Dynamic evolution of permeability in response to chemo‐mechanical compaction

Macente, A. , Vanorio, T., Miller, K. J., Fusseis, F. and Butler, I. B. (2019) Dynamic evolution of permeability in response to chemo‐mechanical compaction. Journal of Geophysical Research: Solid Earth, 124(11), pp. 11204-11217. (doi: 10.1029/2019JB017750)

[img] Text
203641.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.



Pressure‐solution creep is an important fluid‐mediated deformation mechanism, causing chemo‐mechanical transformations and porosity and permeability changes in rocks. The presence of phyllosilicates, in particular, has previously been hypothesized to further reduce porosity and pore connectivity. Nevertheless, a full characterization of the spatio‐temporal evolution of permeability during this process has yet to be reported. A pure NaCl aggregate and a mixture of NaCl and biotite were deformed through pressure‐solution creep while monitoring their microstructural evolution through computed X‐ray micro‐tomography. The evolution of permeability and fluid velocity of the samples were computed by using the pore geometries from the X‐ray micro‐tomography as input for the Lattice‐Boltzmann modeling. The results indicate that, as deformation proceeds, porosity and permeability decrease in both samples. In the salt ‐biotite sample pressure solution creep causes the formation of a compaction band perpendicular to the direction of loading, forming a barrier for permeability. Along the other two directions, pore connectivity and permeability are retained in the marginal salt layers, making the sample strongly anisotropic. The presence of biotite controls the way pore coordination number evolves and hence, the connectivity of the pathways. Biotite flakes create an enhanced porosity decrease leading to compaction and reduction of pore connectivity. This reduction in porosity affects local stresses and local contact areas, reducing over time the driving force. According to a texture‐porosity process, the reduction in porosity causes salt ions to dissolve in the marginal salt and precipitate within the biotite‐bearing layer, where the bulk volume of salt grains increases over time.

Item Type:Articles
Additional Information:This work was supported by the NSF CAREER Award (EAR-1451345 to T.V.).
Glasgow Author(s) Enlighten ID:Macente, Dr Alice
Authors: Macente, A., Vanorio, T., Miller, K. J., Fusseis, F., and Butler, I. B.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Journal of Geophysical Research: Solid Earth
Publisher:American Geophysical Union
ISSN (Online):2169-9313
Published Online:11 November 2019
Copyright Holders:Copyright © 2019 The Authors
First Published:First published in Journal of Geophysical Research: Solid Earth 124(11): 11204-11217
Publisher Policy:Reproduced under a Creative Commons License
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record