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Abstract

A geometrically linear continuum mechanics framework is proposed for gradient
plasticity combining 'strain gradients' and, with a novel approach, 'stress gra-
dients'. Thereby the duality of kinematic and kinetic quantities is exploited in
view of the 'div-grad-curl orthogonality' in continuum �eld theories. On the one
hand the non-integrability of the plastic distortion results in the well-established
dislocation density - often denoted as the geometrically-necessary-dislocation
(GND) density - that enters the energy storage function. On the other hand -
as entirely novel concept introduced in this contribution - the non-equilibrium
of the plastic stress results in the disequilibrium density that parameterizes the
dual dissipation potential within the convex analysis setting of plasticity. Con-
sequently both, the dislocation density as well as the disequilibrium density
contribute in modelling the size-dependent hardening state of a material in a
continuum mechanics setting. The novel approach is eventually elucidated in
much detail for the speci�c case of single crystal plasticity.

1 Introduction

Microscopically, the underlying cause for the plastic behaviour of metals is the
emergence (e.g. from Frank-Read sources), motion (e.g. by Peach-Koehler force
driven glide), interaction and arrest (e.g. at pileups) of discrete dislocations.
Thereby the spacing between two discrete dislocations is typically in the order
of only a few lattice spacings (some few nm), making it prohibitive to simulate
material samples of meso- and macroscopic dimensions, for example by Molec-
ular Dynamics (MD), see e.g. Tschopp, Spearot and McDowell [58], Bitzek and
Gumbsch [7, 8] for relevant MD system sizes, or Discrete Dislocation Dynamics
(DDD), see e.g. Hirth, Rhee and Zbib [34], Zbib, Rhee and Hirth [66], Zbib et
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al. [65], Zbib, De la Rubia and Bulatov [64] for relevant DDD system sizes.

From a continuum perspective, plasticity is modelled at the macro scale in terms
of continuously distributed external and especially internal (�eld) variables -
such as for example the plastic distortion - that capture the collective or rather
homogenized e�ects of the discretely, and from a macroscopic viewpoint densely
distributed dislocations at the micro scale. Classical continuum plasticity, how-
ever, is void of any internal length scale, making it thus impossible to account
for the size-dependent hardening behaviour of metals consistently observed in
numerous experiments at the meso scale, see e.g. Fleck et al. [16], Stölken and
Evans [56], Uchic et al. [59], Ehrler et al. [13], Dunstan et al. [12], Liu et al.
[41, 40]. As a remedy, it has been proposed to �rstly model the distribution
of dislocations at the meso scale in terms of the continuum dislocation density
that essentially decomposes into the Statistically Stored Dislocation (SSD) and
the Geometrically Necessary Dislocation (GND) density, whereby the concept
of the continuum dislocation density goes back to the early works by Nye [49],
Bilby, Bullough and Smith [6], Kröner [37, 35], Kröner and Seeger [36]. An
overview on the foundations of continuum defect densities in di�erential geom-
etry is given in Steinmann [55].

Then, on the one hand, 'strain gradient' formulations of plasticity have been ad-
vocated by incorporating in one way or other the continuum dislocation density
into the modelling, a non-comprehensive selection of the countless contributions
to 'strain gradient' plasticity is given by the contributions of Zbib and Aifan-
tis [61, 62, 63], Steinmann [54], Fleck and Hutchinson [15], Menzel and Stein-
mann [48], Gurtin [21, 22, 23, 24, 25], Gudmundson [20], Gurtin and Anand
[26, 27, 29, 28], Evans and Hutchinson [14], Forest [17], Forest and Aifantis [18],
Reddy [52, 53], Gurtin and Reddy [30], McBride, Reddy and Steinmann [46],
and many others.

On the other hand, as a complimentary approach and motivated by the classi-
cal Hall-Petch inverse relation between the yield resistance and the square root
of the grain size (Hall [31], Petch [50]), plasticity models incorporating 'stress
gradients' have been advocated by considering the size-dependent behaviour
resulting from pileup of dislocations at obstacles, whereby a representative se-
lection of the comparatively few contributions to 'stress gradient' plasticity is
given by the works of Hirth [33], Chakravarthy and Curtin [10], Akarapu and
Hirth [1], Liu, He and Zhang [42], Liu et al. [43], Taheri-Nassaj and Zbib [57].
Here, typically, the gradient of the applied stress that enters the equilibrium
equation, i.e. the stress vanishing for zero external loads (except the residual
stress that is in self-equilibrium), contributes to the yield resistance, thus mak-
ing it size-dependent.

Combined 'strain' and 'stress gradient' plasticity has been successfully applied to
capture, e.g., the multi-scale nature of size-dependence in heterogeneous nano-
and micro-structured materials, see Lyu, Taheri-Nassay and Zbib [45], Lyu et
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al. [44].

In stark contrast to the established genuine formulations of 'stress gradient' plas-
ticity in the above that are motivated by considering dislocation pileup problems
(and similarly to the 'stress gradient' elasticity approaches by Forest and Sab
[19] and Polizotto [51] that require additional degrees of freedom that expand
work with the stress gradients), our novel approach towards gradient plasticity
combining 'strain' and - especially - 'stress gradients' takes however a purely
continuum mechanics view and thus rests on the following philosophy:

Two conditions of complementing �avour always need to be satis�ed identically
in continuum mechanics. These are integrability of the distortion β and equi-

librium of the stress σ, which are expressed (for convenience of exposition but
without lack of generality for the case of vanishing body force density) as

curl β
.
= 0 and div σ

.
= 0. (1)

Guided by these complementing requirements we present an argument that is
based on the duality of kinematic and kinetic quantities: on the one hand we
consider the lack of integrability (i.e. non-integrabibility) of kinematic quanti-
ties, i.e. the plastic distortion βp, and on the other hand we consider the lack
of equilibrium (i.e. non-equilibrium) of kinetic quantities, i.e. the here proposed
concept of plastic stress σp. Then, on the one hand, this duality argument
is used to motivate the consideration of the dislocation density αp as 'strain
gradient' contribution in the energy storage function W . Likewise, on the other
hand, it motivates the here newly introduced disequilibrium density %p as 'stress
gradient' contribution in the dual dissipation potential D∗. Thereby, the convex
but possibly non-smooth dual dissipation potential essentially encapsulates the
yield condition and the �ow rule of plasticity (for an exposition of the details
that follows the convex analysis setting by Han and Reddy [32] see below).

The manuscript is structured as follows: Section 2 introduces the complement-
ing key concepts, i.e. 2.1) the plastic distortion and the plastic stress, 2.2) the
energy storage function and the dissipation potential for local plasticity, the
incorporation of 2.3) the dislocation density (representing the non-integrability
of the plastic distortion) for 'strain gradient' plasticity, and 2.4) the novel con-
cept of the disequilibrium density (representing the non-equilibrium of the plas-
tic stress) for 'stress gradient' plasticity, all for the case of the phenomeno-
logical setting of plasticity. Section 3 then applies these generic concepts to
the speci�c case of single crystal plasticity, by 3.1) reviewing the formulation
of rate-independent local single crystal plasticity, expressing the single crystal
speci�c 3.2) dislocation density and 3.3) disequilibrium density, both expressed
in terms of the individual slip system's plastic slip gradients, 3.4) illustrating
these concepts for the analytical example of edge dislocation induced bending,
and eventually 3.5) extending the local formulation to gradient single crystal
plasticity combining 'strain gradients' and 'stress gradients'. Section 4 focuses
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computationally on the size-dependent hardening resulting from the considera-
tion of dislocation and disequilibrium densities in the torsion problem of a single
crystalline micro wire. Finally Section 5 concludes our �ndings.

2 Motivation: Phenomenological Plasticity

To set the stage, relevant concepts and formulations are �rst introduced within
the geometrically linear setting of phenomenological plasticity. Thereby tradi-
tional local plasticity is extended to gradient plasticity combining 'strain gradi-
ents' and 'stress gradients' by the incorporation of the dislocation density and
the novel concept of disequilibrium density, respectively.

2.1 Plastic Distortion and Plastic Stress

a)

6

-�
�
�
��

��
�
��

��

r
r

r
�

�
�
�

�
�
��	

E

σ0

σ

ββp

�
�
�
��

r σ/E r βp rr β r

b)

6

-�
�
�
��

��
�
��

��

r
r

r
�
�

�
�
�

�
�
�

�
�
��	

E

σ0

σp

σ

β

�
�

�
�
�

�
��

�
�
�
�
�
�
�
�
�

r

Eβ

r

r
σ

r−σp
r

Figure 1: Operational de�nition of plastic distortion βp and plastic stress
σp for (without loss of generality) the case of one-dimensional linear elasto-
plasticity with elasticity modulus E, yield stress σ0, and linear hardening. A
one-dimensional sample is uniaxially loaded beyond the yield limit σ0 up to
a state with stress σ and distortion β in the elasto-plastic regime, the corre-
sponding bilinear stress-distortion diagram is depicted by the bold lines. For
subsequent stress-driven unloading with σ → 0, as displayed in a) by the bold
arrow, the plastic distortion is identi�ed as the remaining distortion βp. The
decomposition β = σ/E+βp is clearly recognized from the diagram. Vice versa
for distortion-driven unloading with β → 0, as displayed in b) by the bold ar-
row, the plastic stress is identi�ed as the remaining (negative) stress σp. The
decomposition σ = Eβ + σp is clearly recognized from the diagram.
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In geometrically linear continuum mechanics the key kinematic quantity is the
displacement �eld u = u(x) that relates positions x ∈ B in the (initial) con�g-
uration B ⊂ E3 to their displacements u ∈ R3. Then the total distortion β is
de�ned as gradient of the displacement �eld u, consequently it is integrable as
expressed by the curl operator curl {•}

β := grad u with curl β := −βij,kejklei ⊗ el .= 0. (2)

Here ejkl denotes the coe�cients of the permutation symbol and ei are the
Cartesian base vectors. Consequently, the coe�cients of curl β expand for later
use as

[curl β]ij =

 β13,2 − β12,3 β11,3 − β13,1 β12,1 − β11,2
β23,2 − β22,3 β21,3 − β23,1 β22,1 − β21,2
β33,2 − β32,3 β31,3 − β33,1 β32,1 − β31,2

 . (3)

Remark: As an aside, the total strain ε := βsym = gradsymu follows as
the symmetric gradient of the displacement �eld, consequently it satis�es the
St. Venant compatibility conditions inc ε := emijεik,jleklnem ⊗ en .

= 0 as ex-
pressed by the Kröner incompatibility operator inc {•}, refer to Steinmann [55].
�

The following concepts of plastic distortion and plastic stress are schematically
depicted in Fig. 1.

For geometrically linear (local) phenomenological plasticity the applied stress σ
- satisfying equilibrium - depends generically on the (symmetric parts of the)
total distortion β and the plastic distortion βp that serves as internal variable

σ = σ(βsym,βsym
p ) with div σ := σij,j ei

.
= 0. (4)

Thereby the (symmetric part of the) plastic distortion βsym
p is in general de�ned

as the (symmetric part of the) distortion βsym at locally vanishing stress σ ≡ 0,
i.e. as the (symmetric part of the) in general non-integrable distortion βp that
remains after stress-driven point-wise (elastic) unloading

βsym
p

locally
:= βsym|σ≡0 with curl βp 6= 0 =⇒ inc βsym

p 6= 0. (5)

From the above generic constitutive relation for σ, the (symmetric part of the)
distortion at locally vanishing stress computes concretely as

βsym|σ≡0 = arg{σ(βsym,βsym
p )|βp = 0}. (6)
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Remark: Note that in (local) phenomenological plasticity it is indeed only the
symmetric part βsym

p of the plastic distortion rather than the plastic distortion

βp that enters the constitutive modelling, with the skew-symmetric part βskw
p

being undetermined. Thus, basically only the incompatibility inc βsym
p rather

than the non-integrability curl βp can practically be determined in phenomeno-
logical plasticity. However, although it is possible to derive a phenomenological
'strain gradient' plasticity based on the consideration of inc βsym

p (see Menzel
and Steinmann [48]), in order to avoid the technicalities stemming from the
second gradients contained in inc βsym

p and since our main objective is to even-
tually consider single crystal plasticity, in which βp is fully given constitutively,
we base our motivation in phenomenological plasticity for the sake of argument
also on the plastic distortion (being fully aware that inc βsym

p is more challeng-
ing to evaluate and to process than curl βp, for an in-depth discussion see [48]).
�
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Figure 2: Additive decomposition of the distortion β in an idealized crystalline
lattice into plastic and elastic contributions βp and βe, respectively. Due to
the dislocation �ow along the slip directions the plastic distortion βp leaves
the crystalline lattice una�ected (middle), the elastic distortion βe, however,
distorts the lattice (right) and is thus responsible for the generation of stress.

Typically, see Fig. 2, the distortion β is considered to decompose additively

into the elastic (i.e. stress producing) distortion βe and the plastic (i.e. lattice
preserving) distortion βp, i.e.

β = βe + βp. (7)

Here it is crucial to observe that whereas β = grad u is clearly integrable,
the plastic distortion βp and likewise the elastic distortion βe are in general
non-integrable. Physically, the plastic distortion βp is a measure for the local,
irreversible and non-integrable deformation βp · dx that results from all dislo-
cations that have already left the local neighbourhood of a material point x,
thereby leaving the crystal lattice una�ected. For example, under the action
of the plastic distortion, an initial cube with C0-continuous, smooth almost ev-
erywhere boundary transforms into a parallelepiped with C−1-(dis)continuous
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(staircase-like) boundary, see Fig. 2. The evolution of the plastic distortion βp

is thus associated with the �ow of dislocations through the crystal lattice, i.e.
with the rate at which dislocations are entering and/or leaving the local neigh-
bourhood of a material point x.

Then, based on the additive decomposition, and for the sake of concreteness, the
constitutive relation for σ in the case of geometrically linear, phenomenological
plasticity is explicitly given as

σ = E : [β − βp]
sym ≡ E : [β − βp]. (8)

Here E denotes the fourth-order, possibly anisotropic, elasticity tensor, obey-
ing minor and major symmetries, thus allowing to omit symmetrization of the
(total) distortion and the plastic distortion in the above constitutive expression.
For elastic isotropy E expands as E = 2G Isym+L1⊗1 where G and L are the
classical Lamé constants and Isym and 1 denote the (symmetric) fourth- and
second-order unit tensors, respectively.
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Figure 3: Local distortion-driven unloading to β = 0 and thus βe = −βp. The
plastic stress σp is produced by distorting the (dislocated) crystal lattice from
its non-integrable plastic con�guration (middle) back into the integrable (initial)
con�guration B (left). This is in analogy to the distortion of the (dislocated)
crystal lattice from its non-integrable plastic con�guration (middle) into the
integrable (deformed) con�guration B (right) that produces the stress σ entering
the equilibrium condition.

Vice versa, and as a novel concept, the plastic stress σp is de�ned as the stress
σ at locally vanishing distortion β ≡ 0 (which can indeed be controlled), see
Fig. 3 i.e. as the non-equilibrium stress σp that arises after distortion-driven
point-wise (elastic) unloading

σp
locally
:= σ|β≡0 with div σp 6= 0. (9)

Thereby the stress at locally vanishing (symmetric part of the) distortion com-
putes concretely as
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σ|β≡0 = σ(βsym,βsym
p )|β=0,βp (10)

and thus the plastic stress σp expands here, based on the above speci�c consti-
tutive relation for σ, as

σp := −E : βsym
p ≡ −E : βp. (11)

Thus, the plastic stress relates to the (symmetric part of the) negative plastic
distortion in the metric given by the elasticity tensor that captures the elastic
interactions within the crystalline lattice. In other words, the plastic stress is the
stress needed to elastically (i.e. at �xed plastic distortion) return from the non-
integrable plastic con�guration to the integrable initial con�guration (modulo
in�nitesimal plastic rotations described by βskw). Sloppily speaking, the plas-
tic stress thus restores the initial con�guration, however, while preserving the
plastic distortion. It is interesting to note that the so de�ned plastic stress is
conceptually di�erent from - but formally related to - the stress polarisation as
introduced in the seminal approach to homogenisation theory by Willis [60]1.

2.2 Energy Storage Function and Dissipation Potential

For plastic solids and in the 'non-gradient' local case, the constitutive relation
for the stress σ and the 'driving force' ςp derive as partial derivatives ∂(•) from
a (properly convex) energy storage function W that is parameterized in the
(symmetric parts of the) total distortion β (as the external variable) and the
plastic distortion βp (as the internal variable), i.e.

W =W (βsym,βsym
p ) with σ = ∂βW and ςp := −∂βp

W. (12)

Consequently, the (symmetric) stress σ entering the equilibrium condition and
the (symmetric) 'driving force' ςp driving the evolution of the (symmetric part of
the) plastic distortion βp also depend on the (symmetric parts of the) distortion
β and the plastic distortion βp

1In order to demonstrate that the concept of plastic stress is conceptually di�erent from -
but formally related to - the stress polarisation as introduced inWillis' seminal homogenisation
theory, the starting steps to the latter theory are brie�y re-iterated. Within a composite the
stress polarisation τ (x) = σ(x)−E0 : ε(x) denotes the di�erence between the (�uctuating)
stress σ(x) = E(x) : [ε(x) − εp(x)] in a heterogeneous material with non-constant sti�ness
E(x) and the stress E0 : ε(x) in a homogeneous comparison material with constant sti�ness
E0. Here, ε(x) is the total strain in the composite compatible with the displacement �eld u(x)
and εp(x) is the plastic strain in the composite that, for the sake of presentation, shall serve
as the only contribution to the eigenstrain. Thus, the stress polarisation may be expanded as
τ (x) = [E(x)−E0] : ε(x)−E(x) : εp(x). The stress σ(x) enters the equilibrium condition
div σ(x) = 0 that may be re-expressed in terms of the homogeneous comparison material as
div (E0 : ε(x)) + div τ (x) = 0. The term div τ (x) may then be interpreted as a body force,
which, when known, allows solution for ε(x) in terms of the in�nite-body Green's function
that is known for the homogeneous comparison material. When comparing any of the above
stress expressions with the here advocated plastic stress σp(x) := −E(x) : εp(x) (arising as
the stress after a strain-driven unloading with ε(x)→ 0), it becomes obvious that the plastic

stress is indeed conceptually di�erent from - but formally related to - the stress polarisation.
Indeed, σp(x) and τ (x) do formally coincide for homogeneous material with E(x) ≡ E0.
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σ = σ(βsym,βsym
p ) and ςp = ςp(β

sym,βsym
p ). (13)

Example: A typical constitutive choice for the energy storage function W is
the quadratic Hooke type model

W =W (βsym,βsym
p ) =W ([β − βp]

sym) =
1

2
[β − βp] : E : [β − βp]. (14)

Then the stress σ computes as in Eq. 8. Likewise, the 'driving force' ςp com-
putes as

ςp(β
sym,βsym

p ) = E : [β − βp]
sym ≡ E : [β − βp] (15)

and thus coincides here identically (σ ≡ ςp) with the stress entering the equi-
librium condition div σ = 0. �

Within the modelling framework of (generalized) standard materials the rate of
the (symmetric part of the) plastic distortion βsym

p lies in the sub-di�erential

d(•) (i.e. the set of sub-derivatives) of the convex but possibly non-smooth dual
dissipation potential D∗ (indeed, for the case of rate-independent plasticity D∗

is non-smooth), i.e.

D∗ = D∗(ςp) with β̇
sym

p ∈ dςpD
∗. (16)

The (dual) dissipation potential needs to satisfy a number of requirements (con-
vexity, positive homogeneity, zero at the origin) for the modelling to be ther-
modynamically or rather dissipation consistent (i.e. automatically satisfying the
requirement of the second law of thermodynamics for positive dissipation). For
rate-independent plasticity the convex but non-smooth (dual) dissipation po-
tential D∗ is the indicator function I of the admissible domain

D∗ = I
(
Y (ςp)

)
with I(Y ) :=

 0 Y ≤ 0
for

∞ else
(17)

that is expressed in terms of a convex yield condition

Y (ςp) ≤ 0. (18)

Then the evolution of the (symmetric part of the) plastic distortion βsym
p follows

alternatively as

β̇sym
p = λ∂ςpY, (19)

whereby λ ≥ 0 denotes a positive multiplier that follows from the Karush-Kuhn-
Tucker complementary conditions together with the consistency condition

Y ≤ 0, λ ≥ 0, λ Y = 0, and λ Ẏ = 0. (20)

9



In phenomenological plasticity the Karush-Kuhn-Tucker complementary con-
ditions are also denoted the loading-unloading conditions, with λ the plastic
multiplier following from the consistency condition.

Example: For phenomenological (poly-crystalline) metal plasticity a typical
constitutive choice for the yield condition Y is the v. Mises model

Y = Y (ςp) = |ςdevp | − τ0 ≤ 0. (21)

Here ςdevp := Idev : ςp denotes the deviatoric part of the 'driving force' with

Idev := Isym− 1
31⊗1 the symmetric fourth-order deviatoric projection operator,

and τ0 :=
√
2/3σ0 is a properly de�ned yield limit in terms of the uniaxial yield

stress σ0. The corresponding (associated) evolution law for the (symmetric part
of the) plastic distortion then follows as

β̇sym
p = λ

ςdevp

|ςdevp |
with λ = |β̇sym

p | and |ςdevp | = τ0. (22)

Observe that in phenomenological plasticity the evolution law for the plastic
distortion βp is non-unique since its skew-symmetric part βskw is not de�ned.
This situation is archetypical for phenomenological plasticity and is without
consequence there, since the stresses compute only from the symmetric part of
the elastic distortion. It is illuminating to note that the above evolution law
for the (symmetric part of the) plastic distortion is consistent with the sub-
di�erential ςdevp ∈ dβ̇p

D of the plastic potential D = τ0 |β̇sym
p | that is obtained

as the Legendre transformation of the dual dissipation potential D∗. �

The above generic modelling framework for geometrically linear plasticity shall
be further elucidated in more detail for the speci�c case of single crystal plas-
ticity in Section 3, whereby also hardening contributions will be considered.

2.3 Incorporation of Dislocation Density

The non-integrability of the plastic distortion βp (see Fig. 1, left), at maintained
equilibrium of σ, represents the dislocation density αp, i.e. the Nye-Kröner
tensor

αp := curl βp 6= 0 while div σ = 0. (23)

For an integrable plastic distortion βp, however, e.g. for the special case that
βp is spatially constant, the dislocation density αp vanishes identically. The
Nye-Kröner tensor αp is oftentimes denoted as the geometrically necessary dis-
location density, for various accounts on αp see e.g. Kröner [37, 35], Steinmann
[54], Arsenlis and Parks [3], Cermelli and Gurtin [9]. Recall that in a Cartesian
coordinate system with base vectors ei the curl of βp = βpij ei⊗ej is expressed
as curl βp = −βpij,k ejkl ei⊗el. Diagonal entries in the coe�cient matrix of αp

denote the density of screw dislocations whereas the o�-diagonal entries denote
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the density of edge dislocations.

Spatially non-homogeneous distributions of the plastic distortion necessitate
(trapped) dislocations that have not yet left the local neighbourhood of a ma-
terial point x. These are oftentimes denoted as geometrically necessary dislo-
cations and, e.g. for the case of edge dislocations, are characterized by crystal
lattice planes ending in the dislocation core. In general a single dislocation is
characterized by its dislocation line with tangent t and the Burgers vector de-
noting the closure failure of a Burgers circuit

∮
C βp · dx enclosing the dislocation

line.

The dislocation density αp (containing gradients of the plastic distortion, aka
'strain gradients') contributes to the energy storage function W (and eventu-
ally leads to kinematic-type hardening), whereby the corresponding variational

derivative δ(•) 2 renders the 'driving force' ςp (now incorporating zeroth and
second derivatives of the plastic distortion) for the evolution of the plastic dis-
tortion

W =W (βsym,βsym
p ,αp) with ςp := −δβp

W = −∂βp
W − curl ∂αp

W. (24)

The above motivation for the direct incorporation of 'strain gradients' in the
format of the dislocation density into the constitutive modelling is classical, see
e.g. Steinmann [54], Menzel and Steinmann [48].

Example: A typical constitutive choice for extending the energy storage func-
tion W by contributions from the dislocation density consists of a local and a
gradient contribution (eventually resulting in dislocation density induced kine-
matic hardening)

2Recall the operational de�nition of the variational derivative δβpW
grd of a function

W grd =W grd(αp) with αp = curl βp via∫
V
δW grd dv =

∫
V
∂αpW

grd : curl δβp dv =:

∫
V
δβpW

grd : δβp dv.

The variation of the functional on the left-hand-side of this de�nition is then reformulated via
partial integration and the Gauss theorem∫

V
∂αpW

grd : curl δβp dv =

∫
V
curl ∂αpW

grd : δβp dv +

∫
∂V

[δβpW
grd · n̂] : δβp da

whereby n̂ is the skew-symmetric spin tensor corresponding to the outwards pointing normal,
i.e. its axial vector n (thus for any vector v it holds isomorphically that n̂ · v = n × v).
Then for admissible variations of βp satisfying δβp = 0 on ∂V the variational derivative of

W grd(αp) is eventually identi�ed as

δβpW
grd := curl ∂αpW

grd.

Observe the positive sign of the curl on the right-hand-side, which is in contrast to the vari-
ational derivative of a function that is expressed in terms of the gradient of an independent
variable, i.e. for W loc =W loc(β) with β = grad u it holds that δuW loc = −div ∂βW loc.
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W =W (βsym,βsym
p ,αp) =W loc([β − βp]

sym) +W grd(αp). (25)

A popular example for the local contribution W loc is again the quadratic Hooke
type model from Eq. 34. Moreover, with the simplest quadratic choice for the
gradient contribution

W grd =W grd(αp) =
1

2
`2W A |αp|2, (26)

the 'driving force' ςp computes eventually as

ςp(β,βp,αp) = E : [β − βp]
sym − `2W A curl αp. (27)

The material parameter A has dimension of energy per unit volume (or likewise
dimension of stress) and `W is an energetic length scale. �

2.4 Incorporation of Disequilibrium Density

Recall that the plastic stress σp (see Fig. 1, right) is a non-equilibrium stress3.
Thus, the non-equilibrium source %p, a novel quantity denoted the disequilib-

rium density , has the �avour of a body force and computes, at maintained
integrability of β, as

%p := −div σp 6= 0 while curl β = 0. (28)

For a self-equilibrated plastic stress σp, however, e.g. for the special case that
σp is spatially constant, the disequilibrium density %p vanishes identically. The
entries in the coe�cient (column) matrix of %p simply denote the disequilibrium
density in the various coordinate directions.

Since we purposely avoid to introduce additional degrees of freedom, there is
no thermodynamically conjugated kinematic variable to %p. Thus, it is here
proposed that the disequilibrium density %p (containing gradients of the plastic
stress, aka 'stress gradients') parameterizes the dual dissipation potential D∗,
with the rate of the (symmetric part of the) plastic distortion βp lying, as before,
in the sub-di�erential of D∗, i.e.

D∗ = D∗(ςp;%p) with β̇sym
p ∈ dςpD

∗. (29)

Recall that for rate-independent plastic solids, the convex but non-smooth dual
dissipation potential D∗ is the indicator function I of the admissible domain,
that is now additionally parameterized in the disequilibrium density and that is
expressed for phenomenological plasticity in terms of a convex yield condition

3It shall indeed be noted carefully that the plastic stress is not the residual stress! The
residual stress would compute from the requirement of equilibrium after global unloading, i.e.
for zero external loading data (zero body forces and boundary tractions), and would result in
an integrable non-null (total) distortion β 6= 0.

12



D∗ = I
(
Y (ςp;%p)

)
with Y (ςp;%p) ≤ 0. (30)

Consequently the evolution of the (symmetric part of the) plastic distortion
follows formally unchanged as in Eq. 19.

Example: For phenomenological (poly-crystalline) metal plasticity a possi-
ble yield condition in the spirit of v. Mises extended by the in�uence of the
disequilibrium density reads

Y = Y (ςp;%p) := |ςdevp | − τ0
[
1 + `D |%p|/%0

]
≤ 0. (31)

Here `D is a dissipative length scale and the reference value %0 has dimension of
stress. Similar formulations for the yield resistance, however in terms of pileup
induced stress gradients have been considered by Taheri-Nassaj and Zbib [57],
Lyu, Taheri-Nassay and Zbib [45], Lyu et al. [44]. �

3 Application: Single Crystal Plasticity

We will next elucidate the concepts motivated generically in the above for the
speci�c case of geometrically linear, rate-independent single crystal plasticity.
Thereby, the rate-independent case is chosen here merely for the sake of pre-
sentation, it is however remarked that accompanying issues regarding a possible
indeterminacy for the active set of slip systems are entirely by-passed by re-
sorting to the physically more appropriate rate-dependent setting (see also the
computational example in Section 4).

3.1 Local Single Crystal Plasticity

To set the stage and to �x ideas and notation, the case of local rate-independent
single crystal plasticity is �rst brie�y reviewed. For local single crystal plasticity
the plastic distortion βp results from plastic slips γa on a = 1 · · ·nsys slip systems
(no summation convention applied here to the counter a) with slip directions
sa and slip plane normals ma as

βp =
∑
a

γa sa ⊗ma. (32)

The slip direction and slip plane normal are orthonormal vectors that satisfy
|sa| = 1, |ma| = 1 and sa ·ma = 0. In addition the slip plane bi-normals
na := sa ×ma are introduced so that {sa,ma,na} form an orthonormal triad
of base vectors for each slip system a. In the sequel the set of quantities related
to all slip systems are occasionally denoted by an underline, for example the set
of plastic slips is collectively denoted as

γ := {γ1, · · · , γa, · · · , γnsys} (33)
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with the de�nition of the product of such sets given e.g. by γ ◦ γ :=
∑
a γa γa.

With internal hardening variables ηa for each slip system a collected in the set
η, a possible quadratic energy storage function W =W (β,βp, η) reads as

W =
1

2

[
β−

∑
a

γa sa ⊗ma︸ ︷︷ ︸
βp

]
: E :

[
β−

∑
b

γb sb ⊗mb︸ ︷︷ ︸
βp

]
+
1

2

∑
a,b

ηaHab ηb. (34)

Here, Hab = Hba is the (symmetric) matrix of hardening moduli, allowing for
self (a = b) and latent (a 6= b) hardening. Then, from exploiting the (isothermal)
dissipation inequality

D := σ : β̇sym − Ẇ ≥ 0, (35)

the stress σ entering the equilibrium equation follows constitutively as

σ = ∂βW = E :
[
β −

∑
a

γa sa ⊗ma

]sym
. (36)

Consequently, the plastic stress σp computes upon distortion-driven unloading
to β = 0 as

σp = −E :
[∑

a

γa sa ⊗ma

]sym
(37)

and results, for the sake of presentation for the - admittedly very special - case
of isotropic elasticity in

σp
isotropy

= −2G
∑
a

γa [sa ⊗ma]
sym = −G

∑
a

γa [sa ⊗ma +ma ⊗ sa]. (38)

Next, the 'driving force' ςp conjugate to βp computes as the negative partial
derivative of the energy storage function with respect to the plastic distortion

ςp = −∂βp
W ≡ σ (39)

and turns out to coincide with the stress σ entering the equilibrium equation.
Finally, the 'driving forces' ς conjugate to the internal hardening variables η
compute as

ςa := −∂ηaW = −
∑
b

Hab ηb. (40)

Then, with the plastic power ςp : β̇p that expands with the de�nition τa :=
sa · ςp ·ma into

14



ςp : β̇p =
∑
a

[sa · ςp ·ma] γ̇a =: τ ◦ γ̇, (41)

the remaining dissipation inequality reduces to a bi-linear form in terms of the
'driving forces' τ and ς and the rates of the internal variables γ and η

D = τ ◦ γ̇ + ς ◦ η̇ =
∑
a

[τa γ̇a + ςa η̇a] ≥ 0. (42)

Here, τ and ς denote the resolved Schmid stresses and the hardening stresses,
respectively, as de�ned on each slip system a. Eventually, by comparing with
the alternative representation for the remaining dissipation inequality

D = −
∑
a

[∂γaW γ̇a + ∂ηaW η̇a] ≥ 0, (43)

the resolved Schmid stresses τ , i.e. the 'driving forces' conjugate to the internal
variables γ compute as the negative partial derivatives of the energy storage
function with respect to the plastic slips

τa := −∂γaW ≡ sa · σ ·ma. (44)

Operationally, the resolved Schmid stress τa is thus expressed as the projection
of the stress σ (that enters the equilibrium equation) by the Schmid tensor
sa ⊗ma of slip system a.

With the 'driving forces' in the above, for the case of rate-independent crystal
plasticity (which is here chosen for the sake of simplicity), a yield condition for
each slip system a is formulated as

Ya = |τa| − [τ0 − ςa] ≤ 0 (45)

with τ0 the initial yield or rather slip resistance. Then, the associated evolution
equations for the plastic slips γ and the hardening variables η follow from the
constrained optimization problem L := −D + λ ◦ Y → minτ,ς as

γ̇a = λa ∂τaYa = λa
τa
|τa|

and η̇a = λa ∂ςaYa = λa. (46)

Here, λa ≥ 0 are positive multipliers that satisfy, jointly with the yield condi-
tions Ya ≤ 0, the Karush-Kuhn-Tucker optimality (or rather complementary)
conditions together with the consistency conditions

λa ≥ 0, Ya ≤ 0, λa Ya = 0, and λa Ẏa = 0. (47)

Note that as a consequence of the above evolution equations the multipliers do
here coincide with the rate of the internal hardening variables, i.e. λa ≡ |γ̇a| ≡
η̇a.
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Remark: It is interesting to note that the above relations may be recast within
the setting of convex analysis as outlined in the above. To this end, the dissi-
pation potential D = D(γ̇, η̇) and the dual dissipation potential D∗ = D∗(τ , ς)
are introduced. Thereby D and D∗ are related via Legendre transformation, so
that the dissipation D is additively composed from the dissipation and the dual
dissipation potential D = D+D∗. Then the evolution equations for the internal
variables may alternatively be expressed in terms of sub-di�erentials d(•) (i.e.
the sets of sub-derivatives) of these potentials

τ = dγ̇D, ς = dη̇D and γ̇ = dτD
∗, η̇ = dςD

∗. (48)

Concretely, for the current setting of geometrically linear, rate-independent sin-
gle crystal plasticity the dissipation potential D =

∑
aDa reads for each slip

system a

Da :=
[
τ0 +

∑
b

Hab ηb

]
|γ̇a| −

[∑
b

Hab ηb

]
η̇a (49)

with corresponding sub-di�erentials resulting in

τa =


+
[
τ0 +

∑
bHab ηb

]
γ̇a > 0

∈
[
±
[
τ0 +

∑
bHab ηb

]]
for γ̇a = 0

−
[
τ0 +

∑
bHab ηb

]
γ̇a < 0

(50)

and
ςa = −

∑
b

Hab ηb. (51)

Observe that for γ̇a 6= 0 - whereby |τa| = τ0 +
∑
bHab ηb - the above reads

τa = |τa|γ̇a/|γ̇a| and with the identi�cation λa = |γ̇a| corresponds thus to the
evolution equations for the plastic slips as given in Eq. 46. Correspondingly,
the dual dissipation potential D∗ =

∑
aD
∗
a expands for each slip system a in

terms of the indicator function I(•) as

D∗a := I(Ya) =

 0 Ya ≤ 0
for

∞ else
(52)

The evolution laws (the associated �ow rules) for γa and ηa then follow as the
sub-di�erentials

γ̇a =


0 Ya < 0

for

λa
τa
|τa|

Ya = 0

 and η̇a =

 0 Ya < 0
for

λa Ya = 0

 (53)

with λa positive (plastic) multipliers. �
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3.2 Single Crystal Dislocation Density

For the kinematics of geometrically linear single crystal plasticity the curl of the
plastic distortion βp computes as

curl βp =
∑
a

sa ⊗ [grad γa ×ma]. (54)

Thus, with (scalar-valued) edge and screw dislocation densities α⊥a and α
‖
a de-

�ned as

α⊥a := ∇saγa := grad γa · sa and α‖a := −∇naγa := −grad γa · na, (55)

the curl of the plastic distortion βp and thus the dislocation densityαp computes
�nally with the dislocation density tensor αpa de�ned for each slip system a as

curl βp =: αp =
∑
a

αpa with αpa := α‖a sa ⊗ sa + α⊥a sa ⊗ na. (56)

Note that in the orthonormal {sa,ma,na} triad of base vectors the edge and

screw dislocation densities α⊥a and α
‖
a are o�-diagonal and diagonal terms,

respectively, of a given slip system's contribution to αp = curl βp. Corre-
spondingly, for edge and screw dislocations, na and sa, respectively, denote the

tangent to the dislocation line, whereas α⊥a sa and α
‖
a sa, respectively, denote

the Burgers vector density associated with the slip system a. Thus a surface
with normal na is penetrated by edge dislocations with Burgers vector density
α⊥a sa, whereas a surface with normal sa is penetrated by screw dislocations

with Burgers vector density α
‖
a sa. Note, however, that in stark contrast to

the aforementioned observations, for this kinematics of the plastic distortion a
surface with normalma (i.e. the slip plane) is obviously not penetrated by dis-
locations. Finally, it shall also be noted carefully that the directional derivative
of the plastic slip γa in the direction of the slip plane normal ma, i.e. ∇maγa
does not contribute to the dislocation density tensor at all.

3.3 Single Crystal Disequilibrium Density

Assuming next for simplicity, but without loss of generality, isotropic linear
elastic behaviour of the crystal lattice, the plastic stress computes explicitly as

σp = −G
∑
α

γa [sa ⊗ma +ma ⊗ sa]. (57)

Then the (negative) divergence of the plastic stress σp follows as

−div σp =
∑
a

[
G [grad γa ·ma] sa +G [grad γa · sa]ma

]
. (58)
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Recall next the expansion of the gradient of the plastic slip γa in the {sa,ma,na}
triad of base vectors and the orthonormality of sa, ma, and na. Then (scalar-
valued) disequilibrium densities %→a and %↑a are de�ned as

%→a /G := ∇maγa := grad γa ·ma and %↑a/G := ∇saγa := grad γa · sa. (59)

With these preliminaries at hand the (negative) divergence of the plastic stress
σp and thus the disequilibrium density %p computes with the disequilibrium
density vector %ra de�ned for each slip system a as

−div σp =: %p =
∑
a

%ra with %ra = %→a sa + %↑ama. (60)

Remarkably, for a given slip system a the disequilibrium density consists of %→a
in the direction of slip sa and of %↑a in the direction of the slip plane normalma.
Note the identi�cation of %↑a ≡ Gα⊥a with the edge dislocation density α⊥a , which
is obvious in view of the subsequent example. It seems in particular that this is
a force that acts in the direction of the ending lattice planes. Observe however
that for this kinematics of the plastic distortion there is zero disequilibrium
density in the direction na of the slip plane bi-normals. Finally, it shall also
be noted carefully that the directional derivative of the plastic slip γa in the
direction of the slip plane bi-normal na, i.e. ∇naγa does not contribute to the
disequilibrium density vector at all.

3.4 Example: Edge Dislocation Induced Bending
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Figure 4: Idealized
crystal with two slip
systems that allow plas-
tic slip along the diago-
nals.

As a simple two-dimensional example (bearing similarities to corresponding ex-
amples analysed e.g. by Ashby [4] and De Wit [11]) that illustrates the concepts
of dislocation density and disequilibrium density, we consider the idealized crys-
tal in Fig. 4 endowed with two slip systems characterized by the slip directions
sa and slip plane normals ma with a = 1, 2 (and thus consequently sharing the
same out-of-plane bi-normal na = e3)

[s1]i ∝
[

+1
+1

]
, [s2]i ∝

[
+1
−1

]
, [m1]i ∝

[
−1
+1

]
, [m2]i ∝

[
+1
+1

]
. (61)

Thus, the corresponding Schmid projection tensors read
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[s1 ⊗m1]ij =
1

2

[
−1 +1
−1 +1

]
and [s2 ⊗m2]ij =

1

2

[
+1 +1
−1 −1

]
. (62)

In the two-dimensional setting the only non-vanishing coe�cients of the dislo-
cation density de�ned by αpil = −βpij,kejkl are obviously

αp13 = βp12,1 − βp11,2 and αp23 = βp22,1 − βp21,2. (63)

These denote the edge dislocations with dislocation lines in e3-direction, i.e.
penetrating the e1− e2 plane, and with Burgers vectors in e1 and e2 direction,
respectively. The displacement �eld of a globally compatible bending deforma-
tion is given in terms of two parameters c1 and c2

u = −c1 x1 x2 e1 +
1

2
[c1 x

2
1 + c2 x

2
2] e2 (64)

with the coe�cients of the corresponding total distortion and corresponding
dislocation density computed as

[β]ij =

[
−c1 x2 −c1 x1
c1 x1 c2 x2

]
with α13 = α23 ≡ 0. (65)
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Figure 5: Macroscopically
stress-free (!) distortion of an
idealized crystal. The total and
the plastic dislocation densities
are constant. Dislocations are
formed by ending lattice lines
(planes) that are here marked
by full circles.

For a possible macroscopically stress-free distortion (since the elastic distortion
is skew symmetric) as depicted in Fig. 5 with the elastic and plastic contributions

[βe]ij =

[
0 −c x1
c x1 0

]
and [βp]ij =

[
−c x2 0
0 c x2

]
, (66)

whereby an incompressible plastic distortion is obtained by setting c2 = c1 = c
(since then the trace of the plastic distortion vanishes), and for plastic slips

γ1 = c x2 and γ2 = −c x2 resulting in α⊥1 = α⊥2 = c/
√
2 and α

‖
1 = α

‖
2 = 0, the

dislocation density takes a constant value

αp13 = c and αp23 = 0. (67)

Observe that the curl of the dislocation density vanishes in this case so that
the presence of the constant dislocation density is not felt as a back stress (see
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below) in the yield condition. Note furthermore that although the distortion is
macroscopically stress-free, the dislocation cores at the end of the lattice lines
in Fig. 5 (consisting of the �ve closest atoms) experience locally severe lattice
distortions. Assuming next for convenience isotropic Hooke's, the plastic stress
σp and its (negative) divergence −div σp =: %p, aka the disequilibrium density

(with %→1 = −%→2 = %↑1 = %↑2 = Gc/
√
2) compute as

[σr]ij = −2G
[
−c x2 0
0 c x2

]
and [%r]i = 2G

[
0
c

]
. (68)

Thus, whereas the constant dislocation density does here not contribute to the
resistance against plastic �ow upon further loading, the disequilibrium density
is non-zero and may thus contribute e�ectively to the hardening state of the
material.

3.5 Gradient Single Crystal Plasticity

3.5.1 Incorporation of Dislocation Density

Recall that for single crystal plasticity the dislocation density αp results from
the plastic slip gradients grad γa on the a = 1 · · ·nsys slip systems as

αp =
∑
a

α‖a sa ⊗ sa + α⊥a sa ⊗ na. (69)

Since the dislocation densityαp = αp(α
‖, α⊥; s,n) is a function of the screw and

edge dislocation densities assembled in the sets α‖ and α⊥, a generalized single
crystal plasticity formulation is obtained by incorporating physically motivated
'strain gradients' in the format of α‖ and α⊥ into the energy storage function
W that decomposes for convenience of exposition into a local and a gradient
contribution

W =W loc(βsym, γ, η; s,m) +W grd(α‖, α⊥; s,m). (70)

Thereby the local contribution W loc = W loc(βsym, γ, η; s,m) to the energy
storage function may expand quadratically as in Eq. 34 discussed previously for
the local case. Consequently the resulting de�nitions of the stress σ entering
the equilibrium equation and the plastic stress σp are thus formally unchanged
when compared to the local case.

Next, the 'driving force' ςp conjugate to βp computes as the negative variational
derivative of the energy storage function with respect to the plastic distortion

ςp = −δβp
W ≡ ς locp + ςgrdp . (71)

Note that as a consequence of the decomposition of the energy storage function
into local and gradient contributions, the 'driving force' ςp decomposes like-
wise into local ς locp and gradient contributions ςgrdp . Thereby, ς locp is formally
unchanged when compared to the local case
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ς locp := −∂βpW
loc ≡ σ, (72)

and turns out to coincide with the stress σ entering the equilibrium equation.
Moreover, ςgrdp expands as

ςgrdp := −curl ∂αp
W grd. (73)

Finally, the 'driving forces' ς conjugate to the internal hardening variables η
compute as in the local case.

Then, with the plastic power ςp : β̇p that expands with the de�nition τa :=
sa · ςp ·ma into τ ◦ γ̇, the remaining dissipation inequality reduces to a bi-
linear form in terms of the 'driving forces' τ and ς and the rates of the internal
variables γ and η formally as in Eq. 42. Note again that as a consequence
of the decomposition of the energy storage function into local and gradient
contributions, the Schmid stresses τ decompose likewise into local and gradient
contributions

τa = τ loca + τgrda . (74)

Eventually, by comparing with the alternative representation for the remaining
dissipation inequality

D = −
∑
a

[δγaW γ̇a + ∂ηaW η̇a] ≥ 0, (75)

the resolved Schmid stresses τ , i.e. the 'driving forces' conjugate to the internal
variables γ compute as the negative variational derivatives of the energy storage
function with respect to the plastic slips

τa := −δγaW = τ loca + τgrda = τ loca − τ‖a − τ⊥a . (76)

Here (scalar-valued) edge and screw resolved Schmid back stresses τ⊥ and τ‖

resulting in τgrd := −τ‖ − τ⊥ are de�ned as

τ⊥a := ∇saµ⊥a := grad µ⊥a · sa and τ‖a := −∇na
µ‖a := −grad µ‖a · na (77)

whereas the (local and gradient) 'driving forces' τ loc, µ‖ and µ⊥ conjugate to

the internal variables γ, α‖ and α⊥, respectively, are introduced as

τ loca := −∂γaW loc and µ‖a := −∂
α

‖
a
W grd and µ⊥a := −∂α⊥

a
W grd. (78)

Note the similar de�nition of the edge and screw dislocation densities and the
edge and screw resolved Schmid backstresses. As net result, directional deriva-
tives of the plastic slips in the directions sa and na contribute evenly to the
resolved Schmid backstresses. Operationally, the resolved Schmid stress τa is
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thus expressed as the projection of the stress σ (that enters the equilibrium
equation) by the Schmid tensor sa ⊗ma of slip system a and the (gradients
of) derivatives of the energy storage function with respect to the (scalar-valued)
screw and edge dislocation densities

τa = −δγaW ≡ sa · σ ·ma − grad ∂
α

‖
a
W · na + grad ∂α⊥

a
W · sa. (79)

3.5.2 Incorporation of Disequilibrium Density

Recall next that for single crystal plasticity (in combination with isotropic linear
elasticity) the disequilibrium density %p results from the shear modulus weighted
plastic slip gradients grad γa on the a = 1 · · ·nsys slip systems as

%p =
∑
a

%→a sa + %↑ama. (80)

Since the (vector-valued) disequilibrium density %r = %r(%
→, %↑; s,m) is a func-

tion of the (scalar-valued) disequilibrium densities assembled in the sets %→

and %↑, a generalized single crystal plasticity formulation is obtained by incor-
porating continuum mechanics-motivated 'stress gradients' in the format of %→

and %↑ (depending for isotropic linear elasticity on the shear modulus weighted

plastic slip gradients G∇maγa =: %→a and G∇saγa =: %↑a) as parameters in the
yield conditions Y that are otherwise functions of the 'driving forces' τ and ς

Ya = Ya(τa, ςa; %
→, %↑). (81)

A particular obvious choice for the explicit parametrization of the yield condi-
tions Y in the disequilibrium density %r is given by the projection

%a := %p · sa =
∑
b

%pb · sa (82)

of %p into the slip directions sa to render

Ya = |τa| −
[
τ0[1 + `D |%a|/%0]− ςa

]
≤ 0 (83)

with τ0 the initial slip resistance and %0 = G or %0 = τ0 a possible reference
value of dimension stress. A furthermore reduced alternative model is obtained
by only using the projection

%→a := %pa · sa (84)

of the slip-system-wise disequilibrium density %pa into the slip directions sa to
render

Ya = |τa| −
[
τ0[1 + `D |%→a |/%0]− ςa

]
≤ 0. (85)

Note that %→a contributes the directional slip gradient ∇ma
γa into the yield re-

sistance, whereas τa contributes the directional slip gradients ∇saγa and ∇na
γa
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into the equivalent stress, thus all directional slip gradients are present in the
de�nition of the yield condition.

Regardless of the concrete modelling option, the associated evolution equations
for γ and η follow formally as unchanged compared to Eq. 46 from the con-
strained optimization problem L := −D + λ ◦ Y → minτ,ς whereby, again,
positive multipliers λa ≥ 0 satisfy, jointly with the yield conditions Ya ≤ 0, the
Karush-Kuhn-Tucker optimality conditions as in Eq. 47. Note again that as a
consequence of the above evolution equations the multipliers do here coincide
with the rate of the hardening variables λa ≡ |γ̇a| ≡ η̇a.

Remark: In alignment with the early proposal in [54, 48] it can be considered
a bene�t of this particular formulation that it does not introduce additional de-
grees of freedom in the continuum setting that need to be solved from additional
balance equations as, e.g., micro force balances à la Gurtin [21]. Nevertheless,
since the gradients of the plastic slips enter the yield condition, in a computa-
tional setting such as the �nite element method these need to be determined
numerically in one way or another. One possibility consists in numerically solv-
ing the evolution equations in weak form, which entails discretising the plastic
slips and requires the determination of the active plastic domain in an iterative
fashion. Liebe et al. [38, 39], for example, have devised such algorithms earlier.
An alternative is to use a sequence of L2 smoothing steps, see Menzel et al. [47].
�

4 Computational Example: Micro Wire Torsion

The e�ects of considering the dislocation density and the disequilibrium den-
sity within the yield condition shall be investigated by a simple computational
example. To this end, we consider torsion of a (three-dimensional) single crys-
talline micro wire with fcc crystal structure. The �nite element solution for the
equilibrium boundary value problem is obtained, based on a discretisation via
tri-linear Ansatz functions, by an implementation into the open source �nite
element library deal.ii [2]. The rate-independent model proposed in Section 3.5
is here considered in a regularized fashion, thus resulting in the rate-dependent
approximation to Eq. 85 (including the gradient extended Schmid stress in Eq.

76 with τ
‖
a = −`2W G∇2γa : [na ⊗ na] and τ⊥a = −`2W G∇2γa : [sa ⊗ sa] but

neglecting the contribution of the internal variables to the hardening in order
to exclusively focus on the gradient e�ects)

γ̇a = γ̇0


∣∣∣τ loca − τ‖a − τ⊥a

∣∣∣
τ0[1 + `D |ρ→a | /%0]

p sign(τ loca − τ‖a − τ⊥a
)
. (86)

The corresponding material parameters used in our computations are assembled
in Tab. 1, whereby the in�uence of the energetic and the dissipative length scale
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parameters `W and `D shall be analysed. The reference slip rate γ̇0 and the expo-
nent p are chosen so as to adjust the formulation closely to the rate-independent
limit (to verify this assertion we checked that doubling the displacement-driven
load rate increases the resultant torque of the following example by only 3.5%).
The crystallographic slips are evaluated at the quadrature points and subse-
quently smoothed using a L2 projection with linear Ansatz functions and the
same mesh as for the displacement �eld. To obtain the necessary second gra-
dients of the slips, the projected gradients of the slip �elds are smoothed again
using the same Ansatz. The gradient contributions are integrated explicitly
along the load history, whereas the local crystal plasticity contributions are
integrated implicitly.

K 217000 MPa τ0 200 MPa p 20
G 100000 MPa %0 200 MPa γ̇0 100000 s−1

Table 1: Material parameters for the micro wire torsion problem

The micro wire is loaded in torsion by rotation control, whereby inextensibility is
enforced in axial direction. The displacement of the rotational axis is completely
�xed to prevent rigid body motions. Moreover, the rotation of the bottom cross
section is fully restricted, however radial displacements are free due to appropri-
ately constraining the Cartesian in-plane displacements. The top cross section
is rotated by a twist angle of in total 5 mm−1 (per axial length of the micro
wire) with a rate of 40 mm−1s−1 prescribed in 30 equidistant load/time steps
for all nodes whereby the radial displacements are again free. The micro wire
has a diameter of 10 µm and (due to the repeatability of the solution along the
axial direction) only a slice of length 0.368 µm is discretised, resulting in a mesh
with nearly cube-shaped elements see Fig. 6. Due to the axial inextensibility
condition one element in axial direction is su�cient, thus resulting in a total
number of 320 elements. The orientation of the crystallographic unit cells in
relation to the micro wire is depicted in Fig. 7 with the micro wire cross section
shown in yellow and the four slip planes in green, each with its three slip systems
in red.

Figure 6: Mesh of a slice of the micro wire as loaded in torsion.
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Figure 7: Four slip planes of a fcc unit cell marked in green with the corre-
sponding three slip systems indicated as arrows. The micro wire cross section
is indicated in yellow.

The micro wire torsion problem is then evaluated for di�erent values of the
energetic and dissipative length scale parameters `W and `D. The resulting
size-dependent hardening is highlighted in the torque - twisting diagram in Fig.
8. Thereby, the additional hardening contribution due to the disequilibrium
density is activated by setting `D 6= 0 and is clearly visible in the dashed lines
of the zoom-out in Fig. 9 (the results obtained by only activating the hardening
due to the dislocation density, i.e. for `W 6= 0 and `D = 0 are highlighted by the
full lines.

Observe that both, the inclusion of the dislocation density as well as of the dis-
equilibrium density merely in�uences the hardening behaviour while leaving the
initial yield limit una�ected. This does, however, not come as a surprise, since
any gradient plasticity formulation that rests on some sort of gradient of the
plastic distortion cannot result in an increase of the initial yield limit, but can
only contribute to the hardening once plastic distortion starts evolving. It is
precisely the contribution to hardening due to the novel disequilibrium density
that is the main focus of this manuscript. The initial yield limit can only be
in�uenced by some sort of gradient of the equilibrium stress (or alternatively
the total distortion). This issues will be discussed in much detail shortly in a
separate contribution.

The spatial distributions of the norm of the dislocation and disequilibrium den-

sities de�ned as
√
α⊥ ◦ α⊥ + α‖ ◦ α‖ and

√
%→ ◦ %→ + %↑ ◦ %↑ as well as the

von Mises stress for various combinations of the energetic and dissipative length
scale parameters `W and `D are showcased for the sake of completeness in the
Appendix in Figs. 10, 11 and 12. Likewise, the projections of the slip gradients
in the directions sa, na and ma at maximum twisting are depicted for the en-
ergetic and dissipative length scale parameters `W = 0.14 and `D = 0.1 in Figs.
13, 14, and 15, respectively.
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Figure 8: Torque over twisting for di�erent values of the length scale parameters
`W and `D.
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Figure 9: Zoom: Torque over twisting for di�erent values of the length scales
parameters `W and `D.

5 Conclusions

We here propose an alternative continuummechanics-inspired approach to 'stress
gradient' plasticity that rests on the introduction of the plastic stress and its
non-equilibrium that is expressed in terms of the disequilibrium density , a novel
concept. In this regard our new approach is entirely di�erent from the estab-
lished format of 'stress gradient' plasticity that is rather motivated from the
consideration of dislocation pileup problems.
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The here proposed novel kinetic quantities for 'stress gradient' plasticity are
the counterparts to the well-established kinematic quantities in 'strain gradient'
plasticity, i.e. the plastic distortion and its non-integrability expressed in terms
of the dislocation density (or the plastic strain and its incompatibility expressed
in terms of the incompatibility density). Indeed, we conceptually introduce the
plastic stress by distortion-driven unloading from a loaded state in the elasto-
plastic regime in an entirely dual fashion to the accepted introduction of the
(symmetric part of the) plastic distortion that commonly follows from a stress-

driven unloading from the same state, see Fig. 1. Equilibrium of stress and
integrability of distortion as expressed by the di�erential operators div and curl
are complementing requirements in continuum mechanics. Thus the absence of
equilibrium, i.e. the non-equilibrium of the plastic stress, as well as the absence
of integrability, i.e. the non-integrability of the plastic distortion motivate us to
consider these quantities in a formulation of gradient plasticity.

Thereby, the formulation of a gradient plasticity formulation is most elegantly
e�ected within the abstract setting of convex analysis that, for the case of plas-
ticity, hinges on a (poly-)convex energy storage function and a convex dissipation
potential as well as its dual.

In our setting, the dislocation and disequilibrium densities contribute to the for-
mulation of gradient plasticity combining 'strain' and 'stress gradients' via their
introduction into the energy storage function and the dual dissipation potential.
When translating the convex analysis approach to the more classical concept of
a yield condition, the former results in a size-dependent back-stress like contri-
bution to the equivalent stress, whereas the latter results in a size-dependent
contribution to the yield resistance.

Noteworthy, when speci�ed to the case of gradient single crystal plasticity com-
bining 'strain' and 'stress gradients', all of the three independent directional
derivatives of the plastic slip, i.e. in the slip direction (1) and in the directions
of the slip plane bi-normal (2) and slip plane normal (3), occur. The �rst two
directional gradients of the plastic slip typically contribute to the dislocation
density in the form of (scalar-valued) edge and screw dislocation densities. The
third directional gradient is usually not present in common 'strain gradient'
single crystal plasticity. An exception is the contribution by Bardella and Gia-
comini [5] that phenomenologically introduces a dissipative higher-order stress
conjugate to this uncommon directional derivative of the plastic slip within
a micro-force balance setting (for an analysis of this type of gradient plastic-
ity models see Mc Bride et al. [46]). It appears however that only the here
advocated novel 'stress gradient' contribution in the form of a (scalar-valued)
disequilibrium density rationalises this approach for a setting not involving an
additional micro-force balance and the accompanying additional degrees of free-
dom.
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As a conclusion, the novel continuum approach to gradient single crystal plas-
ticity combining 'strain' and 'stress gradients' involves the entire set of plastic
slip gradients and thus allows to phenomenologically (i.e. in a continuum me-
chanics setting) model the size-dependent hardening state of a single crystalline
material in a more complete fashion.

Detailed implications for the algorithmic setting of gradient single crystal plas-
ticity combining 'strain' and 'stress gradients' as well as the extension to the
geometrically non-linear case will be pursued in our forthcoming contributions.
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Appendix
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Figure 10: Norm of dislocation densities at twist of 5mm−1.
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Figure 11: Norm of disequilibrium densities at twist of 5mm−1.
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Figure 12: Von Mises stress at twist of 5mm−1.
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Figure 13: Edge dislocation densities in 12 fcc slip systems at twist of 5mm−1.
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Figure 14: Screw dislocation densities in 12 fcc slip systems at twist of 5mm−1.
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Figure 15: Normal slip gradients in 12 fcc slip systems at twist of 5mm−1.
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