
Multi-scale Anisotropic Rough Surface (MARS) Algorithm

Version 0.0

Thomas O. Jelly
Department of Mechanical Engineering

University of Melbourne

Victoria 3010 Australia

� tom.jelly@unimelb.edu.au

Angela Busse
School of Engineering

University of Glasgow

G12 8QQ Scotland

� angela.busse@glasgow.ac.uk

Technical Documentation & User Guide.

mailto:tom.jelly@unimelb.edu.au
mailto:angela.busse@glasgow.ac.uk


1 Background

This document explains how to use the Multi-scale Anisotropic Rough Surface (MARS) Algo-
rithm — a computer program capable of generating “realistic” rough surfaces with user-specified
statistical properties. Details regarding the numerical implementation, a minimal working ex-
ample and some excerpts from the Matlab source code are included.

The MARS algorithm was developed at the University of Glasgow in 2017/8 as part of an
Engineering and Physical Sciences Research Council (EPSRC) grant entitled “Fluid dynamic
properties of irregular, multi-scale rough surfaces, EP/P004687/1”. The MARS algorithm is
an extended version of the numerical framework developed first by Patir (1978). Heightmaps
generated using the MARS algorithm have already led to publications in the literature, e.g.
see work by Jelly and Busse (2018b), Jelly and Busse (2018a), Busse and Jelly (2019) and Jelly
and Busse (2019).

2 Numerical aspects of the MARS algorithm

The MARS algorithm generates irregular heightmaps by taking linear combinations of Gaus-
sian random number matrices using a moving average (MA) process. A doubly-periodic Gaus-
sian heightmap, hij , of size Nx ×Ny, can be generated by evaluating the linear transformation

hij =
n∑

k=1

m∑
l=1

αklηrs

i = 1, 2, . . . , Nx

j = 1, 2, . . . , Ny

r = [i+ k − 1 (mod Nx)] + 1
s = [j + l − 1 (mod Ny)] + 1

(1)

where ηij is a matrix of uncorrelated Gaussian random numbers, αkl are a set of coefficients
that give a specified correlation function, mod denotes the modulo operator and where n ×m
is the dimension of the MA window.

Before the the linear transformation (equation 1) can be evaluated, three steps must be
taken:

1. Specify the dimensions and size of the heightmap, hij .

2. Specify the dimensions and size of the correlation function, Rpq.

3. Solve a set of non-linear simultaneous equations to obtain a set of weights, αkl.

Each step is discussed in further detail below.

2.1 Step 1: Tile set up

The MARS algorithm generates heightmaps on a two-dimensional tile with doubly-periodic
boundaries. The planform area of each tile is A = Lx × Ly, where Lx and Ly are the specified
streamwise and spanwise lengths, respectively. Each heightmap is resolved using an equi-spaced
grid with Nx ×Ny points.

1

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P004687/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P004687/1


The size and dimensions of the heightmap are specified in the mars input.m file:

hmap.Lx = 6.d0; % Streamwise length of heightmap

hmap.Ly = 3.d0; % Spanwise width of heightmap

hmap.Nx = 512; % Number of streamwise points

hmap.Ny = 256; % Number of spanwise points

The total number of heightmaps to be generated is also specified in the mars input.m
file:

hmap.N = 2; % Number of heightmaps to generate

2.2 Step 2: Correlation function

The default correlation function in the MARS algorithm is a two-dimensional exponentially
decaying function of the form

Rpq = exp

−2.3

√(
p

n− 1

)2

+

(
q

m− 1

)2
 p = 0, 1, . . . , n− 1

q = 0, 1, . . . ,m− 1
Rpq = 0 if p ≥ n or q ≥ m

(2)

where n and m are the number of points in the streamwise and spanwise directions, respectively.
The default values of n and m are based on a 0.1 cutoff criterion, i.e. the spatial separations
at which the streamwise and spanwise correlation profiles reduce to 10% of their value at the
origin.

The default dimensions of the discrete correlation function are specified in the
mars input.m file:

corr.n = 42; % Number of streamwise points in the correlation function

corr.m = 3; % Number of spanwise points in the correlation function

Sometimes it will be necessary to reduce the value of the default cutoff criteria, which, in turn,
will increase the size of the correlation function. Note that the MARS algorithm will do this
automatically. For a given cutoff criteria, say γ, the corresponding values of n and m can be
determined using the formula

n = floor

(
n0.1

log γ

−2.3

)
, m = floor

(
m0.1

log γ

−2.3

)
(3)

where n0.1 ×m0.1 is the default size of Rpq based on the γ = 0.1 cutoff criteria and “floor” is a
function that rounds down to the nearest integer.

2.3 Step 3: Numerical solution of non-linear system

The coefficients, αkl, are determined by solving the system of non-linear equations

Rpq =

n−p∑
k=1

m−q∑
l=1

αklαk+p,l+q,
p = 0, 1, . . . , n− 1
q = 0, 1, . . . ,m− 1

(4)

The solution of equation 4 is obtained by assembling a system of the form

fpq =

n−p∑
k=1

m−q∑
l=1

aklak+p,l+q −Rpq (5)

2



and then solving it using Matlab’s inbuilt fsolve function. The initial guess used to solve
equation 5 can be written as

α0
kl = sckl (6)

where

ckl =
1

(n− k + 1) (m− l + 1)
, s =

1√
n∑

k=1

m∑
l=1

c2
kl

(7)

Further details are given in the past work of Patir (1978).

Two stopping criteria are associated with the numerical solution of equation 5. First, a user-
specified tolerance which, if crossed, will terminate fsolve. Second, a maximum number of
iterations which, if exceeded, will also terminate fsolve.

The tolerance and maximum number of iterations are specified in the mars input.m file:

nls.epsilon = 1e-5; % Tolerance (Recommended value .le. 1e-5);

nls.max_iter = 8; % Max number of iterations (Recommended value .eq. 8)

If the numerical solution fails to converge, then the value of the cutoff parameter, γ, will be
reduced and the MARS algorithm will try to solve equation 5 again.

If the numerical of equation 5 converges successfully, then a copy of the coefficients will be
saved into the folder called archive. For example, if the default dimensions of the correlation
function were specified to be n = 42 and m = 3, then the coefficients will be archived into a file
called

archive 042 003.bin

Therefore, for a given n × m correlation function, equation 5 only ever needs to be solved
once. Before trying to solve equation 5, the MARS algorithm will automatically check if the
coefficients exist.

After the coefficients have been determined, two further steps need to be taken:

4. Evaluate the linear transformation (equation 1).

5. Apply an (optional) low-pass circular Fourier filter to the heightmap.

Each step is discussed in further detail below.

2.4 Step 4: Evaluate linear transformation

Once the coefficients have been determined, the MARS algorithm will generate heightmaps
by taking linear combinations of Gaussian random number matrices by evaluating equation 1.
For each heightmap, an Nx×Ny Gaussian number matrix is generated using Matlab’s inbuilt
randn function.

Note: All heightmaps generated using the MARS algorithm have a default variance
equal to one and mean height equal to zero, as well as approximately zero skewness and
kurtosis approximately equal to three.

3



2.5 Step 5: Low-pass circular Fourier filter

Following Busse et al. (2015), a circular low-pass Fourier filter can be applied to each heightmap
to obtain a smoothly varying surface with periodic boundaries, hfilt (x, y). First, the discrete
Fourier transform of the unfiltered heightmap is computed to obtain ĥ (kx, ky). Here, kx = p

∆sM
and ky = q

∆sN are the streamwise and spanwise components of the two-dimensinoal wave-vector,

where p = −Nx
2 ,−

Nx
2 + 1, . . . , Nx

2 − 1 and q = −Ny

2 ,−
Ny

2 + 1, . . . ,
Ny

2 − 1 and where ∆s is the
spatial resolution of the heightmap. The discrete Fourier transform of the filtered heightmap is
then given by

hfilt (kx, ky) = hraw (kx, ky) fc (kx, ky) (8)

where

fc (kx, ky) =

{
1 for k2

x + k2
y ≤ k2

c

0 for k2
x + k2

y > k2
c

(9)

Here, fc (kx, ky) is the circular filter function and (kx, ky) are the cut-off streamwise and spanwise
wave numbers, respectively. The filtered surface is then represented by an exact analytical
function hfilt (x, y), i.e. a sum of Fourier modes, and can be used to describe the heightmap at
any level of resolution.

Applying the low-pass circular Fourier filter is optional. The filter flag and cutoff
wavenumber are specified in the mars input.m file:

filt.option = 1; % [1] Apply filter [0] Do not apply filter.

filt.cutoff = 32; % Cutoff wavenumber in streamwise (x) direction

A flowchart representation of the MARS algorithm outlining Steps 1-5 is provided below in
figure 1. The directory and file structure of the MARS algorithm source code is as follows:

src

mars algorithm.m % Top-level script

mars input.m % Input script

lib

mars stepone.m % Step 1 script

mars steptwo.m % Step 2 script

mars stepthree.m % Step 3 script

mars stepfour.m % Step 4 script

mars stepfive.m % Step 5 script

nls init.m % Initialisation of non-linear system

nls solve.m % Solution of non-linear system

nls rhs.m % Right-hand-side of non-linear system

mars viz.m % Visualisation script

mars stl.m % Convert heightmap to .stl script

stlwrite.m % Function to create .stl file

surf2solid.m % Function to create 3D surface

archive

archive 042 03.dat % Pre-computed coefficients

4



Start

Specify input parameters

Set up tile size and heightmap dimensions (Step 1)

Assemble correlation function (Step 2)

Do coefficients exist?Load coefficients

Assemble & solve non-linear system (Step 3)

Converged? Reduce cutoff parameter, γ

Save coefficients

Evaluate linear transformation (Step 4)

Apply filter?Apply 2D Fourier filter (Step 5)

End

Yes

No

No

Yes

Yes

No

Figure 1: Flowchart representation of the MARS algorithm.

5



3 Minimal working example of the MARS algorithm

3.1 Checking your MATLAB version

The MARS algorithm has been implemented using Matlab Version 9.4.0.813654 (R2018a).
To check what version you are using, open MATLAB and then issue the following command:

>> version

ans =

‘9.4.0.813654 (R2018a)’

To the best of the authors’ knowledge, the MARS algorithm is backwards compatible up to
Matlab Version 8.4.0.150421 (R2014b).

3.2 Step-by-step minimal working example

Open Matlab and then issue the following the command:

>> edit mars_input.m

and specify the following parameters in the MARS algorithm input file:

hmap.Lx = 6.d0; % Streamwise length of heightmap

hmap.Ly = 3.d0; % Spanwise width of heightmap

hmap.Nx = 512; % Number of streamwise points

hmap.Ny = 256; % Number of spanwise points

hmap.N = 2; % Number of heightmaps to generate

corr.n = 44; % Number of streamwise points in the correlation function

corr.m = 3; % Number of spanwise points in the correlation function

nls.epsilon = 1e-5; % Tolerance (Recommended value .le. 1e-5);

nls.max_iter = 8; % Max number of iterations (Recommended value .eq. 8)

filt.option = 1; % [1] Apply filter [0] Do not apply filter.

filt.cutoff= 64; % Cutoff wavenumber for circular Fourier filter

Save the changes, close the mars input.m file and then issue the following command:

>> mars_algorithm

After some time, the following output from fsolve will appear in the Matlab command window

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 985 7.03084 1.99 1

1 1970 0.334407 0.467571 0.682 1

2 2955 0.00153518 0.14884 0.0331 1.17

3 3940 1.47554e-05 0.0459887 0.00146 1.17

4 4925 4.24335e-08 0.010632 6.89e-05 1.17

5 5910 1.02353e-12 0.000744286 3.18e-07 1.17

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the selected value of the function tolerance, and

the problem appears regular as measured by the gradient.

6



After the coefficients have been determined a copy will saved in the archive folder.

Next, the MARS algorithm will create the heightmaps and the following output will appear in
the Matlab command window:

- Generated 1/2 heightmaps

- Generated 2/2 heightmaps

Once the MARS algorithm has finished running the following message will appear:

>> MARS algorithm has exited sucessfully.

At this point you might want to save your heightmaps by issuing the command:

>> save(‘my_first_heightmaps.mat’,‘hmap’);

for further post-processing and analysis. Visualise the heightmap by issuing the commands:

>> hpick = 1;

>> mars_viz(hmap,hpick);

which will produce a figure that looks similar to this:

Issue the following commands to save a heightmap in .stl format:

>> hpick = 1;

>> filename = ‘my_first_heightmap.stl’;

>> mars_stl(filename,hmap,hpick);

The .stl file can be opened in your preferred software, e.g. Paraview or Meshlab. Recall that
every heightmap generated using is scaled to have zero mean and unit variance. You might
want to rescale the height distribution for the purposes of your own problem.

7



Acknowledgements

This work was funded by Engineering and Physical Sciences Research Council (EPSRC) grants
EP/P004687/1. T. O. J. acknowledges his Honorary Research Fellowship at the University of
Glasgow and the University of Melbourne Early Career Researcher (ECR) Award.

Disclaimer

The MARS algorithm is distributed ‘as is’ and comes with no warranties or guarantees of any
kind.

References

Busse, A. and Jelly, T. O. (2019). Influence of surface anisotropy on turbulent flow over irregular roughness
(Accepted). Flow, Turb. Combust.

Busse, A., Lützner, M., and Sandham, N. D. (2015). Direct numerical simulation of turbulent flow over a rough
surface based on a surface scan. Comput. Fluids, 116:129–147.

Jelly, T. O. and Busse, A. (2018a). Reynolds and dispersive shear stress contributions above highly skewed
roughness. J. Fluid Mech., 852:710–724.

Jelly, T. O. and Busse, A. (2018b). Impact of Irregular Anisotropic Surface Roughness on the Near-wall Region of
Turbulent Channel Flow. In 12th International ERCOFTAC Symposium on Engineering Turbulence Modelling
and Measurements.

Jelly, T. O. and Busse, A. (2019). Reynolds number dependence of Reynolds and dispersive stresses in turbulent
channel flow past irregular near-Gaussian roughness (Accepted). Int. J. Heat Fl. Flow.

Patir, N. (1978). A numerical procedure for random generation of rough surfaces. Wear, 47(2):263–277.

8

http://eprints.gla.ac.uk/194718/
http://eprints.gla.ac.uk/164495/7/164495.pdf
http://eprints.gla.ac.uk/164495/7/164495.pdf
http://eprints.gla.ac.uk/171576/13/171576.pdf
http://eprints.gla.ac.uk/171576/13/171576.pdf
http://eprints.gla.ac.uk/197583/
http://eprints.gla.ac.uk/197583/

	Background
	Numerical aspects of the MARS algorithm
	Step 1: Tile set up
	Step 2: Correlation function
	Step 3: Numerical solution of non-linear system
	Step 4: Evaluate linear transformation
	Step 5: Low-pass circular Fourier filter 

	Minimal working example of the MARS algorithm
	Checking your MATLAB version
	Step-by-step minimal working example 


