Mechanics of extended continua: Modeling and simulation of elastic microstretch materials

Kirchner, N. and Steinmann, P. (2007) Mechanics of extended continua: Modeling and simulation of elastic microstretch materials. Computational Mechanics, 40, 651. (doi: 10.1007/s00466-006-0131-0)

Full text not currently available from Enlighten.

Abstract

The investigation of microstretch and micromorphic continua (which are prominent examples of so-called extended continua) dates back to Eringens pioneering works in the mid 1960, cf. (Eringen in Mechanics of micromorphic materials. Springer, Berlin Heidelberg New York, pp 131-138, 1966; Eringen in Int J Eng Sci 8:819-828; Eringen in Microcontinuum field theories. Springer, Berlin Heidelberg New York, 1999). Here, we re-derive the governing equations of microstretch continua in a variational setting, providing a natural framework within which numerical implementations of the model equations by means of the finite element method can be obtained straightforwardly. In the application of Dirichlets principle, the postulation of an appropriate form of the Helmholtz free energy turns out to be crucial to the derivation of the balance laws and constitutive relations for microstretch continua. At present, the material parameters involved in the free energy have been assigned fixed values throughout all numerical simulations-this simplification is addressed in detail as the influence of those parameters must not be underestimated. Since only few numerical results demonstrating elastic microstretch material behavior in engineering applications are available, the focus is here on the presentation of numerical results for simple twodimensional test specimens subjected to a plane strain condition and uniaxial tension. Confidence in the simulations for microstretch materials is gained by showing that they exhibit a "downward-compatibility" to Cosserat continuum formulation: by switching off all stretch-related effects, the governing set of equations reduces to the one used for polar materials. Further, certain material parameters can be chosen to act as penalty parameters, forcing stretch-related contributions to an almost negligible range in a full microstretch model so that numerical results obtained for a polar model can be obtained as a limiting case from the full microstretch model.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Steinmann, Professor Paul
Authors: Kirchner, N., and Steinmann, P.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Computational Mechanics
Publisher:Springer
ISSN:0178-7675
ISSN (Online):1432-0924
Published Online:10 November 2006
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record