
 

 
 

 

 

Orton, R. J., Wright, C. F., King, D. P. and Haydon, D. T. (2020) Estimating viral 

bottleneck sizes for FMDV transmission within and between hosts and implications for 

the rate of viral evolution. Interface Focus, 10, 20190066.  

(doi: 10.1098/rsfs.2019.0066)  

 

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/201919/ 
      

 
 
 
 
 
 

Deposited on: 29 October 2019 

 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://dx.doi.org/10.1098/rsfs.2019.0066
http://eprints.gla.ac.uk/201919/
http://eprints.gla.ac.uk/


 1 

Estimating viral bottleneck sizes for FMDV transmission within and between hosts and 

implications for the rate of viral evolution 

 

Authors 

 

Richard J Orton*1,2, Caroline F Wright*3, Donald P King3, and Daniel T Haydon1+ 

 

*: Contributed equally 

 

1: Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, 

Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK 

 

2: MRC – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 

464 Bearsden Road, University of Glasgow, Glasgow G61 1QH, UK 

 

3: The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK 

 

+: Corresponding author 

Prof. Daniel T Haydon 

Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, 

Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK 

Daniel.Haydon@glasgow.ac.uk 

  



 2 

 

Abstract 

 

RNA viruses exist as populations of closely related genomes, characterized by a high 

diversity of low-frequency variants. As viral genomes from one population disperse to 

establish new sites of replication, the fate of these low-frequency variants depends to a large 

extent on the size of the founding population. Focusing on foot-and-mouth disease virus we 

conjecture that variants are more likely to be transmitted through wide bottlenecks, but more 

likely to approach fixation in new populations following narrow bottlenecks; therefore the 

longer-term rate of accumulation of ‘nearly-neutral’ variants at high frequencies is likely to 

be inversely related to the bottleneck size. We examine this conjecture in vivo by estimating 

bottleneck sizes relating ‘parent’ and ‘daughter’ populations observed at different scales 

ranging from within-host to between host (within the same herd, and in different herds) using 

a previously established method.  Within hosts, we find bottleneck sizes to range from 5-20 

viral genomes between populations transmitted from the pharynx to the serum, and from 4-54 

between serum and lesion populations. Between hosts, we find bottleneck sizes to range from 

2-39, suggesting inter-host bottlenecks are of a similar size to intra-host bottlenecks.  We 

establish a statistically significant negative relationship between the probability of genomic 

consensus level change and bottleneck size, and present a simple sampling model that 

captures this empirical relationship. We also present a novel in vitro experiment to 

investigate the impact of bottleneck size on the frequency of mutations within FMDV 

populations, demonstrate that variant frequency in a population increases more rapidly during 

small population passages, and provide evidence for positive selection during the passage of 

large populations. 
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1: Background  

 

Foot-and-mouth disease virus (FMDV) is a positive sense RNA virus, a member of the 

Picornaviridae family (1), and the causative agent of the highly contagious foot-and-mouth 

disease (FMD).  The genome of FMDV is a single sequence of positive sense RNA, length 

~8,400 nucleotides.  RNA viruses such as FMDV exist as populations of closely related 

genomes as a consequence of the poor proofreading ability of their RNA dependent RNA 

polymerase, with the error rate reported to be of the order of 10-3 to 10-5 mutations per 

nucleotide copied (2-5). This confers a high degree of genetic heterogeneity on RNA virus 

populations, which is thought to favour adaptability to different environments, hosts, and 

drug treatments. High Throughput Sequencing (HTS) is now routinely used to interrogate 

FMDV-positive samples and investigate the diversity contained within these viral 

populations (6-8). 

 

An important factor which determines the infectivity of animal viruses is the presence of 

suitable cellular surface receptors for attachment and internalization. The epithelial cell 

expressed heterodimer, integrin, has been shown to be the cellular receptor for FMDV in vivo 

(9-11). However, (12) observed that the glycosaminoglycan, heparan sulphate (HS), could 

mediate the interaction of FMDV serotype O with cells in culture. FMDV infected cattle 

typically show clinical signs 2-6 days post exposure that include vesicles on the coronary 

bands of the feet, in the mouth, on the tongue and teats (13). Although alternative primary 

sites of replication have been studied (14), in cattle, rapid dissemination of FMDV from host 

entry most likely follows initial replication in the pharyngeal area (15), passing into systemic 

circulation (16-18), where the virus is not thought to replicate. From there, the virus is 

transported to other distant, non-contiguous epithelia, including those of the feet, where the 

virus can once again replicate (19). As a consequence of this establishment of new local foci, 

the viral population passes through intra-host bottlenecks. Subsequent transmission of virus 

to a naïve host (via inter-host bottlenecks) most frequently occurs shortly after the appearance 

of clinical signs (20) when an infected individual can secrete large amounts of viral particles 

into the environment.  

 

Much of the genetic variation within FMDV populations is thought to be under nearly neutral 

selection or varying levels of purifying selection, with evidence for positive selection 
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observed in only a small fraction of capsid codons perhaps in response to interaction with the 

host immune system (21). However, novel variants continually arise, increasing from very 

low frequencies to frequencies greater than 0.5 in HTS alignments (consensus level 

mutations) with an average of about 3 such consensus mutations reported to arise between 

individuals sequentially infected with FMDV (22). The potential for novel mutations within a 

viral population to spread both within and between hosts is heavily dependent on the size of 

the transmission bottleneck (15, 23-25). If a transmission bottleneck is wide, numerous low 

frequency variants present in the ‘parent’ population can be transmitted to the ‘daughter’ 

population, facilitating their subsequent spread through the host population (25, 26). In 

contrast, if a transmission bottleneck is narrow, few low frequency variants in the parent will 

pass to the daughter, but through virtue of the narrow bottleneck those that do will have a 

higher chance of representation in the daughter population at a disproportionately higher 

frequency. Indeed, variants that are rare in the parent population may achieve consensus level 

in daughter populations founded through narrow bottlenecks. Thus, bottleneck size is likely 

to have a bearing on the rate at which the molecular clocks tick, with potentially important 

implications for the rate of evolution of RNA viruses. 

 

One of the best studied viruses in relation to quantification of transmission bottlenecks is 

influenza A virus (IAV). Narrow transmission bottlenecks have been reported in 

experimental infections of ferrets (27, 28), whilst wide bottlenecks have been reported in 

horses enabling the transmission of numerous low frequency variants (29, 30). Recently, 

novel computational methods have been developed to quantify the size of transmission 

bottlenecks utilizing viral HTS data and the variants present in parent and daughter 

populations (25, 31). In humans, inter-host IAV bottleneck reports are slightly conflicting, 

with some studies estimating wide bottlenecks of between 200-250 viral genomes (31, 32), 

whilst another study estimated narrow bottlenecks of between 1-2 viral genomes (25), albeit 

on a different data set; however, re-analysis of the wider bottleneck data set has indicated 

some issues with the data (33). HTS has also been used to provide initial evidence for 

bottleneck driven diversification of norovirus populations (34), as well as for determining a 

narrow inter-host bottleneck of only 1-3 viral genomes for hepatitis C virus (35, 36), and HIV 

(37) transmission events. However, few studies have investigated bottlenecks in FMDV (38, 

39), and to date, there has been little work specifically quantifying the size of FMDV 

bottlenecks, nor on comparing bottlenecks across the various scales of transmission. 

Bottlenecks control how much genetic information from one population founds another, and 
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quantification of bottlenecks is therefore essential for our understanding of how FMDV 

transmits and evolves. 

 

There have been numerous studies investigating the effect of bottleneck size on viral fitness 

and population diversity in vitro, particularly using plaque-to-plaque transfers. As a result of 

genetic drift, mutations may more rapidly approach fixation in small founding populations by 

chance and, if deleterious, can lead to the decline in the replicative ability of the daughter 

population. Bottleneck associated decline in viral population fitness has been demonstrated 

experimentally, using this technique, for a range of RNA viruses (40-43). This fitness loss 

induced by bottleneck effects (termed Muller’s ratchet) has also been reported during serial 

contact transmission of FMDV in pigs (38). Furthermore, it has been demonstrated for a 

range of viruses that the serial passage of small heterogenous populations through sequential 

bottlenecks results in reduced diversity (30, 44-47). In contrast, the serial passage of 

relatively large populations of heterogeneous viruses is generally accompanied by an overall 

gain in population fitness (39, 48, 49), possibly explained by competitive optimization 

between different mutants within the viral swarm (49). In some studies, bottleneck size is 

controlled experimentally by varying the multiplicity of infection (MOI – the ratio of viruses 

to cells in the initial culture) between 0.01-0.1 (low) and 1-10 (high) (39, 49). But tighter 

experimental control is maintained by varying the size of the founding populations whilst 

holding MOI constant and requires using flasks of an appropriate size for each population 

size (50). Positive selection has also been observed during large population passages but not 

during narrower more bottlenecked transfers (39).  

 

In this study, we first analyse existing HTS data from controlled and natural FMDV 

transmission chains to quantify the transmission bottlenecks arising at different scales.  

Parent–daughter populations were examined within single hosts, and between hosts that were 

in the same herd (infected under controlled conditions) and in different herds (infected during 

the UK 2001 outbreak). We also present a simple model to investigate how bottleneck size 

can affect observed consensus level changes and thus in principle the observed molecular 

clock rate. We then present the results of a novel in vitro experiment, that utilises HTS to 

dissect and compare the populations of FMDV passaged through serial narrow bottlenecks to 

FMDV populations passaged through serial wide bottlenecks; importantly, MOI was kept 

constant between the two passages. The aim of this study was to use these in vivo and in vitro 
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experiments to explore the hypothesis that mutations will reach consensus-level more rapidly 

in populations during more severely bottlenecked transmissions.  

 

2: Methods 

 

2.1 Data from an experimental transmission chain 

 

HTS data generated from experimental studies in cattle (6, 7, 51) were used to investigate 

both intra-host and inter-host transmission. For full details see (6, 7), but briefly 21 samples 

from a chain of sequentially infected animals were ultra-deep sequenced on the Illumina 

Genome Analyzer platform. Animal 1 (A1) was inoculated intradermolingually with FMDV 

(O1BFS 1860 at 105.7 TCID50). The inoculum was derived from a bovine tongue vesicle 

specimen that had been passaged extensively in cell culture (52), previous analysis showed 

that the virus quickly reverts from using HS as a cellular receptor in the first animal in the 

chain, with dNdS ratios also falling below 1 after the first animal (7).  In addition, entropy 

analysis showed an immediate increase from the initial inoculum, followed by variation 

between samples from the time of first sampling onwards, with no temporal trend apparent,  

(7), and with diversity levels comparable to samples from the UK 2001 outbreak (see 

Supplementary Information).. Twenty-four hours post needle-challenge, A1 was used to 

challenge naïve calf A2 by direct contact for a total of 4 days. The transmission chain was 

subsequently maintained for a further two cycles by first placing infected A2 in direct contact 

with a naïve calf (A3) for 24h, and then placing infected A3 in direct contact with a further 

naïve calf (A5) for 14 days. FMDV positive samples were normalised to 106
 copies of FMDV 

RNA/L prior to RT-PCR amplification to create two long overlapping fragments of 4,065 

bp (PCR1) and 4,033bp (PCR2). Samples were then sequenced twice on an Illumina Genome 

Analyzer IIx to generate single end reads of 70-73nt. For the analyses presented here, reads 

were filtered using an average quality of Q30, and the first and last 5 bases of reads were 

removed due to elevated mismatches caused by indels (6, 7). Reads were then aligned to the 

FMDV reference genome O1BFS1860 (GenBank accession EU448369) using bwa-mem (53), 

variants were identified using DiversiTools, (http://josephhughes.github.io/DiversiTools/) 

and only variants observed above a 0.5% frequency threshold, based on RT-PCR clone 

control data (54), and outside of primer regions were included in the analyses. Although 

samples were previously sequenced in duplicate, for this analysis we only consider the first 

http://josephhughes.github.io/DiversiTools/
http://josephhughes.github.io/DiversiTools/
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replicate of each sample to facilitate comparison with data from other scales which are only 

sequenced once. 

 

FMDV infection within the host is believed to transmit from the pharynx, through the blood, 

and to the epithelia. Although simplistic, intra-host samples were split into parent-daughter 

pairs to reflect this (probang-to-serum and serum-to-lesion), as well as linking multiple 

probang (probang-to-probang) and serum (serum-to-serum) samples from the same animal 

into temporal parent-daughter pairs. For probang-to-serum pairs, for each potential daughter 

serum sample in an individual animal, the nearest previous probang sample (in days) from the 

same animal is designated the parent. For serum-to-lesion samples, for each daughter lesion 

sample in an animal, the serum sample with the largest estimated bottleneck to the lesion 

sample is designated the parent. For inter-host parent-daughter pairs, the earliest probang 

sample from the receiving animal is designated the daughter, whilst the parent sample is 

identified from the donor animal as the sample with the largest estimated bottleneck to the 

daughter sample.  

 

2.2 Data from the UK 2001 outbreak 

 

Five premises from the Darlington cluster of the 2001 outbreak of FMDV in the UK were 

deep sequenced. The five infected premises (IPs) are labelled A, B, C, K, and N, as 

designated in (52), and constitute three inferred farm-to-farm transmission events (K-C, K-B, 

and A-N) previously determined (52, 55); all samples had their genomes Sanger sequenced 

previously (52). Although at a different scale, a farm-to-farm transmission event is essentially 

an inter-host transmission event. These samples were sequenced using the same 

standardisation, reverse transcription and PCR protocols described above in section 2.1. 

However, although both PCR fragments were attempted, only PCR1 was successful and sent 

for sequencing on an Illumina MiSeq to generate paired end reads of 151nt. Reads were 

processed and analysed as described in section 2.1.  

 

2.3 Bottleneck Quantification 

 

We used the beta-binomial sampling method developed by (31), and applied in (25), to infer 

bottleneck sizes between parent and daughter samples; see the Supplementary Information 

and (31) for full details. It is important to note that the method does not determine the number 
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of viral genomes passing between parent and daughter, but the number of viral genomes that 

pass into the daughter and contribute genetically to the viral population that is being 

sequenced. The method is similar to a standard presence/absence model, but allows variant 

frequencies in the daughter host to change between the time of founding and the time of 

sampling (to account for the stochasticity of viral replication dynamics in the early stages of 

infection). The method is insensitive to the time interval between transmission and sampling, 

but determined by the size of the founding population (Nb) and the number of variant 

genomes present in it.  It is assumed that the variant frequency in the parent remains constant 

between sampling and transmission (25).  We report the maximum likelihood estimates 

(MLE) of bottlenecks with associated 95% confidence intervals. 

 

2.4 Relating bottleneck size to consensus mutations 

 

To investigate whether bottleneck size will have an influence on consensus level differences 

between a parent and daughter, we utilise the binomial distribution. The probability that a 

variant at site i in the parent is represented at a consensus frequency of 50% or more in the 

bottleneck population (pi,c) is modelled as: 

 

𝑝𝑖,𝑐 = ∑ (
𝑁𝑏

𝑗
) (1 − 𝑉𝑃,𝑖)

𝑁𝑏−𝑗𝑁𝑏
𝑗=𝑁𝑏/2

𝑉𝑃,𝑖
𝑗     [Equation 1] 

 

where VP,i is the variant frequency at genome position i.  The expected number of consensus 

level differences between parent and daughter populations (D) is predicted by ∑ 𝑝𝑖,𝑐
𝑆
𝑖=1 , 

where S is the number of nucleotide positions considered. 

 

The number of consensus level differences between parent and daughter populations was 

related to estimated bottleneck size using a generalized linear model (glm) with poisson error 

in R (version 3.3.3). Significance was determined using a likelihood ratio test comparing to 

the intercept only model. 

 

2.5 In vitro bottleneck experiment 

 

FMDV was subjected to two different passage series in vitro. One passage series was 

propagated through three serial narrow bottleneck transmissions while the other was through 
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three wide bottleneck transmissions. Bottleneck size was controlled by varying the magnitude 

of the viral population transferred at each cell-culture passage. However, a requirement of 

generating comparable results is that the MOI is maintained at a constant level regardless of 

bottleneck size, and to achieve this the number of cells available for infection was 

manipulated by using different sized cell-culture vessels: T175 flasks (175cm2, 2x107 cells) 

for the large (L) populations with wide bottlenecks, and 96 well, flat bottomed ELISA plates 

(0.3cm2, 3.4 x 104 cells) for the small (S) populations with narrow bottlenecks. The virus used 

was rescued from a plasmid containing full-length FMDV O1Kaufbeuren cDNA (pT7S3) 

(56). This infectious copy was a cell-culture-adapted B64 strain of the O1Kaufbeuren virus 

(O1K B64) with the ability to utilize cell surface HS molecules as receptors (57). After 

transcription from the plasmid, the transcribed RNA was electroporated into BHK cells and 

allowed to replicate for 6h, rescued viral progeny was then used to infect a fresh monolayer 

of BHKs and allowed to replicate for 24h, the resultant viral progeny was the starting input 

for both the L and S passages. The cell line used was a fetal goat tongue epithelium cell line 

(ZZ-R 127), from the Friedrich-Loeffler-Institute (FLI) Collection of Cell Lines in Veterinary 

Medicine (CCLV), which expresses the v6 integrin receptor (58); media for this cell line 

was DMEM/F-12 supplemented with 1% FBS, 1% L-Glutamine and 1% pen/strep. A 

concern was that a large number of passages would be required before mutation frequency 

reached levels above background sequence noise (0.5% (54)). Therefore, both the virus and 

the cell line used were selected in order to induce a degree of selective pressure at known 

sites associated with a reversion in cellular receptor usage from HS to integrin. All in vitro 

infections were conducted at a constant MOI, as calculated by viral RNA copy number 

quantification by qRT-PCR, with a fixed incubation period of 12 hours at 37oC. Briefly, viral 

RNA copy number was quantified within the starting input virus for both L and S passages 

by qRT-PCR and diluted appropriately for a relative MOI of 0.01 (the PFU:RNA copy 

number ratio was calculated according to PFU titres and viral RNA copy number 

measurements, in duplicate, for the starting input virus grown in BHK cells). Where possible, 

volume of input virus was kept constant for both L and S passages (2ml for L passages and 

10µl for S passages). This in vitro bottleneck experiment was not replicated.  

 

All viral populations from both passage series were ultra-deep sequenced on the Illumina 

Genome Analyzer platform. In brief, total RNA extraction, RT, PCR and product 

visualization was as described (7).  The FMDV genomic region anticipated to come under 
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selective pressure during cell-culture passage, was incorporated within amplification 

fragment 1 (PCR1), so this PCR assay alone was performed. qRT-PCR was as described in 

(7). Samples were then sequenced on the Illumina Genome Analyzer IIx to generate single 

end reads of 73nt, reads were processed and analysed as described in 2.1.  

 

3: Results 

 

3.1: Intra-host bottlenecks 

 

Previously, intra-host diversity of FMDV samples from different tissues in a chain of 

sequentially infected cattle was measured using HTS (6, 7). Here, using the methodology 

developed by (31), we quantified the intra- and inter-host bottleneck population sizes within 

this transmission chain, determining the MLE of the number of viral genomes passing from 

the initial pharyngeal infection into the blood circulatory system, and subsequently seeding 

infection in terminal foot lesions (Table 1). We observe a median intra-host bottleneck of 5.5 

viral genomes (range 2-20) between pharyngeal and serum samples, suggesting a relatively 

narrow bottleneck from the initial site of infection into the rest of the body. Perhaps 

surprisingly, sequential probang samples from the same animal displayed a similarly small 

bottleneck size, median 8 (range 4-16), but probang scraping samples may only capture a 

small proportion of the viral diversity in the pharynx due to the numerous lesions present, 

each potentially containing a distinct FMDV population. We observe a much wider median 

bottleneck of 57 genomes (range 37-174) between sequential serum samples from the same 

animal indicative of a more continuously mixed population. Intra-host bottlenecks between 

the serum and terminal foot lesions were observed to have a median of 18 genomes, but with 

range of between 4 and 54, highlighting variability in the lesion founder process.  

 

Overall, these results correlate well with the observed consensus level differences between 

samples, with sequential serum samples maintaining the same consensus sequence (with one 

exception involving a 54.4% variant), whilst between 0 and 3 consensus level mutations 

across the genome are typically observed between probang-serum and serum-lesion samples 

(7).  

 

Sample Category Parent Daughter 

Bottleneck 

(Viral Genomes) 

Consensus 

Differences 
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Probang-to-

Probang A2_2DPC_PB A2_4DPC_PB 6[3-10] 

3 

 A2_4DPC_PB A2_6DPC_PB 16[9-26] 4 

 A3_1DPC_PB A3_3DPC_PB 8[4-13] 1 

 A3_3DPC_PB A3_5DPC_PB 4[2-7] 5 

 A5_5DPC_PB A5_7DPC_PB 14[7-27] 2 

     

Probang-to-Serum A2_2DPC_PB A2_3DPC_SR 10[6-15] 3 

 A2_2DPC_PB A2_4DPC_SR 7[4-12] 2 

 A2_4DPC_PB A2_5DPC_SR 20[10-36] 1 

 A3_1DPC_PB A3_3DPC_SR 3[1-5] 1 

 A3_3DPC_PB A3_4DPC_SR 4[2-6] 5 

 A3_3DPC_PB A3_5DPC_SR 2[1-4] 5 

     

Serum-to-Serum A2_3DPC_SR A2_4DPC_SR 56[35-86] 1 

 A2_4DPC_SR A2_5DPC_SR 37[22-60] 0 

 A3_3DPC_SR A3_4DPC_SR 174[66-401] 0 

 A3_4DPC_SR A3_5DPC_SR 58[23-126] 0 

     

Serum-to-Lesion A2_3DPC_SR A2_6DPC_BRF 18[10-39] 1 

 A2_3DPC_SR A2_6DPC_FLF 4[2-7] 3 

 A2_3DPC_SR A2_6DPC_FRF 10[5-17] 4 

 A3_3DPC_SR A3_5DPC_BLF 54[19-131] 0 

 A3_4DPC_SR A3_5DPC_BLF 42[15-101] 0 

 

Table 1. Intra-host bottleneck estimates between different types of host samples.  

Bottlenecks were determined using the methodology of (31), with the MLE of bottleneck size 

shown, with 95% confidence intervals in square brackets. Sample labels contain three 

elements: (1) the animal number in the transmission chain: A2, A3 or A5; (2) the number of 

days post first contact (DPC); and (3) the sample type: PB (Probang), SR (Serum), and 

Front/Back (F/B) Left/right (L/R) Foot (F) lesion. 

 

3.2: Inter-host Bottlenecks 

 

Quantification of the three inter-host bottlenecks in the transmission chain led to MLE 

bottleneck sizes of 4, 10 and 39 viral genomes (Table 2), respectively, suggesting inter-host 

bottlenecks are of a similar size to intra-host bottlenecks (except the wide serum-to-serum 

bottlenecks), with relatively few viral genomes from the parent population founding infection 
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in the daughter. This again correlates well with consensus level differences with comparable 

inter and intra-host consensus level mutations observed (7, 22). The three inter-host 

bottlenecks from the farm-to-farm transmission events of the 2001 FMDV outbreak 

generated MLEs of 2, 4 and 9, respectively. Inter-farm bottlenecks could well be expected to 

be narrower than inter-host events on the same farm, due to aerial or fomite transfer of small 

numbers of virions over large geographical distances. However, our results suggest that inter-

farm bottlenecks are not substantially different to the other inter-host bottlenecks analysed, 

although the data are limited. Again, bottleneck size appears to correlate with consensus level 

distances, with the most distant samples in terms of consensus (IP-K, IP-C) having the 

narrowest bottleneck and the closest consensus sequences (IP-A, IP-N) having the widest. 

 

Sample Category Parent Daughter 

Bottleneck 

(viral genomes) 

Consensus 

Differences 

     

Transmission 

chain A1_2DPC_FLF A2_2DPC_PB 4[2-8] 

3 

 A2_5DPC_SR A3_1DPC_PB 10[5-17] 2 

 A3_4DPC_SR A5_5DPC_PB 39[20-70] 0 

     

2001 outbreak IP-K IP-C 2[1-3] 10 

 IP-K IP-B 4[2-7] 7 

 IP-A IP-N 9[5-13] 6 

 

Table 2. Inter-host bottleneck estimated from the transmission chain. Transmission chain 

samples are labelled as in Table 1; samples from the UK 2001 outbreak are labelled with the 

IP letter as in (52). Bottlenecks were determined using the methodology of (31), with the 

MLE of bottleneck size shown, with 95% confidence intervals in square brackets.  

 

3.3: Relating bottleneck size to consensus mutations 

 

Equation 3 was used to generate a contour surface describing the probability that variants 

present at minority frequencies might be disproportionately represented as consensus level 

variants in bottlenecks of different sizes (Figure 1A). While variants are clearly more likely 

to be passed on through wide bottlenecks, it is only through narrow bottlenecks that they are 

likely to appear in the consensus sequences of daughter populations. 
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The observed number of consensus level differences between parent and daughter 

populations from the intra and inter-host levels was related to MLE bottleneck size using a 

glm which revealed a strong negative relationship between the number of consensus level 

differences between parent and daughter populations and the bottleneck size linking the two 

(Figure 1B, 2 = 23.0, df =1, p < 0.0001).  
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Figure 1. A. Contour surface describing the probability (contours) that a variant present at 

different (minority) frequencies (y-axis) will be represented at consensus level in populations 

founded through bottlenecks of different sizes (x-axis). B. The observed relationship between 
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the number of differences (D) by which consensus sequences of both parent and daughter 

populations differed and the MLE of the bottleneck size (Nb) linking the two populations. The 

solid line indicates the fit from the generalized linear model: ln(D) = 1.79 - 0.072 x Nb. The 

dashed line indicates the expected number of changes given by the model: ∑ 𝑝𝑖,𝑐
𝑆
𝑖=1  

(conditional on pi,c > 0.005, VP,i values taken from the A2_3DPC_SR sample variants). The  

2001 outbreak samples were sequenced with PCR1 only. 

 

3.4: In vitro bottlenecks 

 

FMDV was subjected to two serial passages in vitro. One passage series was propagated 

through serial narrow bottleneck transmissions while the other was through wide bottleneck 

transmissions. Bottleneck size was controlled by varying the size of the viral population 

transferred at each cell-culture passage, but MOI was kept constant by using different sized 

cell-culture vessels with a large population (L) for wide bottlenecks and a small population 

(S) for narrow bottlenecks. The aim of this study was to test the hypothesis that mutations, 

irrespective of selective value, approach fixation more rapidly in a population during more 

severe bottleneck transmissions. The rate of viral replication was measured by increases in 

viral RNA copy number, quantified by qRT-PCR (59). Although the incubation period was 

constant (12 hrs), the extent of viral replication decreased over sequential passages for both 

series (Figure 2); however, this decrease was more pronounced within population S compared 

to population L. Inoculation volume remained constant within population L but, was 

increased in the last passage of population S to compensate for a decrease in RNA copy 

number (Figure 2). These results reveal a bottleneck associated decline in viral population 

fitness, which has previously been demonstrated experimentally in vitro for a range of RNA 

viruses (40-43). 
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Figure 2: Quantification of O1K B64 RNA copy number by qRT-PCR across 3 passages 

in cell culture for a) population L and b) population S. Both populations were infected at 

an MOI of 0.01. Passage 1 (P1: black line), P2 (dark grey line) and P3 (light grey line). 

Inoculation volumes are indicated. 

 

A frequency threshold of 0.5% was used to identify mutations of interest above the expected 

error rate, with clear differences between the pattern of variants observed in the L and S 

populations (Figure 3). In the first passage (P1) of population S (narrow bottlenecks), one 

variant was observed above 10%, and 6 variants were observed below 10% but above 1%. 

However, the overall pattern in population S was relatively inconsistent, with variants 

increasing, decreasing or maintained at the same frequency through the passages. In contrast, 

the pattern observed in population L (wide bottlenecks) was markedly different. There were 

relatively few changes in P1 and although variants were observed above the 0.5% threshold, 

it took until P2 for variants to be observed >1%, and until P3 for any frequency to reach the 

10% observed in population S. In addition, the variants observed in population L share 

consistent patterns, with variant frequencies typically increasing with passage number. 

Overall, this experiment demonstrates that variants can increase in frequency more rapidly in 

a population during more severe bottleneck transmissions, however as our simple model 

predicts, with such wide bottlenecks, consensus level changes do not occur even when 

selection is expected to be acting on some sites. 
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Figure 3: Variant frequencies across 3 passages for population L (a) and population S 

(b). The frequency of all variants observed above the 0.5% frequency threshold is shown 

across all three passages, for both population L and S. 

 

There was evidence for positive selection in population L in the form of increasing 

frequencies of non-synonymous mutations associated with the subtype O1 FMDV-HS 

receptor complex (Table 3). However, there was no evidence for positive selection in 

population S, which contained none of the observed variants associated with the switch to 

integrin receptor usage. Currently there are nine amino acids associated with the subtype O1 

FMDV-HS receptor complex at residues (discussed in (60)). Seven of these nine variants 

were observed in population L. The C->T mutation at VP356 (thought of as the most critical 

motif in terms of virus/cell receptor recognition), only reached a frequency of 1.3% by P3. A 
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potentially novel variant linked to O1 FMDV-HS receptor complex was observed at VP361 

with a variant frequency of 7.3% (Val->Glu); VP361 is in close proximity to VP359 and VP360 

and is exposed on the capsid surface (data not shown).  

 

Genome position Mutation Frequency % AA location AA change 

2334 A->C 9.8 VP2-134 Lys[K]->Gln[Q] 

2346 T->C 3.4 VP2-138 Tyr[Y]->His[H] 

2754 C->T 1.3 VP3-56 Arg[R]->Cys[C] 

2764 G->C 0.7 VP3-59 Gly[G]->Ala[A] 

2767 G->A 1.7 VP3-60 Gly[G]->Asp[D] 

2851 A->G 4 VP3-88 Asn[N]->Ser[S] 

3832 A->C 2.2 VP1-195 His[H]->Pro[P] 
Table 3: Details of the non-synonymous mutations associated with the subtype O1 

FMDV-HS receptor complex in population L. 

 

We applied the bottleneck quantification method of (31) to the HTS data generated for 

populations L and S over the passage series; however, we note the method was validated on 

data derived from naturally occurring viruses, rather than data derived from rescued clones. 

As expected, the bottlenecks between passages were estimated to be very wide compared to 

cow-to-cow transmissions (Table S1). Although population S always has narrower 

bottlenecks than population L, both chains display a marked decrease in bottleneck size as the 

passage progresses. This could be linked to decrease in viral fitness/infectivity (as observed 

in population S), positive selection resulting in smaller founding populations (as observed in 

population L), or random drift. 

 

4: Discussion 

 

We have used HTS data to estimate the viral bottlenecks through which FMDV passes when 

transmitted within and between hosts. Within hosts, we estimated the median bottleneck size 

connecting pharyngeal and serum viral populations to be 5.5 viral genomes (range 2-20), and 

between serum and lesion populations to be 18 viral genomes (range 4-54). Between hosts 

estimated bottleneck sizes were 4, 10, and 39 making inter and intra-host bottlenecks a 

similar size, and between herds we estimated bottlenecks to be 2, 4, and 9.  A simplistic 

sampling model captures the nature of the negative relationship between bottleneck size and 

consensus level differences between parent and daughter populations, and is a reasonable 

match to the observed empirical relationship.  Our results suggest that while all variants are 



 19 

more likely to be passed on through wider bottlenecks, it is only following narrow 

bottlenecks that variants are likely to appear in consensus sequences in daughter populations 

(although such narrow bottlenecks are likely to result in an initial loss of genetic variation).  

 

We have presented the results of a novel in vitro cell culture experiment in which bottleneck 

size was experimentally controlled to be wide or narrow (while maintaining constant MOI). 

Although each of the 3 passages was undertaken only once, the results show clear differences 

between the two populations. Passaging a small viral population through narrow bottlenecks 

resulted in immediate and substantial increases in observed variant frequencies, but the 

observed variants did not appear to be positively selected. In contrast, passaging a large viral 

population through wide bottlenecks resulted in a slower, more gradual increase in observed 

variant frequencies. As variants were observed at 7 out of the 9 codon positions known to be 

associated with the FMDV-HS receptor complex, there was strong evidence for positive 

selection in the large population, and suggesting that in the presence of positive selection, 

variants will accumulate at higher frequencies (and therefore potentially appear in consensus 

level sequences of HTS alignments) faster following wider bottlenecks.  

 

With the advent of deep sequencing, within host FMDV populations are now frequently 

characterized although it is often challenging to distinguish between low frequency 

polymorphisms and RT-PCR error and sequencing artefacts. We have previously estimated 

(6) that a small fraction of the sites display no variability, most sites exhibit a small amount 

of polymorphism, and a very small fraction of the sites (0.2 – 0.4%) present variation at a 

level above 1%. The deep sequences analysed in the current study exhibited comparable 

levels of variability. If these parent populations found daughter populations through wide 

bottlenecks this variation is extremely unlikely to appear at consensus level in the absence of 

selection. Therefore, the small bottleneck transmission events have a critical role to play in 

the rate that minority neutral variants become established in the consensus sequence of 

daughter populations, and in the longer term, since sites under positive selection are rare (21), 

the rate at which the molecular clock ‘ticks’. 

 

While there is a large body of theory that has established that the rate of fixation of mutations 

in finite populations slows as population size increases, and that the process of intra-clone 

competition (clonal interference (61, 62)) can slow this process further, and increase the 

genetic diversity, we regard this as a distinct process from those we propose here.  We think 
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of the bottleneck – the size of a sample of the parent population that founds the daughter 

population – as a non-replicating ‘package’ of viruses, transported to the site of the new 

population, after which the new population expands rapidly in size.  Consequently, the 

changes in variant frequency caused by bottlenecking result purely from a random sampling 

process, and not through any replicative or competition process (63).  Furthermore, this 

sampling process is of greatest importance to ‘nearly neutral’ variants.  However, we cannot 

fully disentangle the influences of these two processes.  We suggest that existing variants 

under positive selection will increase in frequency quickly, most likely regardless of their 

initial frequency, while variants under purifying selection will not long remain common even 

if disproportionately over represented in a bottleneck population.  However, since the number 

of variants under positive selection are few (21) the bulk of virus evolutionary change could 

be argued to comprise these ‘nearly-neutral’ variants. 

 

The method of (31) is tested in their original paper using computer simulations and found to 

perform better than pre-existing alternative approaches. Their beta-binomial method accounts 

for likely false-negative variants not called as present due to variant calling thresholds, and 

for changes in variant frequencies arising from stochastic replication dynamics early in 

infection. Their method however makes a number of assumptions that while almost certainly 

violated, may have only a modest influence on bottleneck size estimation. First, (and perhaps 

most importantly) that variants are independent of each other, second, that donor-identified 

variants do not originate in any recipient hosts de novo, third, that variants are biallelic, and 

fourth, that variants are not under positive or purifying selection. In our in vivo transmission 

study, it is not possible to know the true parent-daughter relationships between intra-host or 

inter-host samples due to the complexities of the biology. We therefore used the method of 

(31) to evaluate all temporally possible parent-daughter relationships between relevant 

samples and selected the one with the largest bottleneck (i.e. the most number of viral 

genomes passing between the two) as the most likely parent-daughter relationship.  

Following infection, FMDV establishes primary replication sites in the nasopharyngeal 

mucosa (15, 64), leading to viremia, systemic dissemination of infection, and the lesions 

characteristic of clinical disease. Bottleneck sizes between populations in the nasopharyngeal 

mucosa and serum, and serum and lesion sites are probably more indicative of a more 

continuous level of connectivity, than discrete population founding events. Nonetheless, this 

analysis shows this connectivity to be characterized by narrow bottlenecks, while the 
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connectivity indicated by sequential daily sampling of serum is much higher and indicative of 

much better mixed population. In these experiments, probang samples collected in the acute 

phase of FMD (1-5 days post-contact) were used to define FMD viruses present at the 

primary site of replication. However, we recognize that this sample-type does not necessarily 

represent a precise anatomical site and in later stages of infection, probang samples may 

contain heterogeneous populations derived from primary sites of replication, as well as 

viruses derived from secondary sites (including those seeded via FMD virus in the blood). 

Bottleneck sizes associated with between-host transmission seem to be variable and 

dependent on the nature of transmission. While the sample size is low, our data suggest that 

one ‘one-time’ infection typical of airborne aerosol spread would be characterized by narrow 

bottlenecks. During the UK 2001 outbreak only one sample was taken from each herd (the 

individual with the oldest looking lesions), it is therefore possible that this individual was not 

directly infected from the farm suspected to be the source of infection.  Were this to be the 

case we consider it likely that the bottleneck size would be underestimated. 

 

Although, wide bottlenecks of 200-250 viral genomes were reported for IAV, re-analysis has 

suggested there was an erroneous mixing of sample reads (33). Other studies have reported 

relatively narrow inter-host bottlenecks of 1-3 viral genomes for IAV (25), hepatitis C virus 

(35, 36) and HIV (37). Our results suggest FMDV intra-host bottlenecks can be an order of 

magnitude higher at both the inter and intra host level. 
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