Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media

Sherifova, S., Sommer, G., Viertler, C., Regitnig, P., Caranasos, T., Smith, M. A., Griffith, B. E., Ogden, R. W. and Holzapfel, G. A. (2019) Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomaterialia, 99, pp. 443-456. (doi: 10.1016/j.actbio.2019.08.038) (PMID:31465883) (PMCID:PMC6851440)

[img]
Preview
Text
202879.pdf - Published Version
Available under License Creative Commons Attribution.

4MB

Abstract

Current clinical practice for aneurysmatic interventions is often based on the maximum diameter of the vessel and/or on the growth rate, although rupture can occur at any diameter and growth rate, leading to fatality. For 27 medial samples obtained from 12 non-aneurysmatic (control) and 9 aneurysmatic human descending thoracic aortas we examined: the mechanical responses up to rupture using uniaxial extension tests of circumferential and longitudinal specimens; the structure of these tissues using second-harmonic imaging and histology, in particular, the content proportions of collagen, elastic fibers and smooth muscle cells in the media. It was found that the mean failure stresses were higher in the circumferential directions (Control-C 1474 kPa; Aneurysmatic-C 1446 kPa), than in the longitudinal directions (Aneurysmatic-L 735kPa; Control-L 579 kPa). This trend was the opposite to that observed for the mean collagen fiber directions measured from the loading axis (Control-L > Aneurysmatic-L > Aneurysmatic-C > Control-C), thus suggesting that the trend in the failure stress can in part be attributed to the collagen architecture. The difference in the mean values of the out-of-plane dispersion in the radial/longitudinal plane between the control and aneurysmatic groups was significant. The difference in the mean values of the mean fiber angle from the circumferential direction was also significantly different between the two groups. Most specimens showed delamination zones near the ruptured region in addition to ruptured collagen and elastic fibers. This study provides a basis for further studies on the microstructure and the uniaxial failure properties of (aneurysmatic) arterial walls towards realistic modeling and prediction of tissue failure.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Ogden, Professor Raymond and Griffith, Dr Boyce and Holzapfel, Professor Gerhard
Authors: Sherifova, S., Sommer, G., Viertler, C., Regitnig, P., Caranasos, T., Smith, M. A., Griffith, B. E., Ogden, R. W., and Holzapfel, G. A.
Subjects:Q Science > QA Mathematics
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Acta Biomaterialia
Publisher:Elsevier
ISSN:1742-7061
ISSN (Online):1878-7568
Published Online:26 August 2019
Copyright Holders:Copyright © 2020 The Authors
First Published:First published in Acta Biomaterialia 99: 443-456
Publisher Policy:Reproduced under a Creative Commons Licence

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
172141EPSRC Centre for Multiscale soft tissue mechanics with application to heart & cancerRaymond OgdenEngineering and Physical Sciences Research Council (EPSRC)EP/N014642/1M&S - Mathematics