Endothelium-dependent relaxation is resistant to inhibition of nitric oxide synthesis, but sensitive to blockade of calcium-activated potassium channels in essential hypertension

Sainsbury, C., Coleman, J., Brady, A., Connell, J., Hillier, C. and Petrie, J. (2007) Endothelium-dependent relaxation is resistant to inhibition of nitric oxide synthesis, but sensitive to blockade of calcium-activated potassium channels in essential hypertension. Journal of Human Hypertension, 21(10), pp. 808-814. (doi: 10.1038/sj.jhh.1002226)

Full text not currently available from Enlighten.

Abstract

In human essential hypertension ( EH), endothelium-dependent relaxation can occur independent of nitric oxide ( NO) and prostacyclin (PGI(2)). Recent in vivo data suggest that rapid compensatory upregulation of endothelial cytochrome P450 epoxygenase 2C9 occurs to preserve vasorelaxation under conditions of decreased NO bioavailability. As one of the vascular actions of CYP2C9 is to modulate small and intermediate conductance endothelial calcium-activated potassium channels (SKCa and IKCa), we examined whether endothelium-dependent relaxation is sensitive to inhibitors of these channels ( apamin and charybdotoxin) in resistance-sized vessels from human with EH. Subcutaneous gluteal biopsies were performed on 12 humans with EH and 12 matched control subjects. Resistance arteries were dissected and relaxation responses to carbachol were assessed ex vivo using wire myography in the presence of: (i) N-G-nitro-L-arginine (L-NOARG)/indomethacin; and (ii) apamin/charybdotoxin. Maximal carbachol relaxation was impaired in EH vs control subjects. No differences in responses were observed with the endothelium-independent agonist, Snitroso-N-acetyl- penicillamine. Relaxation to carbachol was attenuated following incubation with L-NOARG/ indomethacin in vessels from control subjects (P < 0.01 analysis of variance ( ANOVA)), but not in vessels from patients with EH. The reverse pattern was seen following apamin/charybdotoxin with carbachol relaxation attenuated only in EH vessels (P < 0.001 ANOVA). Endothelium-dependent relaxation is resistant to endothelial nitric oxide synthase inhibition but sensitive to blockade of calcium-activated potassium channels in human EH. Studies with more specific inhibitors are required to determine whether this response is mediated by endothelial potassium channel subtypes (SKCa and IKCa).

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sainsbury, Dr Christoper and Petrie, Professor John and Connell, Professor John
Authors: Sainsbury, C., Coleman, J., Brady, A., Connell, J., Hillier, C., and Petrie, J.
College/School:College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
College of Medical Veterinary and Life Sciences
Journal Name:Journal of Human Hypertension
ISSN:0950-9240

University Staff: Request a correction | Enlighten Editors: Update this record