a classical computer with one or more CPUs. In application of this hybrid
quantum/classical approach, the quantum processor acts like a co-processor
with the quantum processor dealing with selected computationally demand-
ing tasks. The quantum processor receives information from the CPU and
this is used to initialize the quantum state in the quantum processor. During
the quantum simulation, the quantum state is transformed by application of
quantum gates to the quantum system state vector. Then measurement oper-
ations are used to extract classical information from this quantum state and
this is subsequently passed to the CPU. Since in quantum mechanics a mea-
surement leads to the (partial) collapse of the quantum state, in the hybrid
classical/quantum approach typically multiple realizations of the quantum
state will be needed to obtain classical information with acceptable levels
of noise and uncertainty. Also, since initializing a particular quantum state
in a quantum computer can be a significant challenge, this hybrid approach
can only be expected to lead to significant computational speed-ups in case
the quantum simulation is significantly faster for the selected problem than
conventional solution methods.

As an example of this hybrid classical/quantum approach, the authors
introduced a quantum computing application in which the vortex-in-cell
method was used to solve the incompressible-flow Navier-Stokes equations
in a regular domain. In this solution approach, the Poisson solvers dominat-
ing CPU time requirements are based on the quantum computing equivalent
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of the Fast Fourier Transform, i.e. the Quantum Fourier Transform[7]. In
the time-integration used, information exchange between the QPUs and clas-
sical part of the hardware will need to take place each time-step, leading to
a significant overhead in setting up the quantum states in the QPUs. Fur-
thermore, each time information is drawn from the QPUs quantum errors
and statistical noise were present. A key aspect of this study was therefore
an investigation of the effect of quantum errors and statistical noise present
in the classical information passed from the QPU to the CPU executing the
rest of the algorithm. It was found that a noise threshold could be defined for
which the vortex-in-cell method was still capable of performing worthwhile
simulations for a number of vortex-interaction test cases.

1.1. Contributions of present work

The key contribution of the present work is a quantum algorithm for sim-
ulating flows at the kinetic level which does not require the repeated quantum
state initialization steps and repeated measurements. In fact, the presented
algorithm is designed to be executed fully within a quantum processor with
measurement steps only applied at the end of the simulation. Depending on
the level of detail required from the computed flow field, multiple realiza-
tions are still required. To the best of our knowledge, the novel algorithm
presented here is among the very first algorithms related to fluid dynamics
that can be performed fully on a quantum computer, i.e. with information
transfer between hybrid and classical hardware taking place only at start
(initialization) and end of simulation. It therefore does not involve a fre-
quent exchange of information as sketched in the hybrid classical/quantum
approach in the previous paragraph, which leads to significant computational
advantages in terms of speed-up relative to classical approaches as well as
reduction of noise introduced by sampling of measurement data.

A key benefit of the introduced algorithm relative to a classical equiv-
alent is the exponential reduction in memory when expressed in terms of
qubits, as will be shown in Section 6. A detailed complexity analysis in
that section also shows that the introduced method has a time complexity
O(TdNvlog2(D/h)) in terms of required number of multi-qubit gate opera-
tion, for a single realization of the problem with Nv discrete velocities per
direction in a d-dimensional domain with domain size D and cell-spacing h
for a simulation time T . For a classical implementation we find a complexity
O(TdNd

v × (D/h)d). Therefore, there is a potential exponential speed up
for the quantum algorithm. It should be noted that the complexity of the
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quantum algorithm quoted here represents the complexity of performing the
required operations on the state vector for the time evolution phase of the
simulation. Clearly, initialization of the quantum state vector and extract-
ing classical output from this state vector are key aspects to be considered
as well. In case these operations cannot be performed efficiently, significant
challenges exist in achieving a meaningful speed-up. Both aspects will be dis-
cussed in this work. However, it is clear that further research work is needed
to address the questions related to efficiently initializing the algorithm as
well as extracting classical information at the end of the simulation.

1.2. Related work

Early work in quantum computing relevant to the field of computational
fluid dynamics mainly involves the work on quantum lattice-gas models,
e.g. by Yepez and co-workers[14, 15]. This work typically involved type-II
quantum computers, consisting of a large lattice of small quantum comput-
ers interconnected in nearest neighbour fashion by classical communication
channels. It was shown that at the mesoscopic scale, a lattice Boltzmann
equation results with a nonlocal collision term that depends on the entire
system wave function. In more recent work[16], quantum lattice gas models
of the Navier-Stokes fluid dynamics formulated for measurement-based quan-
tum computers involving six qubits per node were considered. However, the
small number of coherent qubits will ultimately limit the achievable speed-up
relative to classical methods. In contrast to these quantum lattice-gas based
approaches, the present study focusses on a quantum algorithm designed for
near-future ’universal’ quantum computers, i.e. without using a clustering of
small quantum computers or quantum registers connected in a lattice.

The quantum algorithm proposed here employs an approach for the con-
vection step that can be regarded as a quantum walk. Quantum walks
were introduced as the quantum mechanical counterpart of classical ran-
dom walks. Quantum walks have been proven to be a universal model for
quantum computation and represent a powerful tool for building quantum
algorithms[17, 18]. A recent summary of quantum walks and its applications
was presented by Venegas-Andraca[19]. For the present work, the main link
with quantum walks is the conditional move on a regular graph or lattice and
the possible quantum circuit implementation. Douglas and Wang[20] pre-
sented a number of highly symmetric graphs on which efficient quantum cir-
cuits implementing quantum walks can be constructed. Based on these tech-
niques, a quantum-walk based algorithm was introduced by Fillion-Gourdeau
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et al.[21] for the solution of the Dirac equation on a digital quantum com-
puter. In their algorithm, an operator-splitting decomposition technique is
employed that allows for a mapping of the Dirac operator to a quantum walk
supplemented by unitary rotations steps in spinor space. The convection
step in our algorithm was inspired by these works. A further direct influence
was the work presented by Fillion-Gourdeau and Lorin[22] where quantum
algorithms were derived for the Cauchy problem for symmetric first order
linear hyperbolic systems, employing the reservoir technique.

For the key aspect of imposing non-periodic boundary conditions, the
quantum-circuit implementation of specular-reflection boundary conditions
as used in our quantum algorithm is the main novelty of this work, since
to the best of our knowledge no (directly) related previous work exists. As
detailed later, specular reflection is an elastic process in which the velocity
component of a particle normal to a solid wall is reversed during collision
with the wall, while the velocity component parallel to the wall is retained.

In terms of recent developments for improved and faster discrete-velocity
methods for kinetic equations, and in particular for the transport or convec-
tion part of the equations, computational efficiency is typically based on a
characteristics-based time-integration in a semi-Lagrangian approach[23, 24,
25, 26]. Among these recent developments is the Fast Kinetic Scheme for
kinetic equations developed by Dimarco and Loubere[25, 26], that is based
on a splitting technique between the transport and relaxation operators with
the collision part solved on a grid. For the transport part, an exact solution
is used that involves following the characteristics backward in time, without
a need for reconstruction of the distribution function at each time step, as is
typically used in previous semi-Lagrangian methods for Boltzmann/kinetic
equations[23, 24]. Although, the reservoir-technique based method developed
here resembles the fast semi-Lagrangian method of Dimarco and Loubere in
terms of the characteristics-based time-integration and the exact propaga-
tion of piecewise constant discretized particle distribution functions, a key
difference is the fact that in our method the main focus was on facilitating
quantum computer implementations. This is achieved by creating a scheme
in which discrete data on a regular mesh moves from one cell center exactly
one mesh width to a nearest neighbour. In contrast the method of Dimarco
and Loubere[25, 26] involves an integration continuously in space, i.e. no
spatial mesh is involved in the transport step, which means that the the ap-
proach used here in deriving a quantum-computer implementation cannot be
used for their method.
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1.3. Organization of present work

The paper is organized as follows. A summary of quantum computing
principles and related work is presented in Section 2. Section 3 presents a
summary of key aspects of the collisionless Boltzmann equation. The Reser-
voir technique used for the time-integration of the collisionless Boltzmann
equation is presented in Section 4. Section 5 defines the quantum circuits
representing the implementation on a quantum computer. Section 6 presents
the complexity analysis of the proposed quantum algorithm. Application of
the developed method to steady and time-accurate free-molecular flows are
presented in Section 7, including an analysis of the required velocity-space
discretization and validation of the method using analytical solutions for
free-molecular flow. Finally, Section 8 summarizes key findings and future
research directions.

2. Quantum Computing Principles

Before describing the new quantum algorithm for the collisionless Boltz-
mann equation, a number of definitions commonly used in quantum com-
puting literature are briefly reviewed. A detailed account can be found in
a number of standard textbooks, e.g. Nielsen and Chuang[1]. The funda-
mental unit of quantum computation is the quantum bit or qubit. Whereas
a classical bit is confined to existing in either the 0 or 1 state, a qubit can
be in a state of superposition, i.e. it exists in both states simultaneously.
Upon measuring the qubit, the quantum state collapses to either of these
two states, and the qubit is no longer in a state of superposition. The state
of a qubit is defined through a pair of complex numbers c0 and c1 such that
the probability of finding the qubit after measuring in state 0 is |c0|2 and the
probability of measuring state 1 is |c1|2. The amplitudes are bound by the
requirement |c0|2 + |c1|2 = 1. A collection of nq qubits in a coherent state is
termed a quantum register of size nq here. Its quantum state is defined by the
wavefunction |ψ〉 created by superposition as

∣

∣cnq−1

〉

⊗
∣

∣cnq−2

〉

. . . |c1〉 ⊗ |c0〉,
often written as

∣

∣cnq−2cnq−1 . . . c1c0
〉

. Here c0, . . . , cnq−1 are complex numbers
representing quantum wave number amplitudes associated with each of the
nq qubits. In the following, the qubits within a quantum register are ordered
such that the left-most qubit represents the most-significant bit, while the
least-significant bit is the right-most bit in the register.
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2.1. Measurement of a quantum state

For a quantum system with nq coherent qubits, measurement of the quan-
tum system can lead to 2nq possible outcomes, with the likelihood of each
outcome defined by amplitudes of the nnq complex numbers created by tensor
product of the nq complex amplitudes corresponding to quantum states of
the nq coherent qubits. Similar to the situation for an isolated qubit, mea-
surement of the quantum state will change the quantum state and reduce or
completely remove superposition. In this context a computational basis with
2nq states is defined, where a full measurement leads to a complete collapse of
the quantum state into one of the possible 2nq with a likelihood correspond-
ing to the 2nq complex amplitudes defining the quantum state. Therefore,
to extract detailed information of the quantum state |ψ〉, a large number of
realizations are needed to be created following by measurement. Statistical
analysis will then provide the information on each of the 2nq possible out-
comes. Other measurements with a partial collapse are also possible. For
example, information about the state of one of the nq qubits can also be ob-
tained using a suitable measurement operation. After such a measurement,
the quantum state |ψ〉 will then have a reduced level of superposition, i.e.
with 2nq−1 degrees of freedom.

2.2. Quantum circuit model

In the present work, the quantum circuit model of quantum computing
is used. In this case, the unitary operation on a quantum state allowed
by quantum mechanics are represented by a series of quantum (logic) gates
acting on the quantum state. A quantum logic gate is an elementary quantum
computing device which performs a fixed unitary operation on selected qubits
in a fixed period of time. Written in matrix form, unitary means that the
determinant of the transformation is unity. The application of a single-
qubit gate on qubit iq in a nq qubit register, can be written as the following
matrix operation (U represents 2 × 2 unitary matrix) on the wavefunction
|ψ〉 = ∑2nq−1

j=0 cn |n〉, with the complex amplitudes represented by ~c

(

cni

cni+2nq−1−iq

)

← U

(

cni

cni+2nq−1−iq

)

=

(

U11cni
+ U12cni+2nq−1−iq

U21cni
+ U22cni+2nq−1−iq

)

(1)

where ni = (i/2iq)2iq+1 + (imod 2iq) for every integer i ∈ [0, 2nq − 1]. Here,
qubits are numbered iq = 0 for the least significant bit, to iq = nq−1 for most
significant bit. Of particular interest for the implementation of the proposed
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quantum algorithm are controlled-NOT operations, i.e. where the state of a
target qubit is swapped from |0〉 to |1〉 or vice versa depending on the value
of one or more control qubits. For the one-qubit NOT operation (no control
bits) and the two-qubit CNOT (one control bit) the corresponding unitary
matrices are shown in Equation (2),

UNOT =

(

0 1
1 0

)

; UCNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(2)

By the conditional negation of the state of the target qubit, the CNOT
gate is known to play an important role in changing the level of quantum
entanglement between the qubits in the quantum register, as analyzed in
detail for small quantum circuits with up to 6 qubits by Karafyllidis[27]. A
three-qubit gate with two control qubits is commonly called Toffoli gate and
involves a sparse 8× 8 matrix. The present quantum algorithm uses a series
of multiple-input controlled-NOT gates to change the quantum state vector.
In a quantum network consisting of quantum logic gates the computational
steps are synchronized in time. The output of some of the gates are connected
to the input of others. In the following sections, quantum circuits will be
presented. Here, the vertical direction shows the qubit register with the left
qubit at the top and the right-most qubit at the bottom. In the horizontal
direction, going from left to right, the quantum state is changed by a series
of quantum gates. Here, the cross (”x’) represents a negation under the
conditions that the control qubits have the required status: full circles mean
that the control qubit should be in state |1〉, while open circles represent the
control state |0〉.

2.3. Storing a multi-dimensional solution space on a quantum computer

The quantum state vector |ψ〉 for a register with nq coherent qubits is
represented by a Hilbert space of dimension 2nq . Specifically, in a quan-
tum computer simulation on classical computer we use 2nq complex numbers
to fully define this state. For a function f discretized on a (regular) mesh
with N mesh points, it follows that log2(N) qubits would suffice to create
the required number of degree-of-freedom in the solution space. However,
it is important to stress that the quantum state vector only represents the
likelihood that upon measurement the quantum state collapses into a par-
ticular state[1]. In other words, with nq = log2(N) we cannot extract the
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full information for all N degrees of freedom using a single realization of
this quantum state. However, for as long as this classical information is not
needed the quantum state has the required number of degree-of-freedom. For
example, a function on a one-dimensional mesh with 32 mesh points can be
stored in a 5-qubit register |q4q3q2q1q0〉. The extension to two spatial dimen-
sions is straightforward, i.e. the function on a two-dimensional mesh with
32×32 mesh points can be stored in a 10-qubit register |q9q8q7q6q5q4q3q2q1q0〉
. For convenience, a renaming of the qubits will be introduced to better
reflect the role of of the different qubits, i.e. the 10 qubits are indexed
as, |qx,4qx,3qx,2qx,1qx,0|qy,4qy,3qy,2qy,1qy,0〉, distinguishing the qubits associated
with the x- and y−direction indices, respectively.

Similarly, we can use the concept of adding further qubits to create
space for vector data to be stored on the grid. For example, if we need to
store discretized functions f and g on a two-dimensional mesh with 32 ×
32 mesh points, we can use a 11-qubit register, with qubits indexed as
|qx,4qx,3qx,2qx,1qx,0|qy,4qy,3qy,2qy,1qy,0|qg〉, with qg representing the qubit added
to create space for function ’g’ along with ’f’. Each additional qubits added
after qg would further double the available space. Clearly, other orderings
are possible as well. In fact, for the simulation of the quantum circuits in
the C++ simulator developed for the present work, the qubit ordering is
especially important in terms of the strides in computer memory created by
different qubit operations that are simulated.

2.4. Implementing a ’streaming’ operation on a quantum computer

Going back to the one-dimensional function f discretized on N mesh
points, we can identify N discrete values fi, with i ∈ [0, N − 1]. For the 32
grid points the indices i can also be represented in binary representation as
00000, 00001, . . . , 11111, providing a direct link to the states of the 5 qubits.
Specifically, if all 5 qubits are in state |0〉, index i = 0 and all 5 qubits in
state |1〉 corresponds to 31.

For the current quantum algorithm, two key operations are needed: a
’streaming operation’ to the left and one to the right. For the streaming
operation to the left we require that the value on mesh point i, i.e. fi, is
moved left to mesh point i− 1. Similarly, a right streaming operation moves
the value from point i to the right neighbor, i.e. i + 1. It turns out that
both operations can be effectively implemented in the quantum circuit model
of quantum computing using a series of CNOT gates with multiple-control
qubits[21, 22]. For an example 64×64 mesh, quantum-circuit implementation
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Figure 1: Quantum circuit representation of streaming operation in x-direction (a) and
y-direction (b). Circuit for 64 × 64mesh. Circuits with filled circles represent ’right’
streaming (test for |1〉 state of control qubits). Open circles represent tests for |0〉 state of
control qubits used in ’left’ streaming.

of the ’left’ and ’right’ streaming operations for both x- and y−directions are
shown in Figure 1. It can be seen that for the ’right’ streaming (left-hand
circuit in each figure), the implementation involves a series of multiple-control
NOT gates with each of the 6 qubits for each direction acting as target qubit
during one gate operation. Negation of the target qubit (indicated with ’X’
in the circuits) takes place in case all control qubits are in state |1〉 (indicated
as filled circles in the figures). For the ’left’ streaming operation, all control
qubits in state |0〉 leads to negation of the target qubit. It is important to
stress that this implementation assumed periodic boundaries conditions are
imposed in both directions for the considered two-dimensional domain.

As a further illustration, the unitary transformations acting on the quan-
tum state |ψ〉 are now detailed for a simple example with 3 qubits repre-
senting a one-dimensional domain with 8 points indexed 0, . . . 7 from left to
right. Then, the right streaming operation involves three steps: (1) a Toffoli
gate with qubit 2 as target (i.e. the top qubit in a quantum circuit diagram),
and qubits 1, 0 and control qubits, (2) a CNOT gate with qubit 1 the target
qubit and qubit 0 the control qubit, (iii) a NOT gate (negation operation)
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on qubit 0. The action taken on the quantum state can be written as three
matrix-vector multiplications, with U (k, k = 1, 2, 3 representing the unitary
transformations as,

U (1) |ψ〉 →

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

















































C000

C001

C010

C011

C100

C101

C110

C111

























=

























C000

C001

C010

C111

C100

C101

C110

C011

























(3)

representing the application of the Toffoli gate. The CNOT gate changes the
state as,

U (2) |ψ〉 →

























1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

















































C000

C001

C010

C111

C100

C101

C110

C011

























=

























C000

C111

C010

C001

C100

C011

C110

C101

























(4)

and for the final application of the NOT gate on the least-significant bit,

U (3) |ψ〉 →

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

















































C000

C111

C010

C001

C100

C011

C110

C101

























=

























C111

C000

C001

C010

C011

C100

C101

C110

























(5)

This example shows that all states have ’streamed’ one position towards the
right.

In the quantum simulator used in this work, the unitary transformation
matrices are not explicitly formed. Since the effect of the unitary transfor-
mations can be represented effectively using a series of loops, as sketched in
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Equation (1) for a single-qubit gate operation, this storage is not required.
The 22nq storage requirement for the matrices would limit simulations to very
small numbers of qubits.

2.5. Key challenges for current quantum algorithm development

The previous two subsections illustrated two important aspects of the
quantum algorithm introduced in this work. The storage of data represent-
ing a multi-dimensional solution space, as illustrated in subsection 2.3 will
form the foundation for the data structure of the discrete-velocity method
developed here. The ’streaming’ operations illustrated in section 2.4 in turn
will form the basis for the convection step in the discretization of the con-
vection step in the collisionless Boltzmann equation.

For the development of the quantum algorithm implementing the discrete-
velocity method for the collisionless Boltzmann equation, a number of key
aspects are still to be addressed;

1. In contrast the lattice-gas models and the widely-used Lattice Boltz-
mann methods, the convection step in a discrete-velocity method for
kinetic equations does not involve a streaming step in which during a
time step the state in one lattice node moves towards a neighboring
node. Instead, depending on the considered discrete velocity as well as
the chosen time step, the ’move’ involves only a (small) fraction of a
lattice spacing. To prevent the need for moves of less than a lattice spac-
ing, the current algorithm will use the reservoir technique, as defined
in following sections. Using this approach, and an important further
simplification, the discretized convection step in the discrete-velocity
method will be transformed into a series of ’streaming’ operations act-
ing on selected discrete-velocity data at different time steps;

2. The application of non-periodic boundary conditions: the quantum
algorithm developed here targets free-molecular flow simulations in and
around objects with solid walls, e.g. flow around bluff bodies as well
as flow evacuating from reservoirs. The simplest relevant boundary
condition we have implemented so far in the quantum algorithm applies
specular-reflection boundary conditions (defined in more detail in next
section);

3. Initialization of the quantum state vector. The preparation of a com-
pletely arbitrary quantum state in an N-dimensional Hilbert space
has complexity of order N, i.e., exponential in the number of qubits
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(N = 2nq). This complexity would seriously comprise the proposed
quantum algorithm ([28, 29]). Therefore, efficient methods of initial-
ization, i.e. without exponential scaling in number of qubits, are re-
quired. For quantum algorithms developed for simulations of quantum
systems and quantum chemistry, a substantial amount of research work
has resulted in a number of efficient methods for quantum-state prepa-
ration with polynomial complexity in number of qubits (e.g. Georgescu
et al.[29] and references therein). For other quantum algorithm appli-
cations, efficient quantum-state initialization methods have been in-
vestigated, e.g. Grover and Rudolph[30], Soklakov and Schack[31], re-
sulting in efficient methods for specific cases (for example log-concave
probability distribution functions). For the proposed algorithm, the
initial state needs to initialized such that it represents a Maxwellian
distribution in velocity-space. This same state is defined for each lat-
tice point in space. Since the Maxwellian distribution is log-concave
with respect the molecular velocities, based on the work by Grover and
Rudolph[30] it can be expected that initialization methods polynomial
in the number of qubits can be devised. However, this aspect needs
further investigation in future work.

4. Extraction of the solution data: in the present work, the full solution
of a number of example free-molecular flow simulations will be pre-
sented. Since the quantum algorithm was simulated in our quantum
computer simulator, this information is readily available. For cases in
which the quantum algorithm would actually be executed on one or
more QPUs, an important limitation occurs. As a result of the quan-
tum measurements required to extract ’classical’ information from the
quantum state and the resulting (partial) collapse of the coherent state
explained previously, only a limited amount of data can be extracted
from a single realization. It is therefore inevitable that multiple real-
izations of simulations using the proposed algorithm are necessary to
sample the amplitudes in the quantum state vector. In general, a tech-
nique called quantum state tomography (QST) can be applied to learn
the full state. However, this leads to a scaling of the required number
of samples with the size of the state space. An alternative approach is
therefore needed that avoids this exponential scaling in the number of
qubits. The intended use of the developed algorithm is therefore dif-
ferent from ’conventional’ CFD methods returning information on the
full multi-dimensional flow field. More specifically, the new algorithm
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would have its main use in efficiently providing information on particle
number densities and concentrations in multi-species flows while avoid-
ing the need for extraction of the full flow field. One approach to this,
inspired by quantum algorithms for quantum simulation and quantum
chemistry, would be the estimation of certain physical quantities such
as correlation functions or spectra of operators, as this is more effi-
cient than taking the long route through QST. A detailed discussion
is given by Ortiz et al. [32] and Somma et al.[33]. A key challenge
for CFD applications of quantum algorithms is to develop a similar
approach involving efficient use of correlation functions and spectra of
operators. To the best of the authors’ knowledge no published work
exists related to this important research question. Furthermore, if we
just want to obtain a single amplitude, the technique of amplitude es-
timation can be employed[34]. The technique can produce an estimate
p̃ of the probability p of measuring the state to be within a specified
subspace, with error bounded by δ = |p̃ − p|. In applying amplitude
estimation, each iteration involves running the original algorithm for-
wards and backwards once. The number of realizations can be shown
to scale as 1/δ. How amplitude estimation can be employed for the cur-
rent quantum algorithm and its application to kinetic modelling needs
further investigation in future work.

The solutions developed to address the first two aspects in the newly de-
veloped quantum algorithm are the key contributions of the present work.
The last two aspects are essential in the practical application of quantum
algorithms, and will be discussed further in Section 6. However, it is clear
that both aspects need further research in future work.

3. Collisionless Boltzmann equation

The Boltzmann equation defines the single-particle distribution in a three-
dimensional phase (velocity-space) for each point in three-dimensional space
and therefore involves a seven-dimensional solution space (including time) for
a gas consisting of a single monatomic species[35, 36]. In the present work,
we consider highly rarefied gas flows (large Knudsen numbers) and make the
assumption that these flows can be modeled as free-molecular gas flows, i.e.
neglecting the collisions between the gas molecules. The collisions between
gas molecules and domain boundaries is included, since this represents an
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essential feature of the considered flows. When neglecting inter-particle col-
lisions and further body forces acting on the gas, the Boltzmann equation
reduces to the collisionless Boltzmann equation, written here for a single-
species flow as,

∂F (~x,~c; t)

∂t
+ ~c · ∂F (~x,~c; t)

∂~x
= 0 (6)

Finitial =
ρ

(2πRT )3/2
exp

[

− (~c− ~u0)2
2RT

]

(7)

where F (~x,~c; t) is the single-particle distribution function, and ~x = (x, y, z)T

and ~c = (cx, cy, cz)
T represent three-dimensional space and three-dimensional

phase (velocity) space, respectively. Finitial defines the Maxwell-Boltzmann
equilibrium distribution, for a local gas mass density ρ, temperature T and
mean gas velocity ~u0, used in the present work as initial conditions of the sim-
ulations. The particle number density n and gas mass density ρ are related
as ρ = nm, for molecular mass m. For the Maxwell-Boltzmann equilibrium
distribution it follows that the most probable (thermal) speed of a particle
depends on temperature Vmp =

√
2RT with R the specific gas constant for

the gas considered. For a molecular mass m this gas constant R = kb/m,
with kb the Boltzmann constant. In rarefied gas dynamics, the so-called
speed ratio defines the ratio of the molecular speed V and the most probable
speed, s = V/

√
2RT =

√

γ/2M∞ with γ = 5/3 for a monatomic gas and
M∞ the free-stream Mach number. For an external flow around a solid ob-
ject as considered in this work, the flow at free-stream conditions will be at
the Maxwell-Boltzmann equilibrium distribution for a given free-stream den-
sity, temperature and mean velocity. For the flow considered here, periodic
boundary conditions are imposed on the edges of the computational domain.
For the solid walls considered, specular-reflection boundary conditions are
applied, which can be described as follows. For a molecule traveling with
a pre-collision velocity ~c = (u, v, w)T , the reflective collision with the wall
creates a post-collision velocity ~c′ = ~c − 2~n(~n · ~c), where ~n represents the
unit wall normal vector. For the 2D test cases considered here, stationary
solid walls will be used aligned with either the x− or y−direction, so that
v− or u− velocity component, respectively, will be reversed. In the quantum
algorithm presented here, this effect is achieved by reversing this velocity for
the first lattice point within the solid object next to the imposed wall, as
detailed further in Section 5.3.
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3.1. Dimensional reduction of the collisionless Boltzmann equation

For quasi-one dimensional or quasi-two dimensional flows, a dimensional
reduction approach is commonly used to reduce significantly the required
overhead. Starting from the full three-dimensional collisionless Boltzmann
equation with single-particle distribution function F (~x,~c; t), the dimensional
reduction to two-dimensional problems replaces F with two reduced distri-
bution functions as follows:

f(x, y, cx, cy; t) =

∫

∞

−∞

F (~x,~c; t)dcz ; g(x, y, cx, cy; t) =

∫

∞

−∞

c2zF (~x,~c; t)dcz

∂f

∂t
+ ~c

df

d~x
= 0 ;

∂g

∂t
+ ~c

dg

d~x
= 0 (8)

the corresponding gas density, mean velocities and temperature can be ob-
tained from f and g using the following moments,

ρ =

∫

∞

−∞

∫

∞

−∞

fdcxdcy ; ρ

(

u0
v0

)

=

∫

∞

−∞

∫

∞

−∞

(

cx
cy

)

fdcxdcy

3

2
ρT +

u20 + v20
2

=

∫

∞

−∞

∫

∞

−∞

[c2x + c2y
2

f + g
]

dcxdcy

For a quasi-one dimensional flow, a similar dimensional reduction can be
introduced. As in the two-dimensional reduction, the original single Boltz-
mann equation is replaced with two lower-dimensional equations governing
the two reduced distribution functions.

3.2. Extension to multiple-species mixtures

For a gas mixture with nsp species, the collisionless Boltzmann model
becomes a system of nsp equations, which due to the absence of inter-particle
collisions are uncoupled,

∂F is(~x,~c; t)

∂t
+ ~c · ∂F

is(~x,~c; t)

∂~x
= 0 (9)

F is
initial =

nismis

(2π(km/mis)T )
3/2

exp
[

− (~c− ~u0)2
2(km/mis)T

]

(10)

for is = 0, . . . , nsp − 1. Here, F is(~x,~c; t) is the single-particle distribution
function for species is. The number density of each species is is nis and mis

is the molecular mass for species is. F is
initial defines the Maxwell-Boltzmann
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equilibrium distribution for species is, for a local number density nis, temper-
ature T and mean gas velocity ~u0. In the equilibrium distribution function,
~u0 is the mixture-mean velocity, i.e. the gas velocity obtained from the
mass-averaged mean of each species mean velocity. In the present work, the
Maxwell-Boltzmann equilibrium distributions are used as initial conditions in
the simulations. As for the single-species Boltzmann equation, a dimensional
reduction can be applied to each of the nsp distribution functions, leading to
a total of 2nsp distribution functions in the governing equations.

3.3. Discrete-velocity method

The present method implements a discrete-velocity method with a Carte-
sian, uniform mesh in state space. The trapezoidal method is used to evalu-
ate the numerical moments in state space when extracting the corresponding
continuum quantities of the flow. Since we are focusing on the collision-
less Boltzmann equation, a number of key differences with application of
the discrete-velocity methods to model kinetic problems with collisions will
occur. Firstly, the removal of collisions between the particle changes the
characteristics of the flow significantly relative to more traditional gas dy-
namics, e.g. because of the initial conditions and boundary conditions it is
for example quite likely that discontinuities arise in the particle distribution
functions which describe within phase (velocity) space the probability that
a particle has a particular velocity[37]. The macroscopic flow quantities that
follow from taking moments of the distribution function over the full velocity
space are then also likely to have discontinuities in space. Secondly, in the
time-integration method, the evaluation of the continuum quantities of the
flow is not needed at each time step since there is no need to construct a local
equilibrium function typically required in a BGK-type relaxation model. For
both reasons, in the present work it was decided to use a simple trapezoidal
model on a uniform mesh instead of more advance collocation methods in
state space. Also, the following assumptions will be made:

• Nu and Nv define the number of discrete-velocity mesh points in x−
and y−direction and in this work we assume Nu = Nv, although the
algorithm is not restricted to this;

• For each direction, the discrete velocities are defined as ck ∈ [cmin, . . . , cmax],
for k = 0, . . . , nDV − 1 (with nDV = Nu or nDV = Nv) and a uni-
form step size in velocity space ∆c = (cmax− cmin)/nDV . Furthermore,
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cmin = −cmax. The implementation of the specular-reflection boundary
condition in the current quantum algorithm requires this assumption;

• Discrete velocities are indexed from 0, i.e. the most negative value,
to nDV − 1 representing the discrete-velocity with the largest positive
value

In all cases, the simulations will be initialized with an equilibrium Maxwellian
distribution defined for a initial flow state.

4. Reservoir technique for the collisionless Boltzmann equation

The reservoir technique was analyzed and applied to Godunov-type schemes
for gas dynamics with the aim of achieving zero or very low numerical diffu-
sion by Alouges et al.[38]. In their work it was applied to the Collela-Glaz
solver, showing that for the Sod tube test problem impressive accuracy can
be achieved when compared to results from finite-volume methods involving
higher-order reconstructions (MUSCL, ENO WENO), despite the first-order
accuracy of the stencil used in the advection step.

The motivation behind the developed time-integration method based on
the reservoir technique for the collisionless Boltzmann equation is similarly
the reduction of numerical dissipation for the first-order method preferred
here over more advanced time-integration methods and spatial discretization
methods (MUSCL, ENO, WENO, etc.).

4.1. Finite-Volume method for one-dimensional collisionless Boltzmann equa-

tion

For illustration purposes, a one-dimensional uniformly spaced finite-volume
domain is considered with cell (center) index j. The cell interface between
cells j − 1 and j is denoted with index j − 1/2 and similarly data related
to right cell interface of cell j (connecting cells j and j + 1) are indexed as
j +1/2. The uniform cell spacing is ∆x. A discrete-velocity method (DVM)
with uniformly spaced segments based on the trapezoidal integration rule
is employed with nDV discrete velocities to discretize the phase space of the
one-dimensional collisionless Boltzmann equation. The discrete velocities are
defined as ck ∈ [cmin, . . . , cmax], for k = 0, . . . , nDV − 1 and a uniform step
size in velocity space ∆c = (cmax − cmin)/nDV . Furthermore, cmin = −cmax.
It is assumed that all discrete velocities are non-zero, making the system
of equations strictly hyperbolic. The reduced particle distribution function
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f(xj, ck; t
n) in cell j for discrete-velocity k at time level tn is denoted here as

fn
k;j. Equivalently g

n
k;j for reduced particle distribution function g(xj, ck; t

n).
Using upwind fluxes in velocity space, the discretized one-dimensional colli-
sionless Boltzmann equation then becomes,

(

fk;j
gk;j

)n+1

=

(

fk;j
gk;j

)n

− ck
∆tn
∆x















(

fk;j
gk;j

)n

−
(

fk;j−1

gk;j−1

)n

for ck > 0
(

fk;j+1

gk;j+1

)n

−
(

fk;j
gk;j

)n

for ck < 0
(11)

The Euler forward-in-time integration as used in this equation clearly limits
the admissible time-step according to the CFL criterion to ∆tn ≤ ∆x

cmax
where

cmax represents the largest discrete velocity in absolute value.
Considering Equation (11) we can observe that if we use a first-order

accurate method in space (i.e. distribution functions are assumed constant
within each cell), time-integration with CFL=1 leads to an exact propagation
for the distribution function(s) fk;j and gk;j corresponding to the largest
discrete velocity in absolute value, i.e. k is such that |ck| = cmax. For all
other indices k, the distribution functions will move less than a cell width ∆x
during the time step ∆tn, leading to the need to interpolate the discretized
solution within each cell and therefore introducing numerical dissipation.
The reservoir technique as applied here to collisionless Boltzmann equation
is aimed at avoiding this and involves ’exact’ propagation of each of the
distribution functions from one cell-center to next neighbors during the time-
integration process. In the context of the quantum algorithms described in
subsequent sections, this property of ’streaming’ of distribution functions
from one cell-center to another is an essential aspect enabling a relatively
simple implementation. A further helpful characteristic of the considered
reduced collisionless Boltzmann system is that both reduced distribution
functions convect at the same discrete velocities, i.e. the convection operator
in both equations have the same eigenvalues.

4.2. Reservoirs, CFL counters and variable time-step

For each cell face, CFL counters are introduced as cnk;j±1/2 for k = 0, . . . , nDV−
1. At the start of the time-integration these counters are all initialized to
zero. These counters will be updated during each time step by |ck|∆tn/∆x.
For convenience, the following temporary variables are introduced,

Cn+1
k;j±1/2 = cnk;j±1/2 + |ck|

∆tn
∆x

(12)
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Since for the considered system, the eigenvalues (discrete-velocities) in the
upwind discretization are identical for each cell face, the CFL counters are
identical for each cell face as well. This greatly simplifies the following inte-
gration method since only a single set of counters for all discrete velocities
have to be considered rather than a set for each cell face.

The time-step ∆tn is limited such that Cn+1
k;j±1/2 ≤ 1. Here, the time-step

∆tn is selected by finding the minimum among all j and k,

∆tn = minj,k

(

[1− cnk;j±1/2]
∆x

|ck|
)

(13)

This choice of time step will result in at least one of the CFL counters to
reach 1 in the considered time step, i.e. Cn+1

k;j±1/2 = 1 for one or more discrete

velocities k (typically only for one eigenvalue during each time step), while
never exceeding the value of 1. The underlying idea of the reservoir technique
is to introduce reservoirs for each cell face Rn

k;j±1/2 for k = 0, . . . , nDV − 1
which are initially set to zero at the start of the time integration. At each
time step we fill up the reservoirs Rk;j±1/2 with the current numerical flux
difference upwinding depending on the sign of ck. As long as the CFL counter
for the considered discrete velocity remains less than 1, this process continues,
i.e. with the CFL counters gradually updated according to

cn+1
k;j±1/2 = cnk;j±1/2 + |ck|

∆tn
∆x

(14)

Furthermore, temporary variables f̃k;j±1 and g̃k;j±1 are introduced to facil-
itate the update due to the numerical flux difference upwinding for both
reduced distribution functions. The idea is that the temporary variables will
be updated when the CFL counter hits the value 1, while the update will
go into the reservoirs for CFL counters below 1. The temporary variables
f̃k;j±1 and g̃k;j±1 are used to update the solution to the new time level n+1,
therefore the only non-zero updates will occur for the discrete velocity (or
velocities) for which the CFL counter reached 1. Once a CFL counter cnk;j±1/2

for a discrete velocity k has reached 1, this counter as well as the reservoir
associated with this discrete velocity will be set to 0 before the start of the
next time-step.

4.3. Simplification of scheme to facilitate implementation

In the time integration described above we can identify a cycle during
which data for each discrete velocity gets updated at least once, i.e. this
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Table 1: Reservoir method for velocity-space boundaries ±8 reference velocity units
(
√
2RTr) and ∆x = 1.

nDV ncycle ∆c ck,min ck,max Tcycle ave. ∆t
16 49 1.000 0.5000 7.5000 2.0 0.04167
32 213 0.500 0.2500 7.7500 4.0 0.01887
64 825 0.250 0.1250 7.8750 8.0 0.00971
128 3327 0.125 0.0625 7.9375 16.0 0.00481

cycle involves a time Tcycle = 1/ck,min, with ck,min representing the small-
est discrete velocity in absolute value. The number of time-steps depends
on the eigenvalue spectrum considered. Table 1 shows the details of one
cycle in the reservoir scheme for a one-dimensional problem with velocity
space bounds ±8

√
2RTr. For the smallest number of discrete velocities, 49

time steps constitute one cycle. It can be seen that for each doubling of the
number of discrete velocities, the number of steps per cycle grows approxi-
mately by a factor 4. In all cases, the average non-dimensional time step ∆t
is significantly smaller than the CFL limit imposed by the largest discrete
velocity, i.e. ∆x/ck,max with ck,min representing the largest discrete velocity
in absolute value. In the reservoir method, the reservoir values can be used
in the interpolation of data between cells when output is required at a time
step that does not correspond to the last step in a cycle. To facilitate the
implementation as quantum algorithm, the reservoirs are actually not stored
and when output at a time step which does not coincide with the end of a
cycle is required, the interpolation of data from a location in between two
neighboring grid points is omitted. This will have a small impact on the ac-
curacy of the output, i.e. for certain steps within a cycle the output will not
benefit from the smoothing effect of the data interpolation and will therefore
be more likely to involve small oscillations.

4.4. Extension to higher dimensions

For two-dimensional problems in the work, it is assumed that the velocity
space involves a square domain with a uniform and identical step size in each
velocity-space direction. Furthermore, the number of steps and the upper and
lower bounds are taken the same for both velocity-space directions. Then,
the time integration of the two reduced distribution functions f and g for a
two-dimensional problem proceeds by dimensionally splitting the convection
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step and using the method described for the one-dimensional case above.
The number of steps per cycle then remains those shown in Table 1. It is
clear that the assumption on velocity-space bounds, i.e. cmin = −cmax as
well as identical step sizes for both cx and cy discrete velocities is not ideal
for some practical problems. However, for the case considered here involving
specular-reflection wall boundary conditions, this choice fits well.

4.5. Extension to collisionless Boltzmann equation with homogeneous force

field

So far the collisionless Boltzmann equation (as defined in Equation (6))
has been considered without the presence of a space-homogeneous force field.
Including such a force field, the collisionless Boltzmann equation can be
written as,

∂F (~x,~c; t)

∂t
+ ~c · ∂F (~x,~c; t)

∂~x
+ ~F hom · ∂F (~x,~c; t)

∂~c
= 0 (15)

where ~F hom defines the force field (space homogeneous) that acts on all par-
ticles. When integrating this extended equation in time, it can be seen that
this force field effectively acts to move the distribution function within the
velocity space in a direction defined by the direction of ~F hom. The time-
integration method described in the present work can be extended to include
this homogeneous force field. Specifically, the effect of the force field on the
discretized distribution function can be accounted for using a streaming op-
eration for the distribution function acting within velocity space, in contrast
to the streaming operation in ’physical’ space described in previous sections.

5. Quantum algorithm for collisionless Boltzmann equation

Building on the time-integration based on the reservoir-technique, a quan-
tum algorithm implementing the discrete-velocity method for collisionless
Boltzmann equation is introduced. One key aspect is the implementation
of the convection step in the discrete-velocity method as a series of stream-
ing operations, as described in the previous section. The quantum algorithm
used to impose non-periodic boundary conditions is described in detail in this
section, as it represents a key innovation of the present work. In the follow-
ing, the quantum algorithm is detailed for two-dimensional problems. The
implementation for one-dimensional problems follows a logical subset of this,
while the extension to three-dimensional problems is also straightforward.

23



5.1. Data structure and mapping onto state vector

The quantum algorithm is based on the circuit model of quantum com-
puting. More specifically, we encode the problem in a coherent quantum state
|ψ〉 using nq coherent qubits in the quantum register of a quantum computer
and apply a series of unitary transformation using quantum logic gates. For
the mapping of the problem onto this state the following approach is:

• For a 2D mesh with Nx×Ny grid points, we determine the numbers of
qubits associated with this mesh size, i.e. nq,x = log2(Nx) and nq,y =
log2(Ny);

• Assuming we have a uniformly spaced discrete-velocity mesh with Nu×
Nv discrete-velocity mesh points, the number of qubits representing the
state-space mesh is determined: nq,u = log2(Nu) and nq,v = log2(Nv)

• For cases with solid-wall boundary conditions, we introduce an addi-
tional qubit working as a flag identifying parts of the domain that are
with the fluid and parts of the domain with the solids. More specifically,
this qubit is set to |1〉 when a cell is in the considered fluid domain, or
|0〉 when the considered cell is part of a solid. This qubit is termed the
’BC’ qubit in the quantum circuits presented here. Adding this qubit
effectively doubles the size of the state vector. Only for the half of
the state vector associated with ’BC’ qubit in state |1〉, the streaming
operations representing convection are performed. The other half of
the state vector is not included in the streaming operations, and in the
current implementation is used to represent the solution within solid
bodies;

• For a single-species simulation, a further qubits is added to create the
space for the storage of two reduced distribution functions. This qubit
is termed the ’g’ qubit in the quantum circuits presented here;

• For a multi-species simulation with Nsp species, a further log2(Nsp)
qubits is added;

• For practical implementations, typically a number of additional ’ancilla’
qubits will be needed. This will be discussed later in this work.

In the qubit register, starting from the left, first the nq,x qubits corre-
sponding to the x−direction in the mesh are stored, followed the nq,y qubits
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for the y-coordinate direction. Then, the ’BC’ qubit is stored. The next
group of nq,u qubits correspond to the x−direction in the velocity-mesh, fol-
lowed by the nq,v for the y−direction in the velocity-mesh. For single-species
simulation, the next qubit will be the ’g’ qubit. For multi-species simulations
the additional log2(Nsp) qubits are padded to the right. Any ancilla qubits
will be added to the right-hand side of this register.

For example, a single-species flow on a 64×64 mesh with 16×16 discrete
velocities and a single ancilla qubit will be represented by a qubit register as,

|qx,4qx,3qx,2qx,1qx,4|qy,4qy,3qy,2qy13qy,0|qBC |qu,3qu,2qu,1qu,0|qv,3qv,2qv,1qv,0|qg|qa0〉
(16)

5.2. Implementation of the convection step in the quantum algorithm

Previously, the principles of performing a left- and right-streaming step on
a regular mesh were discussed in Section 2.4 for a single function discretized
on a 2D mesh. In the discrete-velocity method as implemented here, vector
data representing the values of the distribution for each discrete-velocity in
the considered cell needs to be streamed left or right at selected time steps
in the time-integration process. Building on the circuits discussed in Sec-
tion 2.4, the multiple-control NOT gates now need to be extended to also
include a test on the qubits value representing the discrete-velocity indices.
This enables streaming of selected discrete-velocities rather than streaming
all data in one step. Figure 2 shows the quantum circuit implementation of
the ’streaming’ operation in both x- and y-direction for a two-dimensional
flow problem on a 64× 64 mesh and with 16× 16 discrete-velocities in state-
space. The circuits shown in Figure 2(a) represents the streaming for the data
with qubit indices defined in Equation (16) with |qu,3qu,2qu,1qu,0〉 = |1000〉 in
the positive x−direction and with |qu,3qu,2qu,1qu,0〉 = |0111〉 in the negative
x−direction. As can be seen the qubits representing the x-coordinates form
the target qubits, i.e. the cross represents a negation under the conditions
that the control qubits have the required status: full circles mean that the
control qubit should be in state |1〉, while open circles represent the control
state |0〉. The First multi-qubit operation involves 10 control qubits, i.e. 5
from qubits representing x-coordinates, a further due to the ’BC’ control
qubits and finally the 4 qubits indexing the u-velocities. For the 4 subse-
quent operations, the target qubit shifts by one and the number of control
qubits is reduced by one qubit representing x-coordinates. The difference in
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Figure 2: Quantum circuit representation of streaming operation in x-direction (a) and
y-direction (b). Circuit for 64 × 64mesh in space and 16 × 16 discrete-velocities in state-
space

streaming in positive or negative direction is manifested by the sign of the
control qubits in the part of the register representing the considered coordi-
nate direction. By moving the target qubits to the y-coordinate part of the
qubit register and moving to the v-velocity qubits, the circuits representing
streaming in y-direction are created. For the streaming in the y-direction,
Figure 2(b) shows the required circuits. A key point that should be noted
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for the quantum circuits presented here, is that periodic boundary conditions
will be imposed on the edges of the domain. Specifically, a quantum walk to
the left applied to the left-most lattice point will move this data to the right-
most lattice point. Similarly for the quantum walks moving right associated
with a positive discrete velocity in the considered coordinate direction, data
leaving the right boundary will move to the left-most lattice point. Although
the circuits shown in Figure 2 will perform the correct convection operations,
an important practical constraint needs to be considered. For the quantum
computer implementations achieved so far and those foreseen for the near fu-
ture, the kind of multi-qubit controlled NOT operations used here cannot be
implemented. A small set of native gates will be available which most likely
includes NOT , CNOT and the three-qubit Toffoli gate. The solution around
this limitation is the introduction of ancilla qubits, which can be regarded as
the quantum equivalence of additional workspace in the memory of a classical
computer. Then circuits involving multi-qubit operations involving a large
number of control gates can be transformed into circuits with more qubits
and a larger number of gate operations, however now with a smaller number
of control qubits. For the presentation of the current algorithm, these details
are not essential and are left for future work.

5.3. Implementation of specular-reflection boundary conditions

Since the flow in the free molecular limit is determined by collisions be-
tween the molecules and the boundary surfaces, the nature of this interaction
between the molecule and the boundary is all important. However, the de-
tails of the reflection process vary in a complex manner with the nature of
the surface and the velocity of the incident molecule, and it is necessary to
treat idealized models[37]. In the present algorithm, the classical model of a
specular-reflection wall is included. Specular reflection is an elastic process
in which the velocity component normal to the wall is reversed and that
parallel to the wall is retained. In contrast, in a diffusely reflected molecule
its temperature adjusts towards that of the surface and it is re-emitted in a
random direction with a Maxwellian speed distribution. In the present proof-
of-concept implementation, it is assumed that the gas interaction with solid
walls takes place through specular reflections. Imposing the diffuse boundary
conditions is part of future research.

In the proposed algorithm, to approach used to impose specular-reflection
boundary conditions can be summarized as follows:
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Figure 3: Quantum circuit imposing specular-reflection boundary conditions for blunt-
body test case (L/H = 4). (a) x-direction and, (b) y-direction (b). Circuit for 64×64mesh
in space and 16× 16 discrete-velocities in state-space

• A solid object is defined with solid walls aligned with either x− or
y− axis. The ’wall’ locations are selected such that these fall halfway
between two neighbouring lattice points;

• Based on the defined solid wall locations, all lattice point nearest to
a solid wall, on the inside of a solid body, are selected. It is in these
lattice points within the solid object that the wall-normal velocity will
be reversed. An important part of the quantum circuits discussed here
will therefore be use of the qubits representing x− and y− lattice coor-
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dinates as control qubits in the multiple-input controlled-NOT gates.
This ensures that any reversing operation will only take place in se-
lected lattice points;

• As discussed in Section 5.1, a ’BC’ qubit is used in the quantum reg-
ister, such that the |1〉 state of this qubit defines the half of the state
vector for which streaming operations are employed. For this half of
the state vector, these streaming operations will also act on the lat-
tice points within solid objects. Imposing specular-reflection boundary
conditions will interfere with the solution within solid bodies. The cur-
rent implementation was designed in such a way that for the regions
’within’ solid bodies, the part of the state vector associated with ’BC’
qubit in state |0〉 would be used when creating output of the algorithm.
Clearly, alternative designs are also feasible.

• During the course of a simulation, discrete values for distribution func-
tions for velocities pointing into a solid wall will stream into a solid
body, i.e. the data will move to one of the lattice points highlighted
above. For each time step of the reservoir-technique based integration
method it is known which of the discrete velocities was streamed during
that particular time step. For these discrete velocities, the specular-
reflection condition is applied by reversing the wall-normal molecular
velocity in the nearest lattice site within the solid body;

• In the implementation used here, the discrete velocity space is sym-
metric with respect the origin centered at zero velocity, as discussed
previously in Section 4.1. The discrete velocities in each direction are
numbered 0 (negative velocity with largest magnitude) to NDV − 1
(positive velocity with largest magnitude), where NDV represents the
number of discrete velocities in the considered direction. Reversing
the velocity is then achieved by applying NOT operation on all qubits
defining the discrete-velocity in this direction. Effectively, the discrete
distribution function value associated with a molecular velocity going
into the wall has now been assigned to the corresponding opposite out-
going molecular velocity such that it can be used in the streaming
operations during the next time step in the simulation.

For a 64 × 64 two-dimensional mesh and 16 × 16 discrete velocities, the
specular-reflection boundary condition implementation based on quantum
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circuits is shown in Figure 3. The flow around a rectangular solid object
with a height of 16 mesh spacings and with of 4 mesh spacings centered
in the flow domain is considered. The flow field for a simulation using a
finer 64 × 64 velocity-space discretization is shown in Figure 4 at four time
instances following the initialization of the flow field with a uniform free-
molecular flow at Mach 2. The figure shows the (i, j) index range involved
in the internal part of the body where the velocity needs to be reversed.
In the quantum circuit implementation, we use separate circuits to impose
the boundary condition in x- and y-directions. Figure 3(a) shows the circuit
imposing the boundary conditions in x-direction. In the considered circuit, 4
groups of gate operations (in the horizontal direction) can be observed. The
first group imposes the data-swap in lattice sites with i = 30, j = 24, . . . 31
and i = 31, j = 24, . . . 31 representing the lower half of the front face of
the solid body. The second group similarly represents the upper half of the
front face, i.e. i = 30, j = 32, . . . 39 and i = 31, j = 32, . . . 39. The third
and fourth group of gate operations similarly impose the boundary condition
on the lower and upper half of the rear face of the body. In the quantum
circuit, multiple-qubit controlled NOT gates are used to reverse the velocity
in the x−direction within selected lattice points. These selected lattice points
are defined using the qubits representing x− and −y coordinates as control
qubits. Since the velocity reversal in these points is only to be performed
when ’BC’ qubit is |1〉, this ’BC’ qubit also acts as control qubit. Figure
3(b) shows the circuit imposing the boundary conditions in y-direction, again
consisting of 4 groups of gate operations. In this case, the first two groups
represent the left and right halves of the lower wall of the body, while the
boundary condition on the upper wall of the body is represent by the third
and fourth group for the left and right halves, respectively.

Similar to the quantum circuit implementation for the ’streaming’ oper-
ations, the implementation for the specular-reflection boundary conditions
clearly involves multiple-qubit gates with a large number of control qubits.
This means that in a practical implementation on a quantum computer with
a realistic set of native quantum gates, a circuit transformation needs to
be performed using additional ancilla qubits, as shown previously for the
streaming operation.
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Figure 4: Free-molecular Mach 2 flow field around blunt body, 64 × 64 discrete-velocity
space. Specular-reflection boundary conditions are applied. Results show evolution of flow
field at 4 time instances following initialization with uniform free-stream flow.

6. Complexity analysis

The application of the proposed quantum algorithms on quantum com-
puter hardware involves three phases. Firstly, the quantum state needs to
be initialized in an appropriate initial state. Then the main part of the al-
gorithm is applied in terms of evolving the quantum state towards to the
desired solution at a later time instance. Once this is completed, quantum
measurement is applied to obtain the desired output in terms of classical
data. All three phases are detailed in the following paragraphs. In the anal-
yses, an d-dimensional domain (e.g. 2D in this work) with domain size D
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in all considered direction is assumed with h the constant mesh width (cell
dimension in finite-volume scheme), assumed the same in each considered
spatial direction. In this section, Nv represents the number of discrete ve-
locities for direction (assumed identical for each direction). For the time
evolution a time T is considered, while for the quantum algorithm, a desired
accuracy δ is specified.

6.1. Required memory

For a classical implementation (for the explicit time-integration methods
considered), it can be assumed that the memory required scales directly pro-
portional to the number of cells as well as the number of discrete velocities, i.e.
memory cost is O(Nd

v (D/h)
d). For the proposed quantum algorithm, the re-

quired number of qubits for memory storage scales as log2(N
d
v (D/h)

d)+nanc,
with nanc representing the number of required ancilla qubits. In the present
work, nanc will always be smaller than the theoretical minimum number
of qubits log2(N

d
v (D/h)

d). Since the required repeated realizations do not
involve storage within the same coherent state vector, an exponential im-
provement in complexity occurs in terms of memory.

6.2. Complexity of reservoir-technique method on classical computer

Before analyzing the complexity of the quantum algorithm, the complex-
ity of a classical implementation of the reservoir-technique based DVM solver
is analyzed, and compared to more ’conventional’ DVM methods. For a con-
ventional DVM method it is assumed that the discretized distribution func-
tions for all discrete velocities are used for each considered time step (different
than in the reservoir-technique). Stability requirements impose limits on the
time-step mainly as function of the maximum discrete velocity used (in abso-
lute terms), i.e. independent of number of discrete velocities. Therefore, the
number of time step required scales directly proportional to the time interval
T considered. The complexity of performing the flux and residual calculation
is then O(TdNd

v (D/h)
d). Also, in a typical DVM method, the CPU time for

flux and residual calculations dominate CPU time for calculation of updates
to distribution functions as well as the cost of imposing boundary conditions.
Therefore time complexity can be summarized as: O(TdNd

v (D/h)
d). In the

reservoir-technique based implementation, it can be observed that the pe-
riod of a single cycle scales as the reciprocal of the smallest discrete-velocity
(±∆c

2
), i.e. the period of one cycle increases directly proportional to Nv for

fixed maximum values of discrete velocity. The number of time-steps within
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a cycle increases as N2
v . Within a cycle, different discrete velocities are in-

volved for different time steps. On average, the number of updates for each
discrete velocity per cycle scales as Nv. Therefore, the number of flux and
residual calculations required for each cycle scales as dNd+1

v (D/h)d. Since
the period per cycle increases linearly with Nv, it can be seen that the time
complexity for the reservoir-technique DVM method is the same as that for
a ’conventional’ DVM, i.e. O(TdNd

v (D/h)
d).

6.3. Complexity of time-evolution phase of simulation

In the quantum implementation of the reservoir method, streaming op-
erations represent the flux evaluation, residual calculation and calculation
of updates to discrete distribution function. Figure 1(a) shows how data for
two discrete velocities in x−direction (i.e. with opposite signs) is streamed in
x−direction. Data associated with all discrete velocities in the ’other’ coor-
dinate direction is included in these operations, a key factor in achieving effi-
ciency. The number of multi-qubit gate operations required for this streaming
in positive and negative direction scales as log2(D/h) for each discrete veloc-
ity considered. For all discrete velocities for one coordinate direction, a scal-
ing asNvlog2(D/h) for the number of multi-qubit gate operations follows. For
d-dimensional problems, the complexity becomes O(dNvlog2(D/h)). Since
time step used is not proportional to Nv, the time complexity for a time
interval T becomes O(TdNvlog2(D/h)). It is important to note that the
multi-qubit gate operations required in the current work are multi-qubit
controlled-NOT gates, e.g. CpNOT , representing p + 1-qubit gates with
p control gates. Analysis of our circuit-based implementation shows that p
scales as log2(D/h)+log2(Nv). When compiling the current quantum circuits
for actual quantum hardware, the used multi-qubit controlled-NOT gates
need to be converted into native gates on the considered quantum hardware,
leading to a further increase in the number of gate operations that strongly
depends on the compilation technique employed.

6.4. Complexity of specular-reflection boundary condition

The quantum circuits used to impose specular-reflection boundary con-
ditions were discussed in Section 5.3. The previously introduced ’BC’ qubit
can be regarded as representation of the memory overhead of this boundary
condition. In terms of time complexity, we assume that the number of lattice
points at which the specular-reflection boundary condition is to be applied
is a constant fraction of the total number of lattice points when considering
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increasing problem size, i.e. the required number of multi-qubit gate opera-
tions scales as dNvlog2(D/h) for each time step. The time complexity of the
specular-reflection boundary condition therefore matches that for the con-
vection step when expressed in terms of required number of multi-qubit gate
operations. Since the boundary conditions are imposed on a subset of all
lattice points, the multi-qubit gate operations required will involve a larger
number of control qubits than used in the convection step of the algorithm,
since a subset of the qubits representing x− and y− coordinates are involved
as well.

6.5. Complexity of initialization

As mentioned in Section 2.5 it is important to avoid the complexity of
order N associated with the preparation of a completely arbitrary quantum
state in an N-dimensional Hilbert space. For the initial solutions used here,
i.e. the same Maxwellian distribution function in each of the lattice points
in the considered domain, the complexity can be expected to be much lower,
based on the fact that the Maxwellian initial solutions used here are log-
concave with respect to the particle velocities defined by the corresponding
qubits in the register. Since the same initial solution is set throughout the
computational domain, there is no dependency on the qubit states defining
lattice location. The ’BC’ qubit does not introduce significant challenges,
since the flow will be initialized in the same state for the ’BC’ qubit in state
|0〉 and |1〉. For the algorithm to work, it is required that ancilla qubits are
initialized to |0〉. In future work, the complexity of initialization will be an-
alyzed in more detail. However, from the initial analysis performed here and
the findings of Grover and Rudolph[30], we can expect that initializing will
not render the proposed quantum algorithm ineffective by requiring expo-
nential resources. Instead, a complexity polynomial in the number of qubits
appears to be possible.

6.6. Obtaining output from simulation

Obtaining output from the algorithm poses a major challenge. In general
quantum state tomography can be applied to learn the full state. However,
this leads to a scaling with the state space size. As mentioned previously
in Section 2.5, the intended use of the proposed algorithm does not involve
obtaining the full flow field. If we assume that Nout amplitudes are sought at
end of a simulation, then using amplitude estimation, the number of realiza-
tions can be estimated to scale as Nout/δ, for a required accuracy of δ. The
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aspect of applying amplitude estimation in the current context needs further
investigation in future work. However, the 1/δ dependency of the number
of realizations represents a key challenge to achieving a potential meaningful
speed up relative to classical implementations. A key benefit of the quantum
algorithm that remains despite the output/measurement challenges is the
exponential reduction in memory when expressed in terms of qubits.

Table 2: Reservoir method parameters for blunt-body test case, for ∆x = 1.

nDV Mach ncycle ∆c ck,min ck,max Tcycle ave. ∆t
32 2 213 1/3 1/6 31/6 6.0 0.02830
32 6 213 2/3 1/3 31/3 3.0 0.01415
64 2 825 1/6 1/12 63/12 12.0 0.01456
64 6 825 1/3 1/6 63/6 6.0 0.007282
128 2 3327 1/12 1/24 127/24 24.0 0.007216
128 6 3327 1/6 1/12 127/12 12.0 0.003608

7. Validation and demonstration of method

In the literature, the problem of a collisionless gas expanding into a vac-
uum has been studied extensively, e.g. Narasimha[39], and the key differ-
ences with an equivalent gas dynamics solution includes the absence of shock
waves and the resulting absence of interacting shocks when the expansion
takes place in a confined domain. The initial validation of the developed
method included the quantitative comparison of the analytical solutions from
Narasimha[39] one-dimensional expansions into vacuum with computed re-
sults at different time instances. This established that for this expansion
test case, 64 discrete velocities were sufficient to provide a good quantita-
tive agreement, while a further velocity-space refinement mainly provided
smoother density and velocity variations. For 32 discrete velocities, only
in the early stages was a smooth density profile obtained, while at later
stages, significant oscillations occurred in the density profile. In the interest
of brevity, this validation is not further detailed here.

As a further validation, we consider the free-molecular flow around a rect-
angular blunt body. It is assumed that, initially the gas is at rest and is in
thermal equilibrium at temperature T . Then, at t = 0, the gas acquires a
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Figure 5: Mach 2 flow of binary gas mixture (m2/m1 = 2) around rectangular body.
Cartesian mesh (64× 64) around plate, 128× 128 discrete-velocity mesh.
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Figure 6: Mach 2 flow of binary gas mixture (m2/m1 = 4) around rectangular body.
Cartesian mesh (64× 64) around plate, 128× 128 discrete-velocity mesh.

velocity U∞ towards this blunt body. Before presenting validation cases, Sec-
tion 7.1 first highlights the typical flow features encountered when applying
the proposed method to a free-molecular flow of a binary gas mixture around
a solid body.

7.1. Free-molecular flow around solid body

As an illustration of the binary mixture flows considered here, Figure 5
shows an example for a Mach 2 flow with m2/m1 = 2 around a rectangular
body. In the centre, the number densities for both species are shown. For
two locations upstream of the body, the particle distribution functions (f1
and f2) for both species are presented in velocity space. For species 1 at the
top of the figure, while the two bottom plots show distribution functions for
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Figure 7: Free-molecular Mach 2 flow field around blunt body. Specular-reflection bound-
ary conditions are applied. Effect of velocity-space discretization is shown for 2 time
instances following initialization with uniform free-stream flow. Tcycle used here is for
64× 64 discrete-velocity mesh.

species 2. In the simulations, the distribution functions everywhere in the
domain were initialized with the Maxwellian distributions for the considered
mean velocity, temperature and molecular mass. For the heavier species the
direct result of the increased molecular mass is a more ’pointy’ distribution
function (i.e. on average molecular velocities are closer to the mean value
than for a lighter species) for the same temperature as compared to species 1.
Figure 5 highlights the main effect of the considered flows, i.e. the reflection
of particles from the solid surfaces, leading to a secondary ’spike’ forming in
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the particle distribution functions in velocity space. The formation of these
secondary spikes is time-dependent starting from the initial uniform flow, i.e.
for parts of the distribution function representing the faster moving molecules
this spike forms more quickly than for slower-moving molecules. Also, for a
point further upstream of the body, this process takes more time since it takes
longer to reach the considered location for particles reflecting off the solid
walls, as can be seen in the different results for point A and C and, similarly,
B and D. In case the ratio of the molecular masses of the species is increased,
the effect of the more confined particle distribution functions in velocity space
for the heavier species becomes more pronounced, as can be seen from the
example results for a Mach 2 flow with m2/m1 = 4 around the rectangular
body. The results shown in Figure 5 and 6 highlight the importance of the
boundary conditions imposed and their effect on the particle distribution
functions even at large distances from the solid walls. Due to the absence of
inter-particle collisions, the often non-smooth distribution functions do not
relax towards a local Maxwellian distribution function.

7.2. Discrete-velocity mesh convergence

Figure 7 shows the effect of refining the velocity-space discretization for
the blunt-body flow at Mach 2. Table 2 shows the parameters used for the
test case involving the flow around the rectangular object. For the 32 × 32
and 64×64 velocity-space meshes, Figure 7(a)-(b) show the comparison of the
computed density for the time instances, t = Tcycle/4 and t = Tcycle/2. It can
be seen that although overall the results agree well, the finer discretization
can be seen to lead to smoother derived quantities such as density obtained
from numerically evaluation the moment of the distribution function in ve-
locity space using a trapezoidal integration. As similar comparison is shown
in Figure 7(c)-(d) for the 64×64 and 128×128 velocity-space discretizations.
Here, the differences between the computed densities for two time instances
are significantly smaller, illustrating the velocity-space mesh convergence for
meshes of 64× 64 and finer.

7.3. Comparison with analytical solution for piston-driven free-molecular flow

For the free-molecular flow around the rectangular blunt body considered
here, the flow solution along the stagnation streamline that is created in the
ensuing two-dimensional flow can be tested against the analytical solution
obtained by Bird[37] for a piston-driven free-molecular flow. In Bird’s solu-
tion, a free-molecular flow driven by an infinite plane piston is considered.
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Initially, the piston is at rest and the gas is in thermal equilibrium at temper-
ature T . Then at time t = 0 the piston acquires a velocity U∞ in the direction
normal to its face. For convenience, a coordinate system moving with the
piston was considered with the x-direction normal to the plane of the piston.
As discussed by Bird[37], the problem is equivalent to a plane wall being
instantaneously inserted into a uniform stream of velocity −Umean. The flow
upstream of the wall corresponds to the compression side of the piston, and
this will be affected by the molecules reflected from the wall and also by the
absence of the molecules which would have previously come from positions
downstream of the wall.

For specular reflection boundary conditions on the piston, the number
density as function of x and t can then be written as,

n(x, t) = n∞ +
na√
2πRT

∫

∞

cx=x/t

{

exp
[

− (U∞ − cx)2
2RT

]

− exp
[

− (U∞ + cx)

2RT

]}

dcx

= na

[

1 +
1

2

{

erf
(x/t+ U∞√

2RT

)

− erf
(x/t− U∞√

2RT

)}]

(17)

where n∞ is the number density of the ambient molecules. For the two-
dimensional flow around the rectangular blunt body, we can now use Eq.17 for
validation of the computed number densities along the stagnation streamline.

Figure 8 shows this comparison for two different Mach numbers, i.e. Mach
2 and Mach 6, obtained using a 64× 64 velocity mesh. For different time in-
stances, the build up of the number density upstream of the body can be seen
as a result of the particles bouncing back from the solid surface. The com-
parison shows that for both Mach numbers and time instances considered the
computed flow along the stagnation streamline is in excellent agreement with
the analytical solution, confirming the capability of the quantum algorithm
to accurately resolve flows of this type.

7.4. Error analysis

For Mach 6, a more detailed, quantitative convergence analysis is now
performed. The reservoir-technique based method is first-order accurate in
space. It is based on a discretization method assuming that function values
are constant within each cell of the finite-volume mesh. For the discretized
collisionless Boltzmann equation we effectively find a set of linear advection
equations, i.e. a separate equation for each considered discrete velocity. The
accuracy of the methods stems from the ”CFL=1”-like exact propagation
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Figure 8: Comparison of computed gas density along stagnation streamline for Mach 2
and Mach 6. DVM results for 64×64 velocity mesh are compared with analytical solution
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Figure 9: Comparison of computed gas density along stagnation streamline for Mach
6 with analytical solution. (a) L1 norm has second-order dependency on velocity-mesh
spacing, (b) Evolution of L1 norm as function of elapsed (non-dimensional) time during
simulation

that is found for a first-order upwind method for the linear advection equa-
tion on a uniform mesh. At the end of a ’full cycle’ (ncycle steps and Tcycle
non-dimensional period), as discussed in Section 4.1, an exact propagation
of all discrete-velocity data has occurred. During a simulation, therefore,
whenever the current time step is a multiple of the ncycle, the only discretiza-
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tion error will be due to the discretization of the velocity-space. Specifically,
for the discretized distribution functions that have propagated exactly, a
discretization error will arise when moment integrations are used to obtain
number densities, velocities, etc. In performing the error analysis for the
reservoir-technique based method used here, the effect of obtaining output
at other instances than multiples of ncycle needs to be considered, as well as,
the effect of the velocity-space discretization. The dependency of the error on
when during a cycle output is created is mainly caused by the simplifications
introduced in the reservoir technique to facilitate implementation as quantum
algorithm. Therefore, it needs particular attention. The analysis of the effect
of spatial mesh refinement (as opposed to refining velocity-space mesh) for the
present time-accurate method for the collisionless Boltzmann equation differs
markedly from more conventional mesh-refinement studies. A key factor is
that the only ’characteristic’ length scale occurring in the collisionless Boltz-
mann equation is the ratio of characteristic velocity (typically most-probable
molecular speed at reference conditions) and the time-scale considered. In
effect, if the mesh-spacing in each coordinate direction is halved, the simu-
lated time needs to be doubled to achieve a solution that can be compared to
the ’coarser-mesh’ result in a mesh refinement study. First, the order of the
truncation error in discretizing the velocity-space are studied for the case of
128 × 128 discrete velocities and a Mach 6 flow around the solid body con-
sidered previously. By increasing the velocity-domain size, three simulations
were performed with different ∆u (same spacing in u− and v− direction).
Figure 9(a) shows the L1 norm of the difference between the simulated den-
sity along the stagnation streamline and the analytical result. It is important
to mention that the analytical result does not assume periodic boundary con-
ditions at upstream- and down-stream ends of the domain. Therefore, only
a limited amount of time can be considered, for which the flow disturbance
created by the solid object has not yet reached these domain boundaries.
The L1 reduction for decreasing mesh spacing ∆u indicates that the method
has a second-order L1 error with respect to ∆u. The results shown are those
after 829 time steps, i.e. 1/4 of a full cycle. For ∆u = 1/6 and ∆u = 1/3, this
corresponds to an elapsed non-dimensional time of 1.5 and 3.0, respectively.
The figure also shows the results at these time instances from a simulation
with a 64 × 64 discrete-velocity mesh, with a non-dimensional ∆u = 1/3.
Non-dimensional times 1.5 and 3.0 are obtained after 204 (1/4 of ncycle) and
412 (1/2 of ncycle) time steps, respectively. Clearly, the obtained L1-norms
are almost identical than those found for the 128 × 128 discrete-velocity
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simulation with ∆u = 1/3. This shows in that the present method, the dis-
cretization method used in the velocity space is the dominant effect in the
error in the computed density for the considered time instances. To analyze
the errors at different time instances (different fractions of ncycle), the L1

norm of the error of the predicted stagnation streamline density is plotted
in Figure 9(b) as function of the elapsed non-dimensional time. As before,
two cases with 128×128 discrete velocities are considered. For the case with
∆u = 1/3, Tcycle = 6, while for ∆u = 1/6, Tcycle = 12. Therefore, the shown
results with T = 1.5 and T = 3.0 correspond to 1/4 cycle and 1/2 cycle for
the ∆u = 1/3 case. For the case with 64× 64 discrete velocities (∆u = 1/3,
Tcycle = 6), T = 1.5 and T = 3.0 also correspond to 1/4 cycle and 1/2 cy-
cle. The results shown in Figure 9(b) clearly show that ’optimum’ points
within the cycle exist at which output has smallest errors. This can also be
analyzed using the variation of the ’reservoirs’ during a cycle, as defined in
Section 4.1. At these ’optimum’ time instances, the errors are dominated by
velocity-space discretization, as shown previously. Detailed further analysis
for the results at T = 1.5 and T = 3.0 shows that the difference in L1 norm
at these different times is approximately 1 · 10−5 for the 128 × 128 discrete
velocity cases, i.e. two orders of magnitude smaller than the L1 norm itself.
A similar analysis for the 64 × 64 discrete-velocity case showed a difference
of approximately 3 · 10−5 between the L1 norms at T = 1.5 and T = 3.0,
again two orders smaller than the L1 norm itself. Clearly, for the selected
time instances, the solution is close to that achieved by exact propagation
of the discretized particle distribution function. For other fractions of ncycle,
the error can be orders of magnitude larger as demonstrated in Figure 9(b).
In terms of refining the spatial mesh, this has important implications: if the
mesh spacing is halved, the solution time needs to be doubled to achieve the
same flow field on the finer mesh (as mentioned previously). If the solution
output corresponds to optimum points within the cycle, then we see that
for finer mesh, the flow field is better resolved, as expected. However, for
the lattice points than coincide with those on the coarser mesh, a (nearly)
identical solution is found, based on the behaviour shown in Figure 9(b).

7.5. Extension to binary gas mixture

For a free-molecular flow of a binary gas mixture around the rectangular
body, an analytical solution for the number densities along the stagnation
streamline can be obtained as an extension of Bird’s solution for a single-
species gas. In this work, we use species 1 as the ’reference’ , with m1 the
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Figure 10: Non-dimensional species number densities along stagnation streamline for Mach
2 and Mach 6 flow around rectangular body. DVM results for 128× 128 velocity mesh are
compared with analytical solution. Effect of species mass ratio is shown for both Mach
numbers.

molecular mass of species 1. Here we assume that species due is the heavier
of the two species m2 > m1. The total number density of the ambient
molecules n∞ = n1,∞ + n2,∞ is used as reference number density. Using
specular-reflection boundary conditions as before, the number densities as
function of x and t for the flow upstream of the body can then be written as,

n1(x, t) = n1,∞ +
n1,∞√
πT

∫

∞

cx=x/t

{

exp
[

− (U∞ − cx)2
T

]

− exp
[

− (U∞ + cx)

T

]}

dcx
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Figure 11: Non-dimensional species number densities along centre line in lee side of rectan-
gular body for Mach 2 and Mach 6. DVM results for 128×128 velocity mesh are compared
with analytical solution. Effect of species mass ratio is shown for both Mach numbers.

= na1

[

1 +
1

2

{

erf
(x/t+ U∞√

T

)

− erf
(x/t− U∞√

T

)}]

(18)

n2(x, t) = n2,∞ +
n2,∞

√

m2/m1√
πT

∫

∞

cx=x/t

{

exp
[

− (U∞ − cx)2
T

(m2

m1

)]

−exp
[

− (U∞ + cx)

T

(m2

m1

)]}

dcx

= n2,∞

[

1 +
1

2

{

erf
(x/t+ U∞√

T

√

m2

m1

)

− erf
(x/t− U∞√

T

√

m2

m1

)}]

(19)

45



A similar analytical solution can also be obtain for the region behind the
rectangular body. In this case, as a result of the solid body blocking particles
from the upstream direction, a growing region with a very low-density forms.

Figure 10 shows the non-dimensional species number densities along stag-
nation streamline for a Mach 2 and a Mach 6 flow around the rectangular
body. With species 1 used as reference in the scaling of the equations, the
increased molecular mass of species 2 creates an increased challenge in repre-
senting the distribution function in velocity space (i.e. as a result of the more
’pointy’ equilibrium distribution function in the initial solution). Therefore,
DVM results for a 128× 128 velocity mesh are compared with the analytical
solution. For both mass ratios m2/m1 = 2 and m2/m1 = 4, excellent agree-
ment can be observed. For the flow field behind the rectangular body, Figure
11 shows the non-dimensional species number densities along the centerline
for the Mach 2 and Mach 6 flow conditions. It can be seen that the numer-
ical results predict the formation of the low-density region accurately, with
a excellent agreement with the analytical solutions obtained for this flow re-
gion, demonstrating the capability of the quantum algorithm to resolve the
considered binary-mixture flows accurately.

7.6. Free molecular flow escaping from rectangular container

As a final test case, the time-dependent flow out of a rectangular container
is considered. A 64×16 uniformly spaced mesh was used. Figure 12(a) shows
the initial condition, where a uniform gas density is assumed within the
container as well as in the rectangular throat, while the rest of the domain is
initialized with a vacuum. One half of the overall domain is considered, with a
symmetry boundary condition applied on the ’open’ right-hand side of shown
domain. The initial density and temperature are used as reference values, so
that initially gas density ρ = 1 and T = 1. The velocity-space discretization
employs a uniform 128 × 128 mesh, with boundaries [−4, 4]2 scaled with
most probable speed at reference temperature. The non-dimensional time
Tcycle = 32 for this integration, i.e. within one cycle a particle travelling at
the most probable speed will cover 32∆x. Figure 12 shows the flow developing
between T = 0 and t = Tcycle/4, while the development up to t = Tcycle/2
is shown in Figure 13. For all time instances, the non-dimensional density
and u−velocity are shown. As expected, the flow evacuates the container,
forming a jet coming out of the throat. Also, a rarefaction wave runs in the
opposite direction into the reservoir. Because of the collisionless nature of
the gas, no shock waves are formed. Furthermore, it can be seen that for
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the 128 × 128 velocity-space mesh, the output at timesteps not coinciding
with the end of a cycle does not lead to significant oscillations in the gas
density and velocity field. Therefore, the simplification made to facilitate
implementation on a quantum computer is clearly acceptable.

8. Conclusions and future work

The development of a quantum algorithm for the collisionless Boltzmann
equation was presented. A time-integration method based on the reservoir
technique was described in detail for one- and two-dimensional flows. Design
choices regarding the data structure were discussed along with quantum cir-
cuits implementing the convections steps in both x− and y−directions on a
uniform mesh. For the case of specular-reflection boundary conditions, the
quantum circuit implementation was detailed next. The extension to sim-
ulations involving multiple species was discussed, highlighting a key benefit
of the quantum algorithm in this context: no additional quantum gate op-
erations were found to be required when adding more species. Validation of
the developed algorithm was then presented for the free-molecular flow at
different Mach numbers around a rectangular body showing excellent agree-
ment with exact solutions applicable to the stagnation streamlines for this
problem. As an example for a relevant time-dependent flow, the flow out of
a rectangular domain into vacuum is considered. It was shown that despite
the simplifications made to the reservoir time-integration technique, results
with good accuracy and largely free of oscillations could be achieved. In fu-
ture work, the aspects of initializing the quantum state vector and obtaining
output efficiently need to be investigated further and in more detail. Fur-
thermore, the application to more complex flow problems will be considered,
along with a more detailed investigation of applications to design problems.
The challenging problem of extending the current method to kinetic problem
with inter-particle collisions forms a further important line of future work.
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Figure 12: Formation of jet out of rectangular container in two-dimensional domain sim-
ulated with quantum algorithm for collisionless Boltzmann equation. A 64× 16 uniformly
spaced mesh was used. Discrete-velocity method used 128×128 discrete-velocities. Initial
gas region has ρ and T at 1.0. Density is non-dimensionalized with initial density and
speed with most probably molecular speed at initial temperature.
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Figure 13: Formation of jet out of rectangular container in two-dimensional domain sim-
ulated with quantum algorithm for collisionless Boltzmann equation. A 64× 16 uniformly
spaced mesh was used. Discrete-velocity method used 128×128 discrete-velocities. Initial
gas region has ρ and T at 1.0. Density is non-dimensionalized with initial density and
speed with most probably molecular speed at initial temperature.
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