CLINICAL REVIEW

Associations of screen time, sedentary time and physical activity with sleep in under 5s: A systematic review and meta-analysis

Xanne Janssena,*, Anne Martinb, Adrienne R. Hughesc, Catherine M. Hille, Grigorios Kotronoulasf, Kathryn R. Heskethg

aUniversity of Strathclyde, School of Psychological Science and Health, Glasgow, UK
bUniversity of Glasgow, MRC/CSO Social and Public Health Sciences Unit, Glasgow, UK
cSchool of Clinical Experimental Sciences, Faculty of Medicine, University of Southampton, UK
dInstitute of Education, University College London, UK
eSouthampton Children’s Hospital, UK
fSchool of Medicine, Dentistry & Nursing, University of Glasgow, UK
gUKCRC Centre for Diet and Activity Research (CEDAR) at the MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, UK

article info
Article history:
Received 6 June 2019
Received in revised form 23 October 2019
Accepted 23 October 2019
Available online 1 November 2019

Keywords:
Infant
Toddler
Preschool
Sleep
Physical activity
Sedentary behavior
Screen time

SUMMARY
Sleep is crucial to children’s health and development. Reduced physical activity and increased screen time adversely impact older children’s sleep, but little is known about these associations in children under 5 y. This systematic review examined the association between screen time/movement behaviors (sedentary behavior, physical activity) and sleep outcomes in infants (0–1 y); toddlers (1–2 y); and preschoolers (3–4 y). Evidence was selected according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and synthesized using vote counting based on the direction of association. Quality assessment and a Grading of Recommendations, Assessment, Development and Evaluation was performed, stratified according to child age, exposure and outcome measure. Thirty-one papers were included. Results indicate that screen time is associated with poorer sleep outcomes in infants, toddlers and preschoolers. Meta-analysis confirmed these unfavorable associations in infants and toddlers but not preschoolers. For movement behaviors results were mixed, though physical activity and outdoor play in particular were favorably associated with most sleep outcomes in toddlers and preschoolers. Overall, quality of evidence was very low, with strongest evidence for daily/evening screen time use in toddlers and preschoolers. Although high-quality experimental evidence is required, our findings should prompt parents, clinicians and educators to encourage sleep-promoting behaviors (e.g., less evening screen time) in the under 5s.

Introduction

Adequate sleep plays a critical role in children’s health and development, particularly in the early years. Short sleep duration in preschool children is linked to obesity in later childhood [1]. Furthermore, sleep problems beyond age two are associated with reduced grey matter volume at seven years, indicating a role of sleep in early brain development [2].

International guidelines recommend that infants (0–1 y) sleep for up to 17 h/d, while toddlers (1–3 y) and preschoolers (3–5 y) should sleep between 10 and 14 h/d [3]. However, today’s children sleep less than they did a century ago [4] and 20–30% of parents report that their child has difficulties falling or staying asleep [5,6]. The causes for this apparent epidemic of sleep problems are likely multi-factorial but lifestyle changes in an increasingly digitized world are a cause for concern [7].

Australia, Canada, South Africa, New Zealand and WHO have issued 24-h movement guidelines for under 5s, recommending an ‘optimal day’ in terms of children’s sleep, physical activity and sedentary behaviors (including screen time) [8–11].
day matters’ approach places each behavior along a continuum, where declines in one behavior result in an increase in another. Studies in older children and adults have shown that daytime physical activity and screen time both influence sleep [12–14], but less is known about these relationships in children under 5 y of age. The early years are also a critical period in life for establishing healthy behaviors as screen time and physical activity appear to track from early into later childhood and adolescence and consequently may influence sleep later in life [15].

No reviews to date have synthesized and evaluated the quality of international research evidence in the under 5s. This review therefore sought to determine how screen time, sedentary time and physical activity are associated with eight sleep outcomes (i.e., total sleep duration; night awakenings; sleep onset latency; bed time; daytime napping; sleep efficiency; sleep stability; and sleep quality) in children aged 0–4 y.

Methods

Data sources and search strategy

This systematic review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [16]. A systematic literature search was undertaken in April 2018 and updated in March 2019, using search terms related to: population; study design; outcome; exposure; and inclusion of clinical populations (Appendix 1). The search was conducted in 17 electronic databases: EBSCO (CINAHL); Cochrane Library (CENTRAL); OVID (EMBASE, MEDLINE, PsycINFO) and Web of Science (all databases). Citations were downloaded into Endnote citation management software (Thomson Reuters, Philadelphia, PA, USA) and de-duplicated. Included papers were searched for additional relevant publications, as were relevant reviews. No language or publication date restrictions were placed on the search.

Study selection

Studies were included if they: 1) reported results from a cross-sectional, longitudinal or experimental study and 2) assessed the relationship between sleep time (total daily screen time; evening screen time) or any movement behavior (i.e., sedentary time; total, light, moderate-to-vigorous physical activity; floor-based play (infants); outdoor play/time; sports participation) and any sleep outcomes reported. Studies assessed healthy children (i.e., general populations, including those with overweight/obesity) aged birth to 59 mo at baseline; objective or subjective measures of exposures and outcomes were considered. Exclusion criteria included: 1) clinical populations (e.g., children with chronic health conditions [12] or developmental disorders e.g., cerebral palsy, autism) 2) qualitative studies; 3) studies assessing screen-based content; and 4) those assessing electromagnetic radiation.

Study screening, data extraction and quality assessment

Identified titles and abstracts were screened for relevance (KH, GK) and included titles were separated by exposure type (sedentary time, physical activity or screen time; KH). Full texts of identified articles were retrieved and read in full to assess eligibility for inclusion (physical activity: KH, RK; sedentary behaviors: XJ, AM). Reviewers independently extracted and cross-checked relevant data using a pre-piloted data extraction form (physical activity: AM, KH; sedentary behaviors: AH, CH, XJ). Data were extracted per age group; infants (0 to <1 y), toddlers (1 to <3 y), preschoolers (3 to <5 y) and for each exposure-outcome association. The split between age groups was chosen for two reasons. First, major developmental differences exist during the early years in both physical and cognitive development. Therefore, we hypothesize that the investigated associations may be different for each of these age groups. Second, the chosen split in age groups is consistent with the international 24-h movement guidelines.

Investigated exposures were: 1) daily and evening screen time including parent report of child time spent on TV, tablet, phone, playing computer games, using the internet; 2) accelerometry measured physical activity including total sedentary behavior, light physical activity and moderate-to-vigorous physical activity; 3) parent reported floor based play, organized sport and outdoor play. Total sedentary behavior and screen time were treated as two different exposures to provide more detailed evidence about whether screen time or all sedentary behaviors influence sleep.

For longitudinal studies, all time points up to age five were included. The latest time point included was before, or as soon after, the children were five years old (>5 y if no follow-up data on <5 y was provided). If two or more papers reported on the same study sample, both were treated as separate studies if they reported different exposure-outcome relationships (n = 4) [17–20]. Several papers examined multiple exposure-outcome associations (e.g., how total screen time and TV time were associated with sleep) and reported findings for different groups (e.g., examined differences across age groups, by time of the week, or by sex). Each exposure-outcome was therefore counted as an individual association, e.g., a
paper examining the association between screen time and total sleep duration, but reporting results for weekdays and weekend days separately, was counted as one study but two associations. For experimental studies, differences in outcomes between control and intervention groups over time were used to assess influence of exposures. Where possible, results from adjusted multivariable models were reported.

Reviewers who extracted the data also assessed the methodological quality of primary studies and any discrepancies were resolved by consensus. Risk of bias assessment was completed as part of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) of evidence quality. Six domains (selection, performance, detection, attrition, reporting, and other sources of bias) specific to study design (observational or experimental) were assessed. Each domain was determined to have a low, unclear or high risk of bias [21].

Data synthesis

Due to the heterogeneous nature of included studies, and the range of exposures and outcomes assessed, meta-analysis was only appropriate for one exposure-outcome association total screen time and sleep duration in infants, toddlers and preschoolers. Where available, correlation coefficients were recorded for each study. If studies did not report correlations coefficients but provided beta coefficients these were converted in to correlation coefficients using the method described by Peterson and Brown [24]. Only studies reporting cross-sectional associations were included in the main analysis. A sensitivity analysis including longitudinal outcomes was conducted but no significant differences were found between the two models. Data were pooled in a random-effect meta-analyses using Comprehensive Meta-analysis, version 3.3.07. Heterogeneity across studies was assessed using I² statistics (I² of 0–40% represents low heterogeneity and 75–100% considerable heterogeneity) [23].

For the remaining associations, as recommended by the Cochrane handbook for systematic reviews of interventions, vote counting based on the direction of association was conducted [24], comparing the number of favorable to unfavorable associations. Favorable associations were categorized as those where the exposure measure resulted in a positive association with sleep outcomes (e.g., less screen time associated with longer total sleep duration). Associations were unfavorable if the exposure measure resulted in a negative association with sleep (e.g., more screen time associated with shorter total sleep duration). Summary results per exposure-outcome association were presented as number of unfavorable (for screen time and sedentary behavior) and favorable (for physical activity, outdoor play and sport club attendance) associations divided by the total number of studies included. A binomial probability test was conducted. The p-value from this test indicates the probability of observing the summary results if the exposure-outcome associations were in the opposite direction, thus a small p-value indicates a higher probability the results are valid [24]. This method does not rely on p-values reported by the authors of the primary studies.

GRADE was performed on all findings, stratified according to child age (infants; toddlers; preschoolers), exposure, and outcome measure, with possible range from very low to high [25,26]. GRADE assigns an initial rating to each study design (i.e., high for randomized controlled trials, low for observational studies – both longitudinal and cross-sectional). This was then upgraded for downgraded according to the risk of bias, inconsistency, indirectness, imprecision, publication bias, dose–response relationship, residual confounding or the size of the magnitude.

Results

Characteristics of identified articles

Initial searches identified 1604 articles, 90 full-text articles were screened, and of these, 31 studies (29 unique cohorts) met the inclusion criteria and were included in the data analysis (Fig. S1). A total of 60,445 children were included, ranging from 22 [27] to 39,813 [28] participants per article (age range 0–4.99 y). Included articles were published between 2007 and 2019 and conducted in North America (n = 10) [17,19,27,28,30–33]; Europe (n = 7) [36–42]; Asia (n = 8) [29,43–49]; Australasia (n = 5) [19,20,50–52]; and one article included participants from multiple countries [53].

One article reported an experimental design (RCT; [36]), seven were longitudinal [19,30,33,36,47,50,51] (of which four also analyzed data cross-sectionally [30,47,50,51]) and 23 were cross-sectional [17,18,20,27–29,31–35,37,39,40,42–46,48,49,52,53]. Eleven articles examined the association between physical activity and sleep [19,20,31,33,36,40,44,45,49,51,52], five articles examine the association between sedentary time and sleep [20,27,31,36,49] and 23 articles examined the association between screen time and sleep [17,18,28–30,32,34,35,37–43,45–48,50–53]. Eight articles had an age range covering more than one age group (infants and toddlers n = 4 [18,30,43,47]; toddlers and preschoolers n = 2 [41,51]; infants, toddlers and preschoolers n = 1 [17; Table 1]).

Total daily screen time

The relationship between total daily screen time and sleep was examined in 20 studies (infants n = 4; toddlers n = 9; preschoolers n = 16; Table 2) [17,18,28–30,32,34,35,37,38,40–42,46–48,50–53]. In infants, higher levels of total daily screen time were associated with shorter total sleep duration (3/5 associations), more night awakenings (1/1) and longer sleep onset latency (1/1). Toddlers’ and preschoolers’ total daily screen time was unfavorably associated with sleep outcomes in 39/43 associations. In toddlers, higher levels of total daily screen time were associated with shorter total sleep duration (7/8), more night awakenings and later bedtime (2/2), longer sleep onset latency (3/3), lower sleep quality (1/1) and worse sleep stability (1/1). In preschoolers, higher levels of total daily screen time were associated with shorter total sleep duration (12/13), more night awakenings (2/3), later bedtime and lower sleep quality (3/3), longer sleep onset latency (2/2), and less day-time napping (1/2). Few studies reported favorable associations between higher levels of total screen time and any sleep outcomes (n = 6 associations).

A subset of seven studies were included in the random-effect meta-analysis to quantify the effect of total screen time on sleep duration (Fig. 1) [18,28,34,42,47,51,53]. The pooled correlation coefficient was –0.09 (95% CI: –0.17, –0.01; I² = 90.0%; p = 0.04). Sub-group analysis showed similar results for infants (r = –0.07; 95% CI: –0.12, –0.03; I² = 100.0%; p = 0.002) and toddlers (r = –0.13; 95% CI: –0.21, –0.04; I² = NA; p = 0.004). However, in preschoolers the effect of total screen time on sleep duration became non-significant (r = –0.10; 95% CI: –0.25, 0.05; I² = 93.5%; p = 0.203).

Evening screen time

The relationship between evening screen time and sleep was examined in eight studies (infants n = 3; toddlers n = 4; preschool-aged children n = 4; Table 3) [30,22,24,35,39,43,46,47]. In infants, higher levels of evening screen time were associated with shorter nighttime sleep duration (2/2) and later bedtime (1/1). Toddlers’ and preschoolers’ evening screen time was unfavorably associated with sleep in 8/9 associations. In toddlers, higher levels of evening...
<table>
<thead>
<tr>
<th>Study author and year</th>
<th>Type of study</th>
<th>Country</th>
<th>Sample Size</th>
<th>Age</th>
<th>Age group</th>
<th>Exposure</th>
<th>Exposure description</th>
<th>Sleep outcomes</th>
<th>Findings</th>
<th>Covariates included in analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn et al., 2016 [43]</td>
<td>Cross-sectional</td>
<td>Korea</td>
<td>N = 1033</td>
<td>Age range: 0–36 mo</td>
<td>Infants and toddlers</td>
<td>Evening screen time</td>
<td>Parent reported television or video</td>
<td>Sleep duration, bedtime; night awakenings</td>
<td>TV at sleep initiation was associated with a later bedtime ($\beta = 0.30$). TV at sleep initiation was not significantly associated with any of the other sleep outcomes (direction of association not reported).</td>
<td>child demographic variables (age, sex, birth order), parental demographic variables (age, educational level, employment status), parental behaviors at bedtime, and other aspects of the sleep ecology (sleep arrangement, location, position)</td>
</tr>
<tr>
<td>Cespedes et al., 2014 [17]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N = 6 mo: 1673; 1 y: 1227; 2 y: 1360; 3 y: 1242; 4 y: 1202</td>
<td>Age range: 6 mo - 4 y</td>
<td>Infants, toddlers and preschoolers</td>
<td>Total daily screen time</td>
<td>Parent reported television</td>
<td>Sleep duration</td>
<td>Higher TV time was associated with shorter sleep duration at ages 6 mo ($\beta = -3.0; 95% CI, -8.0 to 2.0$); 1 ($\beta = -6.0; 95% CI, -10.0 to -2.0$); 2 ($\beta = -6.0; 95% CI, -10.0 to -2.0$); 3 ($\beta = -6.0; 95% CI, -10.0 to -2.0$); and 4 ($\beta = -4.0; 95% CI, -8.0 to 0.0$) y.</td>
<td>child age in years at time of assessment, race/ethnicity, gender, maternal education, and household income; age 4 analysis additionally adjusted for TV in bedroom.</td>
</tr>
<tr>
<td>Chonchaiya et al., 2017 [30]</td>
<td>Longitudinal and cross-sectional</td>
<td>USA</td>
<td>N = 208</td>
<td>Mean age: 6.2 mo (time 1); 12.3 mo (time 2)</td>
<td>Infants and toddlers</td>
<td>Total daily screen time, evening screen time</td>
<td>Parent reported use of all electronic media</td>
<td>Sleep duration; sleep latency; night awakenings; naptime duration</td>
<td>Higher levels of total daily screen time at age 12 mo was associated with longer sleep latency at age 12 mo ($\beta = -0.10$ for weekday; $\beta = 0.17$ for weekend day). Total daily screen time at 6 mo was associated with longer sleep latency at 6 mo (during weekends). Total and evening screen time for 6 and 12 mo of age was not significantly associated with any other sleep outcomes at age 12 mo (direction of association not reported). Bedroom media use at 12 mo was not significantly associated with sleep latency at 12 mo (direction of association not reported).</td>
<td>age, gender, co-sleeping status, evening media use at age 12 mo, maternal education, and household income were included in the final regression models as covariates.</td>
</tr>
<tr>
<td>De Rock et al., 2013 [36]</td>
<td>RCT</td>
<td>Germany</td>
<td>N = 809</td>
<td>Mean age (SD): 5.05 y (0.2)</td>
<td>Preschoolers</td>
<td>Total PA, SB, MVPA</td>
<td>Accelerometry</td>
<td>Sleep quality</td>
<td>A trend toward improved subjective sleep quality in the intervention group was noted ($\beta = -0.113; 95% CI, -0.003 to 0.23$).</td>
<td>Intention-to-treat basis. The core model assumed a linear change of the outcomes with time and included two normally distributed random effects (one at the preschool level and one at the child level) to adjust for clustering in the data due to the hierarchic sampling scheme. Further, all models included the variables age, gender, rural versus urban community of preschools, and season as covariates to adjust for a potential confounding effect of these variables.</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Country</td>
<td>N</td>
<td>Age (SD)</td>
<td>Group(s)</td>
<td>Measures</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duraccio et al., 2017 [31]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>131</td>
<td>4.9 y (0.5)</td>
<td>Preschoolers</td>
<td>SB, MVPA, VPA</td>
<td>Accelerometry</td>
<td>Sleep duration</td>
<td>For each added day of high sedentary behavior (i.e., being in top tertile of sedentary behavior), the probability of obtaining sufficient sleep decreased (1 d = 0.56; 95% CI, 0.26–0.75; 2 d = 0.51; 95% CI, 0.37–0.65; 3 d = 0.22; 95% CI, 0.11–0.33). MVPA and VPA were not associated with sleep duration.</td>
<td></td>
</tr>
<tr>
<td>Garrison et al., 2011 [32]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>617</td>
<td>51 mo (8)</td>
<td>Preschoolers</td>
<td>Total daily screen time, evening screen time</td>
<td>Parent reported use of all electronic media</td>
<td>Sleep quality</td>
<td>Total screen time was associated with higher sleep problem scores (β = 0.244; 95% CI, 0.113 to 0.375). Each additional hour of evening screen time was associated with increases in sleep problem scores (β = 0.743; 95% CI, 0.373 to 1.14). Each additional hour of daytime screen time was associated with increases in sleep problem scores (β = 0.107; 95% CI, 0.047 to 0.260). Total daily screen time, TV/DVD time, computer/internet use and computer gaming were associated with inconsistent sleep habits.</td>
<td></td>
</tr>
<tr>
<td>Genuneit et al., 2018 [37]</td>
<td>Cross-sectional</td>
<td>Germany</td>
<td>530</td>
<td>Approximate age: 3 y</td>
<td>Preschoolers</td>
<td>Total daily screen time</td>
<td>Parent reported use of all electronic media, TV/DVD, computer/internet use, computer gaming</td>
<td>Sleep habits</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Hager et al., 2016 [33]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>240</td>
<td>Mean age: 20.2 mo</td>
<td>Toddlers</td>
<td>MVPA</td>
<td>Accelerometry</td>
<td>Sleep duration, Sleep quality</td>
<td>MVPA was associated with longer sleep duration (β = 0.332; SE, 0.118). Those with high sleep behavior scores (5–6) spent significantly more time in MVPA (65.1 min) compared to those with mid-range sleep behavior scores (3–4; 45.3 min) but not those with low scores (0–2; 58.3 min). Those with high sleep behavior scores (5–6) had significantly higher counts per minute (433.1 cpm) compared to those with mid-range sleep behavior scores (3–4; 348.8 cpm) but not those with low scores (0–2; 409.2 cpm). More time in SB was significantly associated with less total sleep (r = −0.524) and non-significantly associated with less night time sleep (r = −0.417), more time awake at night (r = 0.308), reduced nap duration (r = −0.104), reduced nap frequency (r = −0.068)</td>
<td></td>
</tr>
<tr>
<td>Hauck et al., 2018 [27]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>22</td>
<td>Approximate age: 6 mo ± 1 wk</td>
<td>Infants</td>
<td>SB</td>
<td>Sedentary behavior and screen time</td>
<td>Sedentary behavior and screen time</td>
<td>Sleep duration; night awakenings; daytime napping</td>
<td>NA</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study author and year</th>
<th>Type of study</th>
<th>Country</th>
<th>Sample</th>
<th>Age</th>
<th>Age group</th>
<th>Exposure</th>
<th>Exposure description</th>
<th>Sleep outcomes</th>
<th>Findings</th>
<th>Covariates included in analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikeda et al., 2012</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>N = 39,813</td>
<td>Approximate age: 4.5 y</td>
<td>Preschoolers</td>
<td>Total daily screen time</td>
<td>Parent reported television; computer games</td>
<td>Sleep duration, daytime napping</td>
<td>Those watching more hours of television were more likely to have shorter (<10hr) sleep durations (OR not playing = 1; <1hr = 1.01; 95% CI, 0.97 to 1.05; 1–2hr = 1.06; 95% CI, 0.71 to 1.58; 2–3hr = 1.37; 95% CI, 0.92 to 2.04; 3–4hr = 1.55; 95% CI, 1.04 to 2.33; ≥4hr = 1.91; 95% CI, 1.26, 2.90). Playing computer games was unfavorably associated with sleep duration (not playing OR = 1; <1hr = 0.85; 95% CI, 0.78 to 0.92; 1–2hr = 0.80; 95% CI, 0.83 to 0.89; ≥2hr = 0.75; 95% CI, 0.70 to 0.82). Television time was associated with more daytime napping (not watching OR = 1; <1hr = 0.87; 95% CI, 0.75 to 1.03; 1–2hr = 1.15; 95% CI, 0.81 to 1.64; 2–3hr = 1.16; 95% CI, 0.82 to 1.65; 3–4hr = 1.21; 95% CI, 0.85 to 1.72; ≥4hr = 1.22; 95% CI, 0.85 to 1.77).</td>
<td>Regional population, gender, existence of older siblings, years of maternal and paternal education, hours spent watching television, hours spent playing computer games, parental and maternal work hours, and whether or not the child attended preschool, or a childcare center</td>
</tr>
<tr>
<td>Iwata et al., 2011</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>N = 48</td>
<td>Approximate age: 5 y</td>
<td>Preschoolers</td>
<td>Sports participation</td>
<td>Parent reported sports participation</td>
<td>Sleep onset; sleep end; time; sleep latency; sleep efficiency</td>
<td>Sport lesson attendance was associated with earlier sleep onset on weekdays (B = −0.258; 95% CI, −0.728 to 0.004) and later onset on weekends (B = 0.096; 95% CI, −0.391 to 0.760). Sport lesson attendance was associated with earlier sleep end on weekdays (B = −0.342; 95% CI, −0.641 to −0.062) but not weekends (B = 0.086; 95% CI, −0.331 to 0.508). Sport less attendance was associated with longer sleep latency (B = 0.318; 95% CI, 0.393, 7.149 for weekdays; B = 0.307; 95% CI, 0.245 to 6.921 for weekends). Sport less attendance was associated with higher sleep efficiency (B = 0.318; 95% CI, 0.393 to 7.149).</td>
<td></td>
</tr>
</tbody>
</table>

X. Janssen et al. / Sleep Medicine Reviews 49 (2020) 101226
Cross-sectional China
N = 112
Age range: 3–6 y
Preschoolers
MVPA; screen time
Accelerometry; parent reported electronic media use
Sleep duration
Those engaging in more MVPA (OR = 0.735; 95%CI, 0.189 to 2.855) or daily screen time (OR = 0.380; 95%CI, 0.107 to 1.348) were less likely to get sufficient sleep (≥8–13 h).

Cross-sectional Czech Republic and Japan
N = 1096; Czech Republic: 497; Japan: 599
Mean age: Czech Republic: 4.6 y (1.1); Japan: 3.8 y (1.2)
Preschoolers
Total daily screen time
Parent reported use of computer games
Sleep duration; bedtime
Frequency of playing computer games was not associated with sleep duration but was associated with later bedtime. Duration of playing computer games was not associated with sleep duration but was associated with later bedtime in Czech children but not Japanese. Time of the day of playing computer games was associated with shorter sleep duration bedtime in Czech children but not Japanese.

Longitudinal and cross-sectional Australia
N = 3427
Age range: 4–5 y
Preschoolers (time 1); 6–7 y (time 2)
Total daily screen time
Parent reported television and video use; computer use; total screen time
Sleep duration
Total screen time at age 4 was associated with shorter sleep duration at age 6 (β = −0.06; 95% CI, −0.10 to −0.02) TV/video viewing at age 4 was associated with shorter sleep duration at age 6 (β = −0.05; 95% CI, −0.09 to −0.01). Computer use at age 4 was unfavorably associated with sleep duration at age 6 (β = −0.10; 95% CI, −0.21 to 0.01).

Cross-sectional Spain and longitudinal
N = 1202 (time 1); 1080 (time 2)
Approximate age: Time 1: 2 y, Time 2: 4 y
Toddlers
Total daily screen time
Parent reported television time
Sleep duration
Children with longer periods of television viewing at age 2 (≥1.5 h per day) had shorter sleep duration and each additional hour of television viewing decreased sleep duration (β = −0.13; 95% CI, −0.19 to −0.08). Children with longer periods of television viewing at age 2 (≥1.5 h per day) had shorter sleep duration at age 4 and each additional hour of television viewing decreased sleep duration (β = −0.11; 95% CI, −0.18 to −0.05).

Cross-sectional United Kingdom
N = 1702
Mean age: 15.8 mo
Toddlers
Evening screen time
Parent reported television time
Sleep duration
Children with more >1 h morning television viewing had an increased risk of short sleep duration (<11 h; OR = 1.13; 95% CI, 0.80 to 1.58). Children with more >1 h evening television viewing had an increased risk of short sleep duration (continued on next page)
<table>
<thead>
<tr>
<th>Study author and year</th>
<th>Type of study</th>
<th>Country</th>
<th>Sample</th>
<th>Age</th>
<th>Age group</th>
<th>Exposure description</th>
<th>Sleep outcomes</th>
<th>Findings</th>
<th>Covariates included in analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mindell et al., 2013 [53]</td>
<td>Cross-sectional</td>
<td>Australia, New Zealand, Canada, United Kingdom, United States, China, Hong Kong, India, Japan, South Korea, Malaysia, Philippines, Singapore, Thailand</td>
<td>N = 2590; Australia and New Zealand: 286; Canada: 272; United Kingdom: 298; United States: 284; China: 248; Hong Kong: 82; India: 294; Japan: 48; South Korea: 312; Malaysia: 121; Philippines: 76; Singapore: 81; Thailand: 88</td>
<td>Age range: 3–6 y</td>
<td>Preschoolers</td>
<td>Total daily screen time; Parent reported television, computer or electronic game use</td>
<td>Sleep duration; sleep latency; bedtime; night awakenings;</td>
<td>More screen time was associated with longer sleep latency (r = 0.11), later bedtime (r = 0.21), more night awakenings (r = 0.07) and longer night time sleep duration (r = 0.08).</td>
<td>NA</td>
</tr>
<tr>
<td>Nathanson et al., 2018 [34]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N = 402</td>
<td>Age range: 3–5 y</td>
<td>Preschoolers</td>
<td>Total daily screen time; evening screen time</td>
<td>Parent reported television use; mobile electronic device use</td>
<td>Sleep duration</td>
<td>More time spent using a tablet during the evening (β = 0.12; SE, 0.12), smartphone (β = 0.03; SE, 0.20), game player (β = 0.06; SE, 0.20), iPod or watching TV (β = 0.2; SE, 0.07) were associated with lower sleep duration.</td>
</tr>
<tr>
<td>Nathanson et al., 2014 [35]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N = 107</td>
<td>Mean age (SD): 53.4 mo (0.87)</td>
<td>Preschoolers</td>
<td>Total daily screen time; evening screen time</td>
<td>Parent reported television time</td>
<td>Sleep duration</td>
<td>More time spent watching TV during the evening was associated with shorter sleep duration (r = −0.3). Background TV time all day, background TV time in the daytime and background TV time in the night time was correlated with shorter sleep duration (r = −0.3, r = −0.3; r = −0.2, respectively). Total time spent watching TV or time spent watching TV during the day were correlated with sleep duration (r = −0.2; r = −0.1, respectively).</td>
</tr>
<tr>
<td>Nevarez et al., 2010 [18]</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N = 1676 (time 1); 1228 (time 2); 1365 (time 3)</td>
<td>Approximate age: 6 mo (time 1); 12 mo (time 2); 24 mo (time 3)</td>
<td>Infants, Toddlers</td>
<td>Total daily screen time</td>
<td>Parent reported television time</td>
<td>Sleep duration</td>
<td>At age 6 mo more time spent watching TV was associated with shorter sleep duration (β = −0.1; 95% CI, −0.16 to 0.02). At age 12 mo more time spent watching TV was associated with shorter sleep duration (β = −0.1; 95% CI, −0.18 to −0.04).</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Country</td>
<td>Sample Size</td>
<td>Age/Range</td>
<td>Group</td>
<td>Type of Activity</td>
<td>Sleep Measure</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ota et al., 2007 [48]</td>
<td>Cross-sectional</td>
<td>Not reported</td>
<td>N = 330</td>
<td>Mean age (SD): 4.2 y</td>
<td>Preschoolers</td>
<td>Total daily screen time</td>
<td>Parent reported television time</td>
<td>At age 24 mo more time spent watching TV was associated with shorter sleep duration ($\beta = -0.1$, 95% CI: -0.15 to -0.02). Those in the regular sleeping habits group watched significantly less TV than those in the irregular group (1.7 hr/d ± 1.1 compared to 2.0 hr/d ± 1.2).</td>
<td></td>
</tr>
<tr>
<td>Plancoulaine et al., 2015 [40]</td>
<td>Cross-sectional</td>
<td>France</td>
<td>N = 1028</td>
<td>Approximate age: 3 y</td>
<td>Preschoolers</td>
<td>Outside PA: Total daily screen time</td>
<td>Parent reported television time and other screens</td>
<td>More time spent watching TV was associated with shorter sleep duration (<12 hr/d) in boys (OR = 1.65; 95% CI, 1.23 to 2.11) but not girls (OR = 1.06; 0.76 to 1.47). Outside physical activity was not associated with sleep duration. Those spending more time watching TV at age 3 y were more likely to belong to the 2–5 common night awakenings trajectory at age 5–6 y (OR = 1.3; 95% CI, 1.13 to 1.58).</td>
<td></td>
</tr>
<tr>
<td>Reynaud et al., 2016 [41]</td>
<td>Longitudinal</td>
<td>France</td>
<td>N = 1346</td>
<td>Approximate age: 2 y (time 1); 3 y (time 2); 5–6 y (time 3)</td>
<td>Toddlers and Preschoolers</td>
<td>Total daily screen time</td>
<td>Parent reported television time</td>
<td>Sleep duration was associated with shorter sleep duration (r = 0.16).</td>
<td></td>
</tr>
</tbody>
</table>
| Séguin et al., 2016 [28] | Cross-sectional | Canada | N = 52 | Approximate age: 45 mo | Preschoolers | Total daily screen time | Parent reported television time, computer, game console or other electronics use | More time using the computer (r = 0.38), video game console use (r = 0.32) and other electronic media use (r = 0.33) was associated with shorter sleep duration.
Higher amounts of screen time were associated with shorter sleep duration (r = 0.16). Children displaying a more stable sleep pattern had higher levels of day-time physical activity than all other groups (Mean (SD) MVPA: low average 97 (47) minutes; variable medium sleep 91 (39) minutes; high average sleep 79 (35) minutes; consistent medium sleep 111 (49) minutes).
Children displaying a more stable sleep pattern had higher counts per minutes than all other groups (Mean (SD) CPM: low average 791 (286) minutes; variable medium sleep 790 (234) minutes; high average sleep 725 (208) minutes; consistent medium sleep 913 (332) minutes). |
| Sijtsma et al., 2015 [42] | Cross-sectional | The Netherlands | N = 759 | Age range: 3–4 ys | Preschoolers | Total daily screen time | Parent reported television time | Sleep duration was associated with shorter sleep duration (r = 0.16). |
| Taylor et al., 2015 [19] | Longitudinal | New Zealand | N = 143 | Mean age (SD): 3.0 y (0.0) | Preschoolers | MVPA; total PA | Accelerometry | Sleep stability was associated with shorter sleep duration (r = 0.16). Children displaying a more stable sleep pattern had higher levels of physical activity than all other groups (Mean (SD) MVPA: low average 97 (47) minutes; variable medium sleep 91 (39) minutes; high average sleep 79 (35) minutes; consistent medium sleep 111 (49) minutes).
Children displaying a more stable sleep pattern had higher counts per minutes than all other groups (Mean (SD) CPM: low average 791 (286) minutes; variable medium sleep 790 (234) minutes; high average sleep 725 (208) minutes; consistent medium sleep 913 (332) minutes). |

(continued on next page)
<table>
<thead>
<tr>
<th>Study author and year</th>
<th>Type of study</th>
<th>Country</th>
<th>Sample</th>
<th>Age</th>
<th>Age group</th>
<th>Exposure</th>
<th>Exposure description</th>
<th>Sleep outcomes</th>
<th>Findings</th>
<th>Covariates included in analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vijakkhana et al., 2015 [47]</td>
<td>Longitudinal and cross-sectional</td>
<td>Thailand</td>
<td>N = 208</td>
<td></td>
<td>Infants and Toddlers</td>
<td>Total daily screen time; evening screen time</td>
<td>Parent reported screen media use</td>
<td>Sleep duration</td>
<td>Evening media exposure at 6mo was associated with shorter 6mo night time sleep duration (weekday $r = -0.3$; weekend day $r = -0.2$). Evening media exposure at 12mo was associated with shorter 12mo night time sleep duration ($r = -0.2$ for both weekday and weekend day). Higher levels of media viewing at 6mo was associated with shorter 6mo night time sleep during weekdays ($r = -0.1$) but not during weekends ($r = 0.0$). Higher levels of media viewing at 12mo were not associated with 12mo night time sleep duration ($r = 0.0$ for both weekday and weekend). Higher levels of media viewing at 6mo were not associated with 12mo night time sleep duration ($r = 0.0$ for both weekday and weekend).</td>
<td>12-mo bedroom media use, chronological age at 12mo, gender, 12mo co-sleeping status, maternal education in y, mothers and fathers income in Baht</td>
</tr>
<tr>
<td>Wang et al., 2019 [49]</td>
<td>Cross-sectional</td>
<td>Taiwan</td>
<td>N = 183</td>
<td></td>
<td>Infants</td>
<td>Total PA; SB; floor play</td>
<td>Accelerometry and parent reported floor play</td>
<td>Sleep duration; sleep efficiency</td>
<td>PA was significant associated with a lower sleep percentage ($\beta = -0.02$), and non-significantly associated with less 24-h sleep ($\beta = -0.03$) and more time napping ($\beta = -0.03$). SB was significantly associated with less total 24-h sleep ($\beta = 5.89$) and not significantly associated with higher sleep percentage ($\beta = 0.06$) and more time napping ($\beta = 1.41$). Floor play was associated with less total 24-h sleep ($\beta = 4.18$), higher sleep percentage ($\beta = 0.14$) and less time napping ($\beta = 3.56$) but none were significant.</td>
<td>Gender, infant BMI, breastfeeding status, maternal employment status</td>
</tr>
<tr>
<td>Williams et al., 2014 [20]</td>
<td>Cross-sectional</td>
<td>New Zealand</td>
<td>N = 216</td>
<td></td>
<td>Preschoolers</td>
<td>Total PA, SB, LPA, MVPA</td>
<td>Accelerometry</td>
<td>Sleep duration; night awakenings</td>
<td>The most active children spent 0.52 h (55 min) less time asleep at night compared with the least active children at 3 years of age. More active children were also awake more at night, for 16 –19 min. These children spent less time in sedentary activity (2.40 h at age 3) and more time awake at night; Sedentary time; Light activity; MVPA</td>
<td></td>
</tr>
</tbody>
</table>
Xu H et al., 2016

Longitudinal and cross-sectional

Australia

<table>
<thead>
<tr>
<th>N</th>
<th>Age</th>
<th>Toddlers and Preschoolers</th>
<th>Outdoor play; Total daily screen time</th>
<th>Parent reported electronic media use</th>
<th>Sleep duration; bedtime; sleep latency; night awakenings</th>
</tr>
</thead>
</table>
| 497 (time 1); 415 (time 2); 369 (time 3) | 2 y (time 1); 3.5 years (time 2); 5 y (time 3) | Approximate | in light (0.14 h) and MVPA (2.95 h). Higher levels of screen time at age 2 were associated with shorter night time sleep ($\beta = -0.1; 95\% CI, -0.23 to -0.03$) and longer sleep latency ($\beta = -2.5; 95\% CI, 0.63 to -4.35$) at age 2. Those with higher levels of screen time at age 2 were less likely to be in the long sleep group (>10hr/d; OR = 0.8; 95\% CI, 0.64 to 0.95) and more likely to wake up at night (OR = 1.4; 95\% CI, 1.15 to 1.72) at age 2. Levels of screen time at age 3.5 y were not associated with night time sleep ($\beta = 0.0; 95\% CI, -0.09 to 0.05$). Higher levels of screen time at age 3.5 y were associated with longer sleep latency at age 3.5 y ($\beta = 0.4; 95\% CI, -1.16 to 1.97$). Those with higher levels of screen time at age 3.5 y were not more likely to be in the long sleeping group or wake up at night at age 3.5 y (OR = 1; 95\% CI 0.86–1.18; OR = 1.0; 95\% CI, 0.82 to 1.10, for sleep duration and night awakenings respectively). Higher levels of screen time at age 2 y were associated with shorter night time sleep ($\beta = -0.1; 95\% CI, -0.09 to -0.01$) and longer sleep latency ($\beta = 1.6; 95\% CI, 0.53 to 2.63$) at age 5 y. Those with higher levels of screen time at age 2 y were less likely to be in the long sleeping group at age 5 (OR = 0.87; 95\% CI, 0.76 to 1.0) and were more likely to wake up at night at age 5 y (OR = 1.53; 95\% CI, 1.10 to 2.14). Those participating in <302.9 min/d TPA had increased chances of sleeping >646.8 min/d (OR = 2.38; 95\% CI, 1.27 –4.45), being in the high variability (>59.2 min/d difference between days) group (OR = 1.27; 95\% CI, 0.68 –2.40) and sleep problems (OR = 1.33; 95\% CI, 0.71–2.50) Those participating in <55.1 min/d MVPA had an

Zhang et al., 2019

Cross-sectional

Australia

<table>
<thead>
<tr>
<th>N</th>
<th>Average age: 19.7 mo</th>
<th>Toddlers</th>
<th>Total PA; MVPA; total daily screen time</th>
<th>Accelerometry and parent reported screen time</th>
<th>Sleep duration; sleep quality; sleep variability</th>
</tr>
</thead>
</table>
| 173 | 19.7 mo | Total PA; MVPA; total daily screen time | in light (0.14 h) and MVPA (2.95 h). Higher levels of screen time at age 2 were associated with shorter night time sleep ($\beta = -0.1; 95\% CI, -0.23 to -0.03$) and longer sleep latency ($\beta = -2.5; 95\% CI, 0.63 to -4.35$) at age 2. Those with higher levels of screen time at age 2 were less likely to be in the long sleep group (>10hr/d; OR = 0.8; 95\% CI, 0.64 to 0.95) and more likely to wake up at night (OR = 1.4; 95\% CI, 1.15 to 1.72) at age 2. Levels of screen time at age 3.5 y were not associated with night time sleep ($\beta = 0.0; 95\% CI, -0.09 to 0.05$). Higher levels of screen time at age 3.5 y were associated with longer sleep latency at age 3.5 y ($\beta = 0.4; 95\% CI, -1.16 to 1.97$). Those with higher levels of screen time at age 3.5 y were not more likely to be in the long sleeping group or wake up at night at age 3.5 y (OR = 1; 95\% CI 0.86–1.18; OR = 1.0; 95\% CI, 0.82 to 1.10, for sleep duration and night awakenings respectively). Higher levels of screen time at age 2 y were associated with shorter night time sleep ($\beta = -0.1; 95\% CI, -0.09 to -0.01$) and longer sleep latency ($\beta = 1.6; 95\% CI, 0.53 to 2.63$) at age 5 y. Those with higher levels of screen time at age 2 y were less likely to be in the long sleeping group at age 5 (OR = 0.87; 95\% CI, 0.76 to 1.0) and were more likely to wake up at night at age 5 y (OR = 1.53; 95\% CI, 1.10 to 2.14). Those participating in <302.9 min/d TPA had increased chances of sleeping >646.8 min/d (OR = 2.38; 95\% CI, 1.27 –4.45), being in the high variability (>59.2 min/d difference between days) group (OR = 1.27; 95\% CI, 0.68 –2.40) and sleep problems (OR = 1.33; 95\% CI, 0.71–2.50) Those participating in <55.1 min/d MVPA had an

(continued on next page)
screen time were associated with shorter total sleep duration (2/2) and later bedtime (1/1). In preschoolers, higher levels of evening screen time were associated with shorter total sleep duration (3/4), later bedtime and lower sleep quality (1/1). Importantly, only one study reported a favorable association between evening screen time and any sleep outcome.

Total sedentary time

The association between total sedentary time and sleep was examined in five studies (infants n = 2; toddlers n = 0; preschoolers n = 3; Table 4) [20,27,31,36,49]. In infants, higher levels of total sedentary time were associated with shorter sleep time duration (2/2), more night awakenings (1/1), less daytime napping (1/2) and better sleep efficiency (1/1). In preschoolers, higher levels of total sedentary time were associated with shorter sleep time duration (1/2) associations and later bedtime (1/1). More sedentary time was associated with fewer night awakenings (1/1). A decrease in sedentary time showed an association with improved sleep quality (1/1). No evidence was available for toddlers.

Physical activity

The association between physical activity related behaviors (i.e., total physical activity, moderate-to-vigorous physical activity, outdoor play and sports participation) and sleep was examined in 11 studies (infants n = 1; toddlers n = 3; preschoolers n = 7; Table 4) [19,20,31,33,36,40,44,45,49,51,52]. The relationship between total physical activity and sleep was examined in five studies [19,20,33,49,52]. In infants, higher levels of total physical activity were associated with shorter total sleep duration, worse sleep efficiency and less daytime napping (1/1). In toddlers, higher levels of total physical activity were associated with longer total sleep duration (1/2), better sleep quality (2/2) and better sleep stability (1/1). In preschoolers, higher levels of total physical activity were associated with shorter total sleep duration and more night awakenings (1/1) and better sleep stability (1/1).

Seven studies assessed the relationship between physical activity intensity and sleep [19,20,31,33,36,45,52]. In one study, conducted in preschoolers, light physical activity was associated with later bedtime (1/1 association). In toddlers, higher levels of moderate-to-vigorous physical activity were associated with better sleep quality (1/2), and better sleep stability (1/1), and shorter total sleep duration (1/1). In preschoolers, higher levels of moderate-to-vigorous physical activity were associated with shorter total sleep duration (1/2) and later bedtime (1/1), better sleep quality and better sleep stability (1/1). No evidence was available for infants.

The relationship between floor-based play was examined in one study for infants [49]: floor-based play was associated with shorter total sleep duration, less daytime napping (1/1) and better sleep efficiency (1/1). The relationship between time spent playing outdoors and sleep was examined in two studies [40,51]. Toddlers' outdoor play was associated with shorter total sleep duration (2/2), shorter sleep onset latency, fewer night awakenings and earlier bedtime (2/2). Preschoolers' outdoor play was associated with longer total sleep duration (1/2) and fewer night awakenings, earlier bedtime and shorter sleep onset latency (1/1). Preschoolers' attendance at sports clubs was associated with earlier bedtime and better sleep efficiency (i.e., higher fraction of total sleep spent asleep after sleep onset; 1/1) [44].

Quality of evidence

The quality of evidence ranged from very low to moderate for moderate-to-vigorous physical activity; and very low for all other
exposure-outcome associations across age groups (Tables 2–4). Most studies were downgraded due to a serious risk of bias (commonly due to use of exposure or outcome measures with unknown psychometric properties; Table S1).

Discussion

To our knowledge, this is the first systematic review to explore how screen time and movement behaviors are associated with sleep in children under 5 y. This review highlighted a trend for an unfavorable association between higher levels of total daily and evening screen time and sleep outcomes in infants, toddlers and preschoolers; very few studies showed favorable screen-sleep associations. Meta-analysis conducted in a sub-sample of studies to examine the association between daily screen time and sleep duration confirmed these unfavorable associations in infants and toddlers. In preschoolers, the meta-analysis did not show a significant association, but this may be due to the heterogeneity of the included studies. Evidence for associations between total daily sedentary time/physical activity and sleep was less conclusive: there was an indication that more outdoor play and higher levels of moderate-to-vigorous physical activity were favorably associated with sleep outcomes in toddlers and preschoolers. Most evidence was from observational studies (both cross-sectional and

![Fig. 1. Forest plot of the effect of total screen time on sleep duration. CI, confidence interval.](image-url)
longitudinal), did not show significant associations, and did not report on dose—response relationships leading to evidence frequently being classified as low quality. In addition, no clear differences were found between studies including large (>500) or small (<500) sample sizes.

Established early in childhood [41], sleep patterns are governed by a complex interplay of physiological, genetic, psychological and social/environmental factors. A range of behaviors, including physical activity, sedentary and screen time, may delay or displace sleep - ‘5 more minutes please!’ Moreover, socio-environmental influences such as parenting style, the home environment, and socioeconomic status are likely to influence young children’s sleep, screen and activity behaviors [54–56].

In line with a recent systematic review in older children (5–20 y) [13], our review and meta-analysis highlights that screen time appears to be unfavorably associated with young children’s sleep. Short wavelength (blue/green) light emitted from screens suppresses pineal melatonin secretion, influencing both circadian entrainment (via supra-chiasmatic nucleus signaling) and sleep onset (via the hypothalamic ventrolateral pre-optic nucleus) [57,58]. Although evidence is limited in very young children, differential diurnal rate of melatonin secretion appears to emerge early in development at around 27–41 d of age [59]. Theoretically, therefore, evening screen exposure in very young children may not only delay sleep onset on exposure [60] but also potentially cause longer term disturbance to sleep stability [61]. A dim light environment prior to bedtime is likely to be conducive to melatonin secretion, simultaneously promoting earlier sleep onset whilst helping to establish and maintain an optimal circadian rhythm [62], with less night waking [63]. In addition to the light emitted from screens, the content, its interactivity, and subsequent level of arousal, may also adversely affect sleep.

Despite a wealth of evidence for a positive association between physical activity and sleep in older age groups [64], very few studies have examined the association between physical activity and total sedentary time on sleep in children 0–4 y. Our review identified evidence suggesting that more outdoor play and time spent engaged in moderate-to-vigorous physical activity may be associated with better sleep outcomes in toddlers and preschoolers. Although experimental research is largely lacking in children and young people, it has been noted in infants that natural light exposure, particularly during the afternoon, may improve nighttime sleep [65]. Such exposure, as part of children’s outdoor play, may help to regulate melatonin secretion and circadian rhythm, encouraging regular sleep onset. Several other physiological mechanisms have also been proposed to explain how higher intensity physical activity may positively influence sleep (albeit in the context of adult sleep). These include: 1) activity triggering an increase in body temperature and subsequent cooling with rest to promote sleep onset, and 2) activity reducing negative arousal states which may otherwise lead to sleep problems [63]. Future experimental studies should determine why and how screen time and movement—behaviors impact and promote sleep respectively. This is particularly important given a number of 24-h movement behavior guidelines have recently been published worldwide, which outline an ‘optimal day’ for children’s sleep, physical activity and sedentary behaviors (including screen time) [8–11]. Where the ‘whole day matters’ and each behavior is placed along a continuum, declines in one behavior may feasibly result in an increase in another.

This review highlights important gaps in the evidence base around screen-based and movement behaviors, and sleep outcomes in young children. The quality of evidence summarized in this review was low and in some instances inconclusive. The variation in results may be due to the wide range of exposure and outcome measures used across studies. Moreover, study quality tended to be downgraded due to use of measurement tools with untested psychometric properties, with 20 out of the 28 articles reporting exposures measured using an unpublished questionnaire/failing to report the questionnaire’s psychometric properties (Table S1). Studies included in this review frequently focused on television-based screen time, and did not examine the use of more contemporary screens (e.g., tablets, phones) and/or the type of activities children engaged in while using screens (e.g., watching a movie or talking to grandparents on tablet/phone). With the advances in technology over the last decade, it is important that studies now consider the influence of alternative electronic media and screen-based activities (such as e-readers and tablets) on children’s sleep. In addition, it is important studies examine the influence different media content may have on children’s sleep (e.g., education v. recreational content) [56] While screen-based technology can positively support learning [67], neglecting its influence on sleep may paradoxically constrain neurodevelopment in the under 5s.

While objective measures of sleep duration (e.g., accelerometry) and valid and reliable sleep questionnaires are available, very few studies used either to assess sleep outcomes here (n = 10). Accelerometry is known to poorly differentiate between prolonged sedentary behavior and sleep [68]; included studies using accelerometry all used different methods to estimate sleep and wake periods [18,19,31,36,45] which could have led to the discrepancy in results [69]. Standardized measurement and analysis procedures of exposure and outcomes would allow consistency and validity across studies. There was also a lack of experimental or intervention studies aiming to improve sleep practices in the early years. Last, as the majority of studies included in this review were cross-
sectional, cause and effect could not be established. Thus, it is important to consider a possible reverse pathway, i.e., poor sleepers are more fatigued, resulting in more daily sedentary time and less physical activity. This review therefore highlights evidence gaps including the need to develop and evaluate interventions to improve sleep in young children, especially by reducing screen use before bedtime.

Strengths and limitations

We applied rigorous review methods, including duplicate assessment at every stage. Given that this review was restricted to published studies, publication bias cannot however be ruled out. All included studies were conducted in high and middle-income countries. Almost half included small sample sizes (15 out of 31 studies had fewer than 500 participants), which may have limited their statistical power to detect significant associations. By using vote counting based on the direction of the effect, we limited the impact underpowered studies may have on the summarized results [24]. Nine exposures and nine outcome measures were used here, thus limiting the use of meta-analysis: where common exposure-outcome relationship reported; #two-sided p-value from the binomial probability test. Small p-value indicates higher probability that the results are valid.

Table 4

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure: sedentary behavior</td>
<td>Sleep duration Infants [27,49]</td>
<td>2/2 (100.0)</td>
<td>0.250</td>
<td>Cross-sectional: 22 to 183</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night awakenings Infants [27]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 22</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daytime napping Infants [27]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 22 to 183</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sleep efficiency Infants [49]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sleep duration Preschoolers [31]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 131 to 216</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night awakenings Preschoolers [21]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 216</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedtime Preschoolers [20]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 216</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sleep quality Preschoolers [36]²</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>RCT: 809</td>
<td>Moderate</td>
<td></td>
</tr>
</tbody>
</table>

Exposure: Total Physical Activity

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep duration Infants [49]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep efficiency Infants [49]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime napping Infants [49]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration Toddlers [52]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 173 to 240</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep quality Toddlers [52]</td>
<td>2/2 (100.0)</td>
<td>0.250</td>
<td>Cross-sectional: 173 to 240</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep stability Toddlers [52]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 173 to 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration Preschoolers [20]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 216</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night awakenings Preschoolers [20]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 216</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep stability Preschoolers [19]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 143</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure: Light Physical Activity

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep duration Toddlers [52]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 173</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep quality Toddlers [52]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 173 to 240</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep stability Toddlers [52]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 173 to 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration Preschoolers [45]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 112 to 131</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night awakenings Preschoolers [20]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 216</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep stability Preschoolers [19]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 143</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure: Floor-based play

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep duration Infants [49]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep efficiency Infants [49]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime napping Infants [49]</td>
<td>0/1 (0.0)</td>
<td>0.500</td>
<td>Cross-sectional: 183</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure: Outdoor play/outdoor time

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep duration Toddlers [51,51]</td>
<td>0/2 (100.0)</td>
<td>0.250</td>
<td>Longitudinal: 369</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night awakenings Toddlers [51]</td>
<td>2/2 (100.0)</td>
<td>0.250</td>
<td>Longitudinal: 369</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedtime Toddlers [51]</td>
<td>2/2 (100.0)</td>
<td>0.250</td>
<td>Longitudinal: 369</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep latency Toddlers [51]</td>
<td>2/2 (100.0)</td>
<td>0.250</td>
<td>Longitudinal: 369</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration Preschoolers [51]</td>
<td>1/2 (50.0)</td>
<td>0.750</td>
<td>Cross-sectional: 415 to 1028</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night awakenings Preschoolers [51]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 415</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedtime Preschoolers [51]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 415</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep latency Preschoolers [51]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 415</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure: Organized sport participation

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Age group</th>
<th>Unfavorably related to exposure</th>
<th>Favorably related to exposure</th>
<th>Summary</th>
<th>N participants (total or n − 1)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep efficiency Preschoolers [44]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 48</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep efficiency Preschoolers [44]</td>
<td>1/1 (100.0)</td>
<td>0.500</td>
<td>Cross-sectional: 48</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CT: randomized controlled trial. "n" = number of associations showing unfavorable association (sedentary behavior) or favorable association, N = total number of associations for the specific exposure-outcome relationship reported; #two-sided p-value from the binomial probability test. Small p-value indicates higher probability that the results are valid.

\[a \] Quality of evidence was downgraded due to serious risk of bias. Quality rating of individual studies can be found in Table S1.

\[b \] Indicates longitudinal study.

\[c \] Indicates RCT.

X. Janssen et al. / Sleep Medicine Reviews 49 (2020) 101226
studies examining this outcome were in infants (n = 3 out of 4). However, daytime napping has been linked to adverse sleep outcomes such as irregular sleep habits in preschoolers [48]. It is therefore difficult to interpret whether napping is an unfavorable behavior when assessed as an isolated outcome. Due to the co-dependence of movement and sleep behaviors, an increase in one behavior would be expected to result in a decline in another, e.g., if physical activity leads to an increase in sleep duration, sedentary behavior is more than likely to decrease. Future studies would benefit from assessing co-dependent behaviors across a 24-h period. Last, most studies included in this review controlled for common confounders (e.g., age, socio-economic status, sex) but few controlled for characteristics in the home and wider environment which may impact sleep (e.g., chaotic home life, shared bedrooms, noise). Future research should consider a wider range of relevant confounders in order to fully elucidate the relationship between screen time, movement behaviors and young children’s sleep.

Conclusions

Screen time is unfavorably associated with multiple sleep outcomes in infants, toddlers and preschoolers. Conversely, in toddlers and preschoolers more time spent in outdoor play, and in higher intensity physical activity, was associated with better sleep outcomes. There is a pressing need for future research to establish how contemporary screen time (e.g., tablets and e-readers) influences the 24-h equipoise of activity and sleep in young children. Public health initiatives and policies are needed to help parents and educators encourage balanced use of screen-based technologies and positive movement behaviors to promote healthy lifestyles and development in the under 5s.

Practice points

1. While global and national 24-h movement guidelines suggest that a relationship between screen exposure and sleep exists, the recommendations do not explicitly address the relationship between sleep outcomes and other movement behaviors found here. Future 24-h movement behavior guidelines should therefore consider the findings from this review, which highlight the importance of limiting screen time, especially before bedtime, and providing sufficient exposure to natural daylight, in young children.

2. In a time when electronic media use among young children is becoming the norm, it is crucial to raise public (and particularly parental) awareness about the potential harmful effects exposure to screens may have on a young child’s sleep and development.

3. Public health initiatives and policies that stress the importance limiting screen time before bed and the potential benefits of active outdoor play for sleep are warranted. For example, the American Academy of Pediatrics in the USA and the Royal College of Paediatrics and Child Health in the UK recently published guidelines recommending an hour’s screen curfew before bedtime in children (https://pediatrics.aappublications.org/content/138/5/e20162591; https://www.rcpch.ac.uk/resources/health-impacts-screen-time-guide-clinicians-parents).

Research agenda

This review highlights important gaps in the evidence base around screen-based and movement behaviors, and sleep outcomes in young children.

1. Evidence of the validity and reliability of a broader range of screen time measures is needed, with papers here tending to focus on television-based screen time. In addition, standardized measurement and analysis procedures of exposure and outcomes would allow consistency and validity across studies.

2. It is important that studies start to consider the influence of alternative electronic media and screen-based activities (such as e-readers and tablets) on children’s sleep.

3. Very few studies have examined the association between physical activity and total sedentary time on sleep in children 0–4 y. No evidence was available for the association between movement and screen behaviors and several of the sleep outcomes in certain age groups.

4. No studies were identified from lower-middle and low-income countries. These countries are likely to have substantial difference in the home and wider environment, which could influence both exposure and outcomes.

Conflicts of interest

The authors do not have any conflicts of interest to disclose.

Acknowledgements

Dr Janssen and Dr Hesketh had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the analyses.

Study concept and design: Janssen, Martin, Hughes, Hill and Hesketh.

Acquisition, analysis or interpretation of data: All authors.

Drafting of the manuscript: Janssen and Hesketh.

Critical revision of the manuscript for important intellectual content: All authors.

Final approval of the submitted article: All authors.

AM was supported by the UK Medical Research Council (grant number MC_UU_12017/14) and the Scottish Government Chief Scientist Office (grant number SPHSU14). KRH is supported by the Wellcome Trust (107337/Z/15/Z). The work of KRH was supported, in part, by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence (RES-590-28-0002). Funding from the British Heart Foundation, Department of Health, Economic and Social Research Council, Medical Research Council, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. We thank Dr Ruth Kipping for her assistance during the initial screening phase. Dr Kipping did not receive any compensation for her work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.smrv.2019.101226.
References

