Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching

Wang, Y. et al. (2018) Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Advanced Materials, 30(28), 1800327. (doi: 10.1002/adma.201800327) (PMID:29782667)

Full text not currently available from Enlighten.

Abstract

The in‐depth understanding of ions' generation and movement inside all‐inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br− ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive‐switching effects. Verified by field‐emission scanning electron microscopy as well as energy‐dispersive X‐ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD‐based photonic resistive random‐access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD‐based RRAM with a p‐channel transistor, the novel application of an RRAM–gate field‐effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all‐inorganic perovskite QD‐based photonic resistive memory for successful logic application.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Vellaisamy, Professor Roy
Authors: Wang, Y., Lv, Z., Liao, Q., Shan, H., Chen, J., Zhou, Y., Zhou, L., Chen, X., Roy, V. A.L., Wang, Z., Xu, Z., Zeng, Y.-J., and Han, S.-T.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Advanced Materials
Publisher:Wiley
ISSN:0935-9648
ISSN (Online):1521-4095
Published Online:21 May 2018
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record