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Summary. We propose a class of intrinsic Gaussian processes (in-GPs) for interpola-
tion, regression on manifolds with a primary focus on complex constrained domains or
irregular-shaped spaces arising as subsets or submanifolds of R, R2, R3 and beyond. For
example, in-GPs can accommodate spatial domains arising as complex subsets of Eu-
clidean space. in-GPs respect the potentially complex boundary or interior conditions as
well as the intrinsic geometry of the spaces. The key novelty of the proposed approach
is to utilise the relationship between heat kernels and the transition density of Brownian
motion on manifolds for constructing and approximating valid and computationally feasible
covariance kernels. This enables in-GPs to be practically applied in great generality, while
existing approaches for smoothing on constrained domains are limited to simple special
cases. The broad utilities of the in-GP approach are illustrated through simulation studies
and data examples.
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1. Introduction

In recent years it has become commonplace to collect data that are restricted to a com-
plex constrained space. For example, data may be collected in a spatial domain but
restricted to a complex or intricately structured region corresponding to a geographic
feature, such as a lake. To illustrate, refer to Figure 1(b), which plots satellite measure-
ments on chlorophyll levels in the Aral sea (Wood et al., 2008). In building a spatial
map of chlorophyll levels in this sea, and in conducting corresponding inferences and
prediction tasks, it is important to take into account the intrinsic geometry of the sea
and its complex boundary. Traditional smoothing or modelling methods that do not
respect the intrinsic geometry of the space, and in particular the boundary constraints,
may produce poor results.
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(b) Chlorophyll level in Aral sea.

(c) Swiss Roll (d) Bitten Torus

Fig. 1. Illustrative examples. In (a), a test function increases smoothly from the lower right to
the upper right within the U-shaped boundary. Remote sensed chlorophyll data in the Aral sea
from the SeaWifs satellite are shown in (b). The datasets for both (a) and (b) are from Wood
et al. (2008). The Swiss Roll in (c) is a spiralling band in a three-dimensional Euclidean space.
The Bitten Torus in (d) is constructed by removing the lower right part of a Torus. Synthetic
datasets are considered on the surface of (c) and (d). Details for constructing (c) and (d) are
available in the Supplementary Material.
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For example, it is crucial to take into account the fact that pairs of locations having
close Euclidean distance may be intrinsically far apart if separated by a land barrier.
Refer in particular to the locations near longitude 58.5 and 59 in the southern region of
the map in Figure 1(b). These locations have quite different chlorophyll levels due to the
land barrier. However, usual smoothing or modelling approaches that do not account for
the boundary would naturally provide close estimates of the chlorophyll level given their
close spatial vicinity. The goal of this article is to provide a general methodology that
can accommodate not just complex spatial subregions of R2 (refer also to the U-shaped
constraint in Figure 1(a)) but also complex subregions of higher-dimensional space (R3

and beyond) and constraints, such as the Swiss roll in Figure 1(c) and the Bitten Torus
in Figure 1(d).

To accommodate modelling on these broad and complex domains, we propose a novel
class of intrinsic Gaussian processes (in-GPs). An intrinsic Gaussian process refers to
a Gaussian process that employs the intrinsic Riemannian geometry of the manifold,
including the boundary features and interior conditions. Note that this intrinsic notion
of in-GPs is different from the intrinsic random functions defined in the seminal work of
Matheron (1973), which refer to processes that have a more general form of stationarity
than the usual second-order stationarity. in-GPs are designed to be useful in interpola-
tion, regression on manifolds, with a particular emphasis on complex or difficult regions
arising as submanifolds. A major challenge in constructing GPs on manifolds is choosing
a valid covariance kernel - this is a non-trivial problem and most of the focus has been
on developing covariance kernels specific to a particular manifold (e.g,. Guinness and
Fuentes (2016) consider low-dimensional spheres). Castillo et al. (2014) instead proposed
to use randomly rescaled solutions of the heat equation to define a valid covariance kernel
for reasonably broad classes of compact manifolds. They additionally provided lower and
upper bounds on contraction rates of the resulting posterior measure. Unfortunately,
they do not provide a methodology for implementing their approach in practice, and
their proposed heat kernels are computationally intractable.

This article proposes a practical and general in-GP methodology, which uses heat
kernels as covariance kernels. This is made possible by the major novel contribution
of the paper, which is to utilise connections between heat kernels and transition den-
sities of Brownian motion (BM) on manifolds to obtain algorithms for approximating
covariance kernels. Specifically, the covariance kernels are approximated by first simu-
lating a Brownian motion on the manifold or complex constrained space of interest, and
then evaluating the transition density of the Brownian motion. The heat kernel general-
izes the popular and well-studied squared exponential kernel to the manifold and arises
from the Laplace operator, thus fully exploiting the intrinsic geometry of the space. We
utilize a discretized version of Brownian motion on manifolds (without boundary) or
reflective Brownian motion (RBM) for a Riemannian manifold with boundary. RBMs
have been defined and thoroughly studied for Euclidean domains (Lions and Sznitman,
1984; Burdzy et al., 2004; Zhou et al., 2017). A C2 boundary guarantees the existence
and uniqueness of a RBM (remark 3 of Zhou et al. (2017)). The transition density
functions are the Neumann heat kernels of the domain (Xu, 1984).

Most current methods that can smooth noisy data over regions with a boundary can
only be applied to spaces that are subsets of R2; refer to Wood et al. (2008) and Ramsay
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(2002). Sangalli et al. (2013) extended Ramsay (2002)’s smoothing spline method to
model the brain surface arising as a subset of R3 by first discretising the surface. The
main idea in this literature is to develop smoothing splines that respect the boundary or
interior constraints. Our in-GP approach is fundamentally different conceptually, while
also having general applicability beyond two-dimensional examples. Although in-GPs
have an increasing computational cost as the dimensionality of the space increases, due
to the need to simulate Brownian motion, there is no discretisation of the space unlike
methods proposed in Ramsay (2002) and Sangalli et al. (2013).

The related work includes Pelletier (2005) who extend kernel regression to a general
Riemannian manifold. Bhattacharya and Dunson (2010) model a response and covari-
ate on a manifold jointly using a Dirichlet process mixture model. The focus of our
work on the other hand aims to generalise the powerful GP model to manifold-valued
data. Although GPs have been extensively used in statistics and machine learning (see
e.g., Rasmussen (2004)), these models can not be directly generalised to model data
on manifolds, such as irregular shape spaces, due to the difficulty of constructing valid
covariance kernels. Lin et al. (2018) propose extrinsic covariance kernels on general
manifolds by first embedding the manifolds onto a higher-dimensional Euclidean space,
and constructing a covariance kernel on the images after embedding. However, such
embeddings are not always available or easy to obtain for complex spaces.

Aumentado-Armstrong and Siddiqi (2017) adopt a related idea of estimating the heat
kernel for a sampled manifold (mesh or point cloud) from BM trajectories. No boundary
condition is considered. Their approach can be summarised in three steps: 1) Construct
a local surface for approximating the manifold using moving least squares. 2) Simulate
BM trajectories specific to a local surface using SDEs with a local metric tensor. In order
to move across different surfaces or charts, iteratively alternate between BM simulation
and project the process onto a local surface. 3) Estimate the heat kernel from the
BM trajectories using Kernel Density Estimation (KDE), expressed as a summation of
Gaussian kernels. Each term is calculated based on the Euclidean distance between
the BM sample paths and the target points. This is problematic when the Euclidean
distance is small but the geodesic is big; for example, U shaped domains or regions of
a manifold where the curvature is large. Ozakin and Gray (2009) show that the KDE
estimator is poor and biased in this context.

In our approach, we estimate the heat kernel by simulating BM sample paths on
manifolds with or without a boundary by using a global metric tensor. Our way of
constructing the heat kernel estimator is completely different from that of Aumentado-
Armstrong and Siddiqi (2017). Instead of using an approximation approach, such as
relying on KDE, we develop a direct approach to estimate the heat kernel based on the
definition of the BM transition probability on the manifold.

The paper is organised as follows. Section 2 introduces our construction of covariance
kernels on manifolds and explores the connection between the heat kernel on a Rieman-
nian manifold and the transition density of Brownian motion on the manifold. This
connection is utilised in developing practical algorithms for approximating the heat ker-
nel. Inference under in-GPs using the approximated heat kernel, including an extension
to sparse in-GPs, is explained in Section 2.4. Properties of the heat kernel estimator are
discussed in Section 2.5. Section 3 and 4 illustrate our in-GP methodology with various
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simulation and data examples. Section 5 contains a discussion. Computational cost and
algorithm complexity of the method are discussed in the Supplementary Material.

2. Intrinsic Gaussian process (in-GPs) on manifolds

2.1. in-GPs with heat kernel as the covariance kernel
We propose to construct intrinsic Gaussian processes (in-GPs) on manifolds and complex
constrained spaces using the heat kernel as the covariance kernel. To be more specific, let
M be a d-dimensional complete and orientable Riemannian manifold, ∂M its boundary
that is continuous and C1 almost everywhere, ∆s the Laplacian-Beltrami operator on
M , and δ the Dirac delta function. A heat kernel of M is a smooth function K(x, y, t)
on M ×M × R+ that satisfies the heat equation:

∂

∂t
Kheat(s0, s, t) =

1

2
∆sKheat(s0, s, t), lim

t→0
Kheat(s0, s, 0) = δ(s0, s), s0, s ∈M,

where the initial condition holds in a distributional sense (Berline et al., 2003). If ∂M is
empty, M admits a unique heat kernel. If ∂M is nonempty, multiple heat kernels exist,
but the heat kernel becomes unique when we also impose a suitable condition along ∂M ,
such as the Neumann boundary condition:

∂K

∂n
= 0 along ∂M, (1)

where n denotes a normal vector of ∂M .
Alternatively, a heat kernel can be viewed as an operator on L2(M):

f 7→
∫
M
Kheat(x, y, t)f(y)dy, (2)

and as such is equivalent to e
1

2
t∆f , with dy the infinitesimal Riemannian volume. The

heat kernel is symmetric with Kheat(x, y, t) = Kheat(y, x, t), and is a positive semi-
definite kernel on M for any fixed t, and thus can serve as a valid covariance kernel for a
Gaussian process on M . The Neumann boundary condition can be expressed as no heat
transfer across the boundary ∂M .

If M is a Euclidean space Rd, the heat kernel has a closed form corresponding to a
time-varying Gaussian function:

Kheat(x0,x, t) =
1

(2πt)d/2
exp

{
−||x0 − x||2

2t

}
, x ∈ Rd.

In addition, the heat kernel of Rd can be seen as the scaled version of a radial ba-
sis function (RBF) kernel (or the popular squared exponential kernel) under different
parametrisations:

KRBF (x0,x, l) = σ2
r exp

{
−||x0 − x||2

2l2

}
, x ∈ Rd.
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Letting Kt
heat(x, y) = Kheat(x, y, t), our in-GP uses Kt

heat(x, y) as the covariance
kernel, where the time parameter t of Kheat has the same effect as that of the length-
scale parameter l of KRBF , controlling the rate of decay of the covariance. By varying
the time parameter, one can vary the bumpiness of the realisations of the in-GP.

We use in-GPs to develop nonparametric regression and spatial process models on
complex constrained domains M . Let D = {(si, yi), i = 1, . . . , n} be the data, with n the
number of observations, si ∈ M the predictor or location value of observation i and yi
a corresponding response variable. We would like to do inferences on how the output y
varies with the input s, including predicting y values at new locations s∗ not represented
in the training dataset. Assuming Gaussian noise and a simple measurement structure,
we let

yi = f(si) + εi, εi ∼ N (0, σ2
noise), si ∈M, (3)

where σ2
noise is the variance of the noise. This model can be easily modified to include

parametric adjustment for covariates xi, and to accommodate non-Gaussian measure-
ments (e.g., having exponential family distributions). However, we focus on the simple
Gaussian case without covariates for simplicity in exposition.

Under an in-GP prior for the unknown function f : M → <, we have

p(f|s1, s2, ..., sn) = N (0,Σ), (4)

where f is a vector containing the realisations of f(·) at the sample points s1, . . . , sn,
fi = f(si), and Σ is the covariance matrix of these realisations induced by the in-
GP covariance kernel. In particular, the entries of Σ are obtained by evaluating the
covariance kernel at each pair of locations, that is,

Σij = σ2
hK

t
heat(si, sj). (5)

Following standard practice for GPs, this prior distribution is updated with information
in the response data to obtain a posterior distribution. Explicit expressions for the
resulting predictive distribution are provided in Section 2.3.

Remark 2.1. We added an additional hyperparameter σ2
h by rescaling the heat kernel

for extra flexibility. The parameter σ2
h plays a similar role as that of the magnitude

parameter of an RBF kernel in the Euclidean space. As mentioned above, the parameter
t replaces the length-scale parameter in an RBF or squared exponential kernel.

The posterior distribution of f evaluated at locations S = (s1, ..., sn) has the following
form:

f(s)|D ∼ GP (mpost,Σpost)

mpost = Σs,S(ΣS,S + σ2
noiseI)

−1y

Σpost = Σs,s − Σs,S(ΣS,S + σ2
noiseI)

−1ΣS,s,

where y = (y1, ..., yn).
One of the key challenges for inference using in-GPs with the construction in this

section is that closed form expressions for Kt
heat do not exist for general Riemannian
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manifolds. Explicit solutions are available only for very special manifolds, such as Eu-
clidean spaces and spheres. Therefore, for most cases, one can not explicitly evaluate
Kt
heat or the corresponding covariance matrices. To overcome this challenge and bypass

the need to solve the heat equation directly, we utilise the fact that heat kernels can
be interpreted as transition densities of Brownian motion (BM) on M . Our recipe is
to simulate Brownian motion on M , numerically evaluate the transition density of the
Brownian motion, and then use the evaluation to approximate the kernel Kt

heat(si, sj)
for any pair (si, sj). The simulation of BM on Riemannian manifolds is discussed in
Section 2.2. We also provide some background on Riemannian geometry and stochastic
calculus on manifolds.

2.2. Simulating Brownian motion on manifolds
In order to estimate the transition density of Brownian Motion (BM) on M , we first need
to simulate BM sample paths on M . Let φ : Rd →M be a smooth local parameterisation
of M around s0 ∈ M . A demonstration of φ is depicted in Figure 2. Let x(t0) ∈ Rd
be such that φ (x (t0)) = s0. In this paper, we assume the local parameterisation φ is
known. Examples of φ are given in the Supplementary Material for the Swiss roll and
Bitten torus. If φ is unknown, Tosi et al. (2914) provide an approach to learn φ by doing
nonlinear dimension reduction using latent variable models.

The Riemannian manifold M is equipped with a metric tensor g. For example, if M
is a submanifold of a Euclidean space, the induced metric tensor can be described in
local coordinates as follows:

gij(x) =
∂φ

∂xi
(x) · ∂φ

∂xj
(x). (6)

Based on its metric tensor, a Riemannian manifold has an associated Laplace Beltrami

s0

x(t0)

R2

�

x1

M

x2

Brownian motion on MStochastic process on R2

Fig. 2. BM on M and its equivalent stochastic process in local coordinate system in R2.
φ : R2 →M is a local parametrisation of M .

operator ∆s. In local coordinates, ∆s can be written as:

∆sf =
1√
G

∂

∂xj

(√
Ggij

∂f

∂xi

)
, (7)
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where G is the determinant of the matrix g and gij is the (i, j) element of its inverse.
As we have seen in section 2.1, the heat kernel is a solution of the heat equation. The
Laplace Beltrami operator is also the infinitesimal generator of Brownian Motion on the
manifold. Let s0 be the starting point of the Brownian Motion St on manifold M , and
introduce a function v : M → R. The expectation Es(v(St)) = u(s0, t) satisfies the heat
equation, ∂u/∂t = 1

2∆su, u(s0, 0) = v(s0).
As in Figure 2, simulating a sample path of BM on M with starting point s0 is

equivalent to simulating a stochastic process in Rd with starting point x(t0). The BM
on a Riemannian manifold in a local coordinate system is given as a system of stochastic
differential equations in the Ito form (Hsu, 1988, 2008):

dxi(t) =
1

2
G−1/2

d∑
j=1

∂

∂xj

(
gijG1/2

)
dt+

(
g−1/2dB(t)

)
i
, (8)

where g is the metric tensor of M , G is the determinant of g and B(t) represents an
independent BM in the Euclidean space. If M = Rd, g become an identity matrix and
xi(t) is the standard BM in Rd. The first term of equation (8) is related to the local
curvature of M . The second term relates to the position specific alignment of the BM
by transforming the standard BM B(t) in Rd based on the metric tensor g.

For simulating BM sample paths, the discrete form of equation (8) is first derived in
equation (9). Specifically, the Euler-Maruyama method is used (Kloeden and Platen,
1992; Lamberton and Lapeyre, 2007) which yields:

xi(t) = xi(t− 1) +
1

2

d∑
j=1

(
−g−1 ∂g

∂xj
g−1

)
ij

∆t+
1

4

d∑
j=1

(g−1)ijtr(g
−1 ∂g

∂xj
)∆t+

(
g−1/2dB(t)

)
i

= µ(xi(t− 1),∆t)i +
(√

∆tg−1/2zd
)
i
, (9)

where ∆t is the diffusion time of each step of the BM simulation and zd represents a d-
dimensional standard normal random variable. The discrete form of the above stochastic
differential equation defines the proposal mechanism of the BM with density

q (x(t)|x(t− 1)) = N
(
x(t)|µ (x (t− 1) ,∆t) ,∆tg−1

)
. (10)

This proposal makes BM move according to the metric tensor. If the manifold M has
boundary ∂M , we apply the Neumann boundary condition as in section 2.1 equation
(1). It implies the simulated sample paths only exist within the boundary.

The simulation of BM from the discretisation of SDEs at points of singularity in
the coordinate system (e.g. north pole of sphere) could be difficult. The drift term
(the dt term in equation 8) may become too large for the simulated step to be a good
approximation of the actual Brownian motion. A possible way to address this issue is
to limit the size of drift in each simulation step by reducing the time step adaptively.

2.3. Numerical approximation of the heat kernel: exploiting connections with the tran-
sition density of Brownian motion

To explain explicitly the equivalence between the heat kernel and the transition density
of the BM, let S(t) denote a BM on M started from s0 at time t = 0. The probability
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of S(t) ∈ A ⊂M , for any Borel set A, is given by

P
[
S(t) ∈ A |S(0) = s0

]
=

∫
A
Kt
heat(s0, s)ds, (11)

where the integral is defined with respect to the volume form of M . In this context,
the Neumann boundary condition on the heat kernel corresponds to BM reflecting at
the boundary. This can be approximated by pausing time and resampling the next step
until it stays within the boundary. The difference between reflecting and resampling is
small when the proposed BM step is not far from the boundary. Further discussions are
provided in the Supplementary Material.

We approximate the heat kernel via approximating the integral in equation (11) by
simulating BM sample paths and numerically evaluating the transition probability. Con-
sidering the BM {S(t) : t > 0} on M with the starting point S(0) = s0, we simulate N
sample paths. For any t > 0 and s ∈M , the probability of S(t) in a small neighbourhood
A of s can be estimated by counting how many BM sample paths reach A at time t.
Note that the BM diffusion time t works as the smoothing parameter. If t is large, the
BM has higher probability to reach the neighbourhood of the target point and leads to
higher covariance and vice versa. The transition probability is approximated as

P
[
S(t) ∈ A |S(0) = s0

]
≈ k

N
, (12)

where N is the number of simulated BM sample paths and k is the number of BM
sample paths which reach A at time t. An illustrative diagram is shown in Figure 3.
The transition density of S(t) at s is approximated as

Kt
heat(s0, s) ≈ K̂t = P

[
S(t) ∈ A |S(0) = s0

]
≈ 1

V (A)
· k
N
, (13)

where V (A) is the Riemannian volume of A, which is parameterised with the radius of

A, and K̂t is the estimated transition density. The error (numerical and Monte Carlo)
of this estimator of the heat kernel is discussed in Section 2.5.

Remark 2.2. We are not aware of any rigorous definition of Reflective BM for a
general Riemannian manifold with boundary. We conjecture that, given a suitable def-
inition of reflective Brownian motion in a general Riemannian manifold with boundary
(that generalizes the existing definition for a Euclidean domain), the RBM exists and is
unique if the boundary is C2 (a.e.), and its transition density functions are the Neumann
heat kernels.

The in-GP can be constructed using the approximation in (13). The covariance
matrix of the training data Σff can be explicitly obtained as follows: for the ith row
of Σff, N BM sample paths are simulated, with the starting point the ith data point
indexed by the corresponding row. For each element of the ith row, Σff, K̂t(si, sj) is
then estimated using (13). Algorithm 1 below provides details on how to generate Σff.

Optimisation of the kernel hyper parameters is discussed in section 2.6. Given in-GPs
as the prior, one can then update with the likelihood to obtain the posterior distribution
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Algorithm 1 Simulating Brownian motion sample paths for estimating Σ

1.1 Generate Brownian motion sample paths
for i = 1, . . . , Nd do . Nd is the size of data points

for j = 1, . . . , Nbm do . Nbm is No. of sample paths

for l = 1, . . . , T do . T steps Brownian motion, T ∗∆t → max diffusion time

do . keep proposing x until value is within boundary

q (xi,j(l)|xi,j(l − 1))← N
(
xi,j(l)|µ (xi,j (l − 1) ,∆t) ,∆tg−1

)
. use eqn 10

While xi,j is located outside of M
return x
1.2 Given a discrete choice of the diffusion time t ∈ {∆t, 2 ∗ ∆t, · · ·, T ∗ ∆t}, the
covariance matrix Σt is estimated based on the BM simulation from 1.1.
for i = 1, . . . , Nd do

for j = 1, . . . , Nd do
k = which( x(t) ∈ Aj ) . counting how many BM paths reach Aj

Kt
heat(si, sj) = k

NBM∗V (Aj) . use eqn 13

Σt
ij = σ2

hK
t
heat(si, sj)

return Σt

for inference. Let f∗ be a vector of values of f(·) at some test points not represented in
the training sample. The joint distribution of f and f∗ is:

p(f, f∗) = N

(
0,

[
Σff Σff∗

Σf∗f Σf∗f∗

])
, (14)

where Σf∗f is the covariance matrix for training and test data points. Each entry of the
covariance matrix of the joint distribution can be calculated using equation (15):

Σ
ij

= σ2
hK̂

t(si, sj). (15)

For the same row of Σff and Σff∗ , all elements can be estimated from the same patch
of BM simulations which share the same starting points. No additional BM simulations
are needed to estimate Σff∗ . The predictive distribution is derived by marginalising out
f:

p(f∗|y) =

∫
p(f∗f|y)df = N

(
Σf∗f

(
Σff + σ2

noiseI
)−1

y, Σf∗f∗ −
(
Σff + σ2

noiseI
)−1

Σff∗

)
.

If one is only interested in the predictive mean, only Σf∗f and Σff need to be estimated.
The predictive variance of test points requires computing the covariance matrix Σt

f∗f∗
.

This requires extra BM simulations whose starting points are the test points. This
could be computationally heavy if the number of test points is big. The sparse in-GP is
introduced in the next section to handle this problem.

2.4. Sparse in-GP on manifolds to reduce computation cost
The construction of in-GPs proposed in section 2.3 requires simulating BM sample paths
at each data point. Although the BM simulations are embarrassingly parallelizable, the
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computational cost can be high when the sample size is large. In addition, Gaussian
processes face the well-known problem of high computational complexity O(n3) due
to the inversion of the covariance matrix. In this section, we propose to combine in-
GPs with sparse Gaussian process approximations proposed by Quionero-Candela et al.
(2007). We call the resulting construction sparse in-GP. By employing sparse in-GP,
Brownian motion paths only need to be simulated starting at the induced points instead
of every data point. The intuition behind this is that a lot of training data are located
close together, implying that there may be a lot of redundant information. The inducing
point approximation summarizes the training data into a small set of inducing points,
so that inference could be done more efficiently.

The GP prior can be augmented with an additional set of m inducing points on M de-
noted as z = [z1, ..., zm], zi ∈M and we have m random variables u = [f(z1), ..., f(zm)].
The marginal prior distribution p(f∗, f) remains unchanged after the model is rewritten
in terms of the prior distribution p(u) and the conditional distribution p(f∗, f |u):

p(f∗, f) =

∫
p(f∗, f ,u)du =

∫
p(f∗, f |u)p(u)du, p(u) = N (0,Σuu), (16)

where the distribution of u is a multivariate Gaussian with mean zero and covariance ma-
trix Σuu. The above augmentation does not reduce the computational complexity. For
efficient inference, we adopt the Deterministic Inducing Conditional (DIC) approxima-
tion by Quionero-Candela et al. (2007), where f∗ and f are assumed to be conditionally
independent given u and the relations between any f and u are deterministic:

p(f∗, f) ≈ q(f∗, f) =

∫
q(f∗|u)q(f |u)p(u)du, (17)

q(f |u) = N(µf , 0), µf = ΣfuΣ−1
uuu, (18)

q(f∗|u) = N(µ∗, 0), µ∗ = Σf∗uΣ−1
uuu. (19)

The resulting sparse in-GP prior

q(f , f∗) = N

(
0,

[
Qff Qff∗

Qf∗f Qf∗f∗

])
= N

(
0,

[
ΣfuΣ−1

uuΣuf ΣfuΣ−1
uuΣuf∗

Σf∗uΣ−1
uuΣuf Σf∗uΣ−1

uuΣuf∗

])
,

where Q is defined as Qa,b = Σa,uΣ−1
u,uΣu,b. Using algorithm 1, Σuu, Σuf and Σuf∗ are

all obtained by estimating the transition density of BM simulation paths with inducing
points as the starting points.

We then only need to simulate the BM sample paths starting from the inducing
points. The total number of BM simulations is reduced from n×Nbm to m×Nbm, where
m is the number of inducing points, n is the number of data points and Nbm is the
number of Brownian motion sample paths given a single starting point. The complexity
of inverting the covariance matrix is decreased from O(n3) to O(n×m2).

With the above approximation, the marginal distribution of the corresponding GP
with a Gaussian likelihood is written as:

p(y|f) ≈ q(y|u) =

n∏
i=1

N
(
yi|ΣfiuΣ−1

uuu, σ
2
noiseI

)
. (20)
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The inducing points in the above marginal likelihood can be further marginalised out
by substituting the definition of its prior distribution (16):

p(y|sinduce) =

∫
q(y|u)p(u|sinduce)du = N

(
0,ΣfuΣ−1

uuΣuf + σ2
noiseI

)
. (21)

With the above model, we can also obtain the predictive distribution as

q(f∗|y) = N
(
Qf∗f

(
Qff + σ2I

)−1
y, Qf∗f∗ −Qf∗f (Qff + σ2I)−1Qff∗

)
. (22)

There is a huge literature on reducing the matrix inversion bottleneck in GP compu-
tation (Schwaighofer and Tresp, 2002; Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2006; Titsias, 2009). Recent approaches, such as Katzfuss and Guin-
ness (2017), can achieve linear time computation complexity under certain conditions.
However, such approaches require an analytical form of covariance kernel; to apply these
methods, we would need to simulate BM paths at the training and prediction points.
For this reason, we use DIC due to its avoidance of the need to estimate the diagonal
elements of the covariance matrix.

2.5. Monte Carlo and numerical error for approximation of heat kernel
In this subsection, we discuss the error of our heat kernel estimator as defined in equation
(13). We also consider numerical experiments in the special case of R in which case the
true heat kernel is known.

Consider a Brownian motion {S(t) : t > 0} on a Riemannian manifold M with
S(0) = s0. Fix some t > 0 and s ∈ M . The probability density of S(t) at s is
Kt
heat(s0, s). The true BM transition probability evaluated at a set A is given by p(A) =

P
[
S(t) ∈ A |S(0) = s0

]
=
∫
AK

t
heat(s0, s)ds. The error of our estimator K̂t consists of

two parts.
Part I: Numerical error. Choose local coordinates (r1, . . . , rd) near s with r1(s) =
. . . = rd(s) = 0 (for convenience of illustration) and a window size w. The heat kernel
Kt
heat can then be approximated by

Kt′ =
1

V (A)
P
[
|ri(S(t))| < w for i = 1, . . . , d

]
,

where V (A) denotes the volume of the region defined by {|ri| < w, i = 1, . . . , d}. By
Taylor expansion around s, we have

Kt′ = Kt
heat +O(w2). (23)

Therefore, the approximation error increases (quadratically) with w, i.e., the order of
magnitude of Kt′ −Kt

heat is O(w2).
If M = Rd, one can explicitly derive the error. Assuming the starting point of BM

s0 is the origin for simplicity, the heat kernel Kt
heat on Rd can be approximated as

Kt′ =
1

V (A)
P
[
‖S(t)− s‖ < w

]
=

1

V (A)

∫
A
Kt
heat(s0, s)ds,

=
1

(2w)d

∫ s1+w

s1−w
...

∫ sd+w

sd−w
exp

(
−
∑d

i=1 x
2
i

2t

)
dxd...dx1. (24)
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Taylor expansion of equation (24) yields

Kt′ −Kt
heat =

∑d
i=1 s

2
i − d · t

6t
· w

2

t
+O

(
w4

t2

)
. (25)

Assuming w is small compared to
√
t, the order of magnitude of this error is O(w2).

Remark 2.3. For convenience in computing the integral in equation (24), a hyper-
cube is used instead of the Euclidean ball. The order of magnitude of the error remains
the same.

Part II: Monte Carlo error. Given NBM number of BM sample paths, Kt′ is ap-
proximated by K̂t:

K̂t =
1

V (A)
· k

NBM
, where k ∼ Bin(NBM , V (A)Kt′). (26)

Recall that k is the number of sample paths within ‖S(t) − s‖ < w and has binomial
distribution with NBM trials and probability of success V (A)Kt′. Here k

NBM
is the

estimate of the transition probability of BM.
The expectation and the standard error of K̂t are:

E(K̂t(s0, s)) = Kt′ = Kt
heat(s0, s) +O(w2), (27)

sd
(
K̂t
)

=
1

NBMV (A)
·
√
NBM · V (A)Kt′(1− V (A)Kt′)

≤

√
Kt′

NBMV (A)
= O(N

−1/2
BM w−d/2), (28)

The standard deviation decreases with w and NBM . As w2 → 0, E(K̂t(s0, s)) =

Kt
heat(s0, s), and also as w−d

NBM
→ 0, V ar(K̂t(s0, s)) = 0. The estimator K̂t(s0, s) is

asymptotically unbiased and consistent.
The optimal order of magnitude of wopt can be calculated by minimising the sum

of the numerical error and Monte Carlo error as described above. Specifically, for an
arbitrary M , given a fixed number of BM simulations NBM , one has

L(w) = O(w2) +O(w−d/2). (29)

In particular if M is Rd, an explicit expression of the error is available:

L(w) =

√
K̂t

N · (2w)d
+Kt

heat

∑d
i=1 s

2
i − d · t

6t
· w

2

t
. (30)

Given a pre-specified error level, the order of the minimum number of BM simulations
N required can be derived. Refer to the Supplementary Material for the example of
estimating the heat kernel in a one-dimensional Euclidean space.

Numerical accuracy of estimates for the special case of R are shown in Table 1 and
Figure 4. The true heat kernel Kt

heat(0, s) is calculated using equation 1 in the Supple-
mentary Material at seventy equally spaced s ∈ (−9, 9). The diffusion time is fixed as
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M

s

S0

A

Fig. 3. BM on a manifold M . s0 is the starting point of BM sample paths. The solid lines
represent three independent BM sample paths from time 0 to t. The dashed circle represents a
set A, which is a neighbourhood of a point s on M . In this example, only the black sample path
reaches A at time t and the estimate of the transition probability p(S(t) ∈ A|S(0) = s0) is 1

3 .

Table 1. Comparison of estimates of BM transition density and the heat kernel in R. The table shows
the median absolute error and median relative error between the true heat kernel Kt

heat and the numerical
estimate of BM transition density. Values in brackets show the median absolute deviation.

No. Sample paths NBM median absolute error median relative error
3e+2 8.4e-3(8.9e-3) 24.6%(25.6e-1)
3e+3 2.8e-3 (2.9e-3) 6.4% (5.5e-2)
3e+4 7.2e-4 (6.8e-4) 1.6% (1.9e-2)
3e+5 4.7e-4 (3.8e-4) 1.3% (1.1e-2)

10. The transition probability of BM from the origin to the grid point s is estimated
by counting how many BM paths reach the neighbourhood of s ([s− w, s+ w]) at time
t. The transition density of BM at each grid point is then evaluated using equation
(13). Using equation 7 in the Supplementary Material the order of magnitude of wopt is
derived as 10−1. We fix the radius w as 0.5 in equation (13).

The number of BM simulation sample paths NBM are selected from three hundred
to three hundred thousand with increasing order of magnitude. The median of relative
error decreases as NBM increases and stabilises after thirty thousand. A similar pattern
is observed for the median absolute error. Derivations for the transition density estimate
of heat kernel in R2 are shown in the Supplementary Material.

2.6. Optimising the kernel hyper parameters and comparison with an RBF kernel in R
Given a diffusion time t, using algorithm 1 we can generate a covariance matrix Σt

ff for
the training data indexed by t. The log marginal likelihood function (over f) is given
by (Rasmussen, 2004):

p(y|s) =

∫
p(y|f)p(f|s)df = −1

2
yT (Σt

ff + σ2
noiseI)−1y − 1

2
log |Σt

ff + σ2
noiseI| −

Nd

2
log 2π.

(31)

The hyperparameters can be obtained by maximising the log of the marginal likelihood.
The maximum of the BM diffusion time is set as T ∗∆t, where T is a positive integer,
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Fig. 4. Comparison of estimates of BM transition density and the heat kernel in R. The blue line
represents the true heat kernel. Colored lines represent estimates of the BM transition density
given different number of BM simulations ranging from 300 to 3× 105.

Table 2. Comparison of estimates of kernel hyper parameters from Euclidean GP and in-GP in R.
Case Median estimates of l Median estimates of σr
Truth 1 1

Euclidean GP 1.13(0.16) 0.94(0.36)
in-GP 1.15(0.2) 0.94(0.38)
p value 0.91 0.85

and ∆t is the BM simulation time step as defined in (10). T covariance matrices Σ1...T
ff

can be generated based on the BM simulations. Optimisation of diffusion time t can
be done by selecting the corresponding Σt

ff that maximises the log marginal likelihood.
Estimation of σh given the smoothing parameter t follows using standard optimisation
routines, such as quasi-Newton. For the sparse in-GP, the likelihood function is replaced
by (21) and the hyper parameters can be obtained by similar procedures.

We compare the estimates of kernel hyperparameters from an Euclidean GP (the
standard GP in the Euclidean space) and the in-GP in R by applying both methods
to ten sets of test data. Data sets are generated by sampling 20 data points from a
multivariate normal distribution with mean zero and covariance Σtest. Σtest is produced
by a standard RBF kernel with l = 1 and σr = 1. In this case, the ground truth of the
hyperparameters of the heat kernel is known.

We simulate Nbm = 40, 000 BM sample paths for each testing data point. The
estimates of hyper parameters t and σh are obtained by maximising (31). For the case
of R, the two methods should produce very similar results, since the heat kernel is
equivalent to an RBF kernel in R.

The result is shown in Table 2 which records the true value and the median estimates
of kernel hyper parameter l and σ. Values in brackets show the median absolute devi-
ation. The error bounds provide insights about the level of error that is introduced by
random walk. The p-values of Wilcoxon tests indicate the difference in medians between
the two methods are not significant.
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3. Simulation studies

In this section, we carry out simulation studies for a regression model with true regression
functions defined on a U shape domain, a 2-dimensional Swiss Roll embedded in R3 and
the Bitten Torus. The performance of in-GP is compared to that of an Euclidean GP
(the standard GP as in Rasmussen (2004)) and the soap film smoother in Wood et al.
(2008) for the U shape example. For the Swiss Roll and Bitten torus examples, the
results from in-GP are compared with those from an Euclidean GP model. Examples
of BM sample paths on the U shape domain, Swiss Roll and Bitten Torus are shown in
Figure 5.

−1 0 1 2 3 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

True Function

x

y

(a) BM on U shape domain. (b) BM on Swiss roll. (c) BM on Bitten Torus

Fig. 5. Examples of BM sample paths are plotted as a black line on the U shape domain in
(a), a blue line on the Swiss Roll in (b) and a red line on the Bitten Torus in (c).

3.1. U shape example
A U shaped domain (see e.g., Wood (2001)), defined as a subset of R2, is plotted in
Figure 6(a). The value of a test or regression function (i.e. the colour of the map) varies
smoothly from the lower right corner to the upper right corner of the domain ranging
from -6 to 6. The black crosses represent 20 observations which were equally spaced in
both x and y directions within the domain of interest. The goal is to estimate the test
function and make predictions at 450 equally spaced grid points within the domain.

Since the U shaped domain is defined as a subset of R2, the mapping function φ
in equation (2) is a constant. Therefore, BM reduces to the standard BM in the two-
dimensional Euclidean space restricted within the boundary. When a proposed BM step
hits the boundary, the proposed move is rejected. New proposal steps will be made until
the proposed sample path locates within the boundary. The trajectory of a sample path
(black line) of the BM is shown in Figure 5(a) with the blue dot serving as the starting
location.
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Table 3. Comparison of the RMSE (root mean squared error) of predictive means for
different methods on the U-shape domain.The table shows the mean of RMSE over 50
datasets. Values in brackets show the standard deviation.

Case Euclidean GP in-GP soap film smoother
30db 1(0.01) 0.274(0.04) 0.271(0.22)
10db 1.36(0.17) 0.754(0.14) 0.747(0.37)

The heat map of the predictive mean of in-GP at the grid points is shown in Figure
6(e). The coloured contours of the prediction are similar to that of the true function in
Figure 6(a). The contours of the Euclidean GP predictive mean in Figure 6(c) are more
squashed, and the differences are exacerbated when certain observations are removed as
in Figure 6(b). It is clear that the Euclidean GP smooths across the gap between the
two arms of the domain (see Figure 6(d)). This is due to that fact that the upper arm
and lower arm are close in Euclidean distance. In contrast, the in-GP, which takes into
account the intrinsic geometry, does not smooth across the gap as seen in Figure 6(f).
Given a fixed diffusion time, the transition probability of BM from points in the lower
arm to points in the upper arm within the boundary is relatively small. This leads to
lower covariance between these two regions and more accurate predictions.

The U shaped domain example has also been used for evaluating the performance of
the soap film smoothers in Wood et al. (2008), in comparison with some other methods
such as thin plate splines and the method of Ramsay (2002). Comparisons made in
Wood et al. (2008) show that the soap film smoother outperforms the other methods. In
our study, the in-GP, Euclidean GP, and soap film smoother are compared for different
levels of signal-to-noise ratio. The values of the true function are perturbed by Gaussian
noise with a standard deviation of 0.1 and 1 (signal-to-noise ratios are 30db and 10db,
respectively) with 50 replicates for each noise level. For each of the replicates, different
methods are applied to estimate the test function at the grid points. The mean and
standard deviation of the mean-squared error (MSE) for these 50 replicates are reported
in Table 3. The soap film smoother is constructed using 10 inner knots and 10 cubic
splines. in-GP and soap film are both significantly better than Euclidean GP. There is no
substantial difference in terms of the mean MSE between the two methods. However the
standard deviation of the MSE for in-GP is substantially smaller for both noise levels.
This indicates the prediction of in-GP is more robust.

3.2. Swiss Roll
The in-GP model applies to general Riemannian manifolds and has much wider applica-
bility to complex spaces beyond subsets of R2. Here we consider a synthetic dataset on
a Swiss Roll which is two-dimensional manifold embedded in R3. The soap film method
is only appropriate for smoothing over regions of R2, and hence cannot be applied here.
A Swiss Roll is a spiralling band in a three-dimensional Euclidean space. A nonlinear
function f is defined on the surface of Swiss Roll with

Yi = f(xi, yi, zi) + εi,
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where xi, yi, zi are the coordinates of a point on the surface. The construction of the
Swiss Roll and the derivation of the metric tensor are shown in the Supplementary
Material.

The true function f is plotted in Figure 7(a). 20 equally spaced observations are
marked with black crosses. For better visualisation, the true function is plotted in the
unfolded Swiss Roll in the radius r and width z coordinates in Figure 7(b). The true
function values are indicated by colour and with contours at the grid points.
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(d) in-GP prediction

Fig. 7. Comparison of the Euclidean GP and in-GP on Swiss Roll. The true function and data
points (black dots) are plotted on the surface of Swiss Roll in (a). The true function is plotted
in the two-dimensional unfolded Swiss Roll with coordinates r and z in (b). The GP predictions
are plotted with contours in (c). The left end and right end of (c) marked by a blue dashed box
are quite different from (b) in colour. The in-GP prediction is shown in (d). The prediction at the
centre and the tail part of the Swiss Roll (right end and left end of (d)) has been improved.

We first applied an Euclidean GP to this example using an RBF kernel in R3. In
order to visualise the differences between the prediction and the true function, the GP
predictive mean is plotted in the unfolded Swiss Roll in Figure 7(c). The overall shape
of contours is more wiggly comparing to the true function in Figure 7(b). In addition,
the predictive mean is quite different from the truth in colour in certain regions. For
example, the left end of Figure 7(c) marked by the blue dashed box corresponding to
the centre of the Swiss Roll and the right end of Figure 7(c) corresponding to the tail
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of the Swiss Roll. The prediction performance of the Euclidean GP in these regions is
poor. This is because the Euclidean distance between the two regions is small as shown
in Figure 7(a) while the geodesic distance between them (defined on the surface of Swiss
Roll) is big.

In applying the in-GP to these data, the BM sample paths can be simulated using
equation (9) using the metric tensor of the Swill Roll. In particular, BM on the Swiss
Roll can be modelled as the stochastic differential equation:

dr(t) =
−2r

(1 + r2)2
dt+

1

2

2r

(1 + r2)2
dt+ (1 + r2)−1/2dBr(t), (32)

dz(t) = dBz(t), (33)

where Br(t) and Bz(t) are two independent BMs in Euclidean space. A trace plot of a
single BM sample path is shown in Figure 5(b). Following the procedure introduced in
section 2.1, the predictive mean of in-GP is shown in Figure 7(d). The overall shape of
the contour of the predictive mean is similar to that of the true function. The prediction
at the centre and tail part of the Swiss Roll has been improved comparing to the results
of the Euclidean GP. The root mean square error is calculated between the predictive
mean and the true value at the grid points. It has been reduced from 0.53 (Euclidean
GP) to 0.29 for the in-GP. The Neumann condition states that at any boundary point
the heat kernel is stationary along the normal direction. This directly implies that the
level curves of the in-GP prediction are orthogonal to the boundary. However, when the
training data are far from the boundary, the level curve can be parallel to the boundary.
For example, the right part of Figure 7 (d) corresponds to the tail part of the Swiss Roll.
When r is big the distance on the surface of the Swiss Roll is bigger. The training data
are far away from the boundary in the tail, so in-GP prediction tends to be close to the
prior mean.

3.3. Bitten Torus
Here we consider another more substantial example: a Bitten Torus. The Torus is a
two-dimensional manifold embedded in R3. The three-dimensional coordinates can be
parametrised by four variables: r−radius of tube, R−distance from centre of the tube
to the centre of the torus, and (θ, φ) angles to parametrise the two full circles with θ for
angle of torus and φ for angle of tube. In our case, we fix R and r and vary θ and φ. We
removed the lower right part to construct the Bitten Torus. The Bitten Torus is not as
‘flat’ as the other examples considered above.

The value of the test function (i.e. the colour of the map, low value in dark blue and
high value in dark red in Figure 8(a)) increases smoothly from 0.57 to 5.5 on the surface
of the Bitten Torus. The true function and the noisy observations are plotted in Figure
8(a). 19 observations are marked with orange balls. 18 of the observations are evenly
spaced and one additional observation is located near the centre of the Bitten Torus.
Similar to the Swiss Roll example, the nonlinear function f is defined on the surface of
the Bitten Torus with

Yi = f(xi, yi, zi) + εi,
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Table 4. Comparison of the RMSE of predictive means of two meth-
ods on the Bitten Torus. The table shows the mean of RMSE over 50
datasets. Values in bracket show the standard deviation.

Case Euclidean GP in-GP
30db 167.3(11.7) 25.8(11.6)
10db 229.2(93.4) 74.6(32.7)

where xi, yi, zi are the coordinates of a point on the surface. More details on construction
of the Torus and the derivation of the metric tensor are shown in the Supplementary
Material. A demonstration of the BM on the Bitten Torus is shown in Figure 5(c).

We first applied an Euclidean GP to this example using an RBF kernel in R3. The
GP predictive mean is plotted in Figure 8(b) with colour. Compared to the true function
in Figure 8(a) , the GP predictive mean is brighter (the colour is similar to yellow) in
the centre area. The Euclidean distance between a data point and a grid point in the
centre area is smaller than the geodesic distance on the Torus surface. The RBF kernel
assigns bigger covariances between these points which makes the data point in the centre
dominate the region.

By applying the in-GP to these data, the BM sample paths can be simulated using
equation (9) with the metric tensor of the Bitten Torus. In particular, BM on the Bitten
Torus can be modelled via the stochastic differential equations:

dθ(t) = −1

2
r−1 sin θ(R+ r cos θ)−1dt+ r−1dBθ(t) (34)

dφ(t) = |(R+ r cos θ)−1|dBφ(t). (35)

A trace plot of a single BM sample path is shown in Figure 5(c). Following the
procedure in section 2.1, the predictive mean of in-GP is plotted in Figure 8(c). The
in-GP prediction in the centre area looks more similar to the true function in Figure
8(a). Also the colour in the region near the lower bound is dark red, which is more
similar to the true function comparing to the GP prediction in Figure 8(b).

For visualisation convenience, we have also plotted the function in two dimensions of
φ (angle of tube) and θ (angle of torus) in Figure 8(d). The differences of the prediction
in the centre area are clearer from the 2D contour plot of GP prediction in Figure 8(e)
and in-GP prediction in Figure 8(f). In the 2D contour plots, the distance between θ = 0
and θ = 2π is 2π in R2. However, given a fixed φ, θ = 0 and θ = 2π represent the same
point on the Torus and the distance between them is zero. Therefore, methods such as
Sampson and Guttorp (1992) mapping the domain with a diffeomorphism to a regular
region of Rk can lead to a big error for this case.

The performance of the Euclidean GP and in-GP are compared by varying the noise
with different signal-to-noise ratios. The values of the true function are perturbed by
Gaussian noise (30db and 10db) with 50 replicates for each noise level. For each of the
replicates, different methods are applied to estimate the test function at some equally
spaced grid points. The mean and standard deviation of the MSE for these 50 replicates
are reported in Table 4. The prediction of in-GP is significantly better at all noise levels.
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We have also carried out experiments by removing the data point from the centre of
the Torus. Details on more comparison results are also provided in the Supplementary
Material.

4. Application to chlorophyll data in Aral sea

In this section, we consider an analysis of remotely-sensed chlorophyll data at 485 lo-
cations in the Aral sea. The data are available from the gamair package (Wood, 2006)
and are plotted in Figure 9(a). The level of chlorophyll concentration is represented by
the intensity of the colour. The chlorophyll data from the satellite sensors are noisy and
vary smoothly within the boundary but not across the gap corresponding to the isthmus
of the peninsula. We applied different methods to estimate the spatial pattern of the
chlorophyll density.

The log of chlorophyll concentration is modelled as a function of the latitude and
longitude coordinates of the measurement locations:

chli = f(loni, lati) + εi,

where loni and lati are standardised by subtracting the mean.
In order to reduce the computation cost, the sparse in-GP from section 2.4 is applied.

42 inducing points are introduced that are equally spaced within the boundary of the
Aral sea (represented by small triangles in Figure 9(e)). The number of BM sample
paths has been reduced from 485 × NBM to 42 × NBM , where NBM is 20,000 in this
example.

The predictive mean of the Euclidean GP is shown in Figure 9(c). As expected, the
Euclidean GP smoothes across the isthmus of the central peninsula. Relatively high
levels of chlorophyll concentration are estimated for the southern part of the eastern
shore of the western basin of the sea, while all observations in this region have rather
low concentrations. Similarly a decline in chlorophyll level towards the southern half of
the western shore of the eastern basin is estimated, which is different from the pattern
of the data in the region. On the other hand, the predictive mean using sparse in-GP
does not produce these artefacts (see Figure 9(e)) and tracks the data pattern better.
The values of the predictive variance are plotted as a heat map in Figure 1(a) in the
Supplementary Material. The level curves are orthogonal to the boundary in the north
and east part of Aral sea in Figure 9(e). The inducing points are more sparse in the west
part of the Aral sea. Approximation errors, due to insufficiently dense inducing points
and/or Monte Carlo erros in approximating reflective Brownian motion with resampling,
can lead to non-orhtogonality in some cases.

These artefacts become even more pronounced when the coverage of the data is
uneven. In Figure 9(b) we removed most of the data points in the southern part of the
western basin of the sea, and the same models are applied to this uneven dataset. Figure
9(d) shows the Euclidean GP extrapolation across the isthmus from the eastern basin of
the sea. In contrast, the sparse in-GP estimates as plotted in Figure 9(f) do not seem to
be affected by the data from the eastern side of the isthmus. The values of the predictive
variance are plotted as a heat map in Figure 1(b) in the Supplementary Material.
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Since most of the data points in the southern part of the western basin of the sea
have been removed, the values of the variance estimates have increased in this region. In
order to compare with the soap film approach, we divide the datasets into ten equal size
batches randomly and iteratively pick one batch as the training data to make prediction
for the other nine batches. The mean RMSE for in-GP is 17.9 with standard deviation
0.71. The mean RMSE for the soap film method is 17.2 with standard deviation 1.72.
The statistical test shows no significant difference between these two methods. However,
the standard deviation of RMSE for the in-GP is much smaller.

5. Discussion

Our work proposes a novel class of intrinsic Gaussian processes on manifolds and complex
constrained domains employing the equivalence relationship between heat kernels and
the transition density of Brownian motions on manifolds. One of the key features of
the in-GP is to fully incorporate the intrinsic geometry of the spaces for inference while
respecting the potentially complex boundary or interior constraints. To reduce the
computational cost of simulating BM sample paths when the sample size is large, sparse
in-GPs are developed leveraging ideas from the literature on fast computation in GPs in
Euclidean spaces. The results in section 3 and 4 indicate that in-GP achieves significant
improvement over usual GPs. Although we did not conduct a formal asymptotic study
for in-GPs, with insights gained from the Euclidean GP with squared exponential kernel
in the Euclidean space (see, e.g., van der Vaart and van Zanten (2009)), we expect in-
GPs to yield posterior consistency with respect to appropriate neighbourhoods of the
true regression function f0. The focus of this article has been on developing in-GPs on
manifolds with known metric tensors. There has been abundant interest in learning of
unknown lower-dimensional manifold structure in high-dimensional data. in-GPs can be
combined with these approaches for performing supervised learning on lower-dimensional
latent manifolds.

Codes and Supplementary Material

R code implementation of examples in Sections 3 and 4 are available on Github reposi-
tory: https://github.com/mu2013/Intrinsic-GP-on-complex-constrained-domain.
The Supplementary Material includes a description on the choice of the sample and win-
dow sizes for estimating the heat kernel in R and R2. It also provides some details
on the Brownian motions on the Swiss Roll and the Bitten Torus. A discussion on
the differences between reflecting and resampling for the Brownian motion is also pro-
vided. The last section of the Supplementary Material is devoted to the discussion of
the computational cost and algorithm complexity.
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