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DISTURBANCE OBSERVER DESIGN FOR NONLINEAR SYSTEMS
REPRESENTED BY INPUT-OUTPUT MODELS

Shihong Ding1, Member, IEEE, Wen-Hua Chen2,†, Fellow, IEEE, Keqi Mei1 and David J. Murray-Smith3

Abstract—A new approach to the design of nonlinear disturbance
observers for a class of nonlinear systems described by input-
output differential equations is presented in this paper. In con-
trast with established forms of nonlinear disturbance observers,
the most important feature of this new type of disturbance
observer is that only measurement of the output variable is
required, rather than the state variables. An inverse simulation
model is first constructed based on knowledge of the structure
and parameters of a conventional model of the system. The
disturbance can then be estimated by comparing the output of
the inverse model and the input of the original nonlinear system.
Mathematical analysis demonstrates the convergence of this new
form of nonlinear disturbance observer. The approach has been
applied to disturbance estimation for a linear system and a new
form of linear disturbance observer has been developed. The
differences between the proposed linear disturbance observer and
the conventional form of frequency-domain disturbance observer
are discussed through a numerical example. Finally, the nonlinear
disturbance observer design method is illustrated through an
application involving a simulation of a jacketed continuous stirred
tank reactor system.

Index Terms—Disturbance observer, nonlinear systems, inverse
simulation model, continuous stirred-tank reactor system.

I. INTRODUCTION

Dealing with discrepancies between properties of the real
plant and its mathematical description has become one of the
main problems of modern control theory, and many nonlinear
control techniques have been developed to reduce the adverse
effects of external disturbances, unmodeled dynamics and
parameter uncertainties. Control design problems caused by
such discrepancies may be approached in at least two ways.
One involves robust control and the uses of feedback principles
to suppress disturbances [1], [2]. However, such methods can
present difficulties in terms of estimation of the disturbances or
may tend to over-estimate their upper bounds [3], [4]. Also,
the resulting gains of the state-feedback controllers tend to
be large in order to provide enough control effort to reduce
the effects of the disturbances [5]. It appears that such robust
methods can lead to a worst-case-based design and the large
values of gain factors can yield unsatisfactory dynamic and
steady-state performance within the closed loop system [6],
[7].
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The second approach is based on composite control prin-
ciples and generally involves two steps [8]. The first step is
to design a baseline feedback controller to satisfy the desired
performance specifications for the nominal system (i.e., the
nonlinear system without considering the disturbances). The
second step is concerned with disturbance attenuation and, in
the approach considered here, a disturbance observer (DOB) is
used to estimate the disturbances. The estimated value is then
taken as a feedforward term for compensation [9]. The baseline
feedback controller plus the feedforward term constitute the
composite controller. It is obvious that the feedforward term
attenuates the adverse effects of the disturbances while the
baseline feedback controller provides the required steady-state
and dynamic performance and also suppresses any remaining
disturbances. Due to the feedforward nature of the compensa-
tion and satisfaction of the prescribed specifications through
use of the baseline feedback controller, the composite control
schemes should provide excellent tracking performance and
smooth control actions without the use of large feedback gains
[10]–[12].

The fundamental idea of the DOB is to bring together
all the internal uncertainties, external disturbances, parameter
uncertainties and unmodeled dynamics as a single lumped
disturbance term and then estimate this term by designing
an observer. As described in [13], the DOB was developed
by Ohnishi and his colleagues [14] in the early 1980s. The
basic DOB block diagram was first proposed in terms of
the frequency-domain. One important element of this block
diagram is a low pass filter which allows the disturbance to
be estimated in a low and medium frequency range but with
high frequency measurement noise filtered out. Methods for
design of this low-pass filter, which is of central importance
in the frequency-domain DOB approach, can be found in
[14], [15]. It should be noted that the conventional frequency-
domain DOBs given in [14] require the linear systems being
considered to have minimum-phase properties. The DOB
design method has been extended recently to non-minimum-
phase systems [16]. However, it should also be noted that the
systems considered in [14], [16] are required to be linear or,
alternatively, their nonlinear parts must be lumped together as
a part of the disturbance variable.

For some inherently nonlinear systems the estimation per-
formance with the linear DOB approach, outlined above, may
not be satisfactory, since the design of the linear DOB is based
on the linearization model of the nonlinear systems. Indeed, for
many practical systems, the nonlinear dynamics are partially
known. If these nonlinear dynamics can be taken into account,
the performance in terms of estimation of the unknown lumped
disturbances may be significantly improved. The first nonlinear
DOB was developed by Chen [17], where a nonlinear DOB
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was constructed to estimate the disturbance torques caused by 
unknown friction in nonlinear robotic manipulators. Lyapunov 
analysis was used to verify the stability of the proposed 
nonlinear DOB system. The nonlinear DOB described in [17] 
was investigated further in [18] in the context of control 
performance improvements in a missile autopilot system. This 
work led on to a proposal for a general framework for 
nonlinear DOB design [19], where the disturbance is generated 
by an exogenous system. Another method, which may also be 
applied to the DOB design problem, involves reduced-order 
multiple observers. The main advantage of the reduced-order 
multiple observer approach relates to the decrease of the num-
ber of system sensors required. The concept of the reduced-
order multiple observer was developed first i n [ 20] w here a 
reduced-order multiple observer was constructed for Takagi-
Sugeno (T-S) systems with unknown inputs. Later, through 
the results in [20], a new reduced-order multiple observer was 
developed in [21] to achieve the finite-time r econstruction of 
the system’s states associated with T-S multiple models. In 
addition, DOB techniques have been applied widely to many 
practical applications, such as the guidance law design for 
a hypersonic gliding vehicle [22], the attitude control of a 
spacecraft [23], and the direct yaw-moment control of an 
electric vehicle [24].

It may be seen that the approaches presented in [17]–[24] 
require system state variables to be available. This implies 
that if some state variables are not measurable these nonlinear 
DOB design methods cannot be applied. It should be pointed 
out that an output feedback design approach for SISO systems 
has been studied in [25], where a nonlinear DOB is constructed 
without measurements of the state variables. The proposed 
nonlinear DOB recovers not only the steady-state performance 
but also the transient performance of the nominal closed-
loop system in the presence of plant uncertainties and input 
disturbances. The results in [25] have also been extended to 
the MIMO case in [26]. However, the systems considered in 
[25], [26] are characterized by some special structures and this 
restricts the application of this DOB design method.

Motivated by these important observations, this paper aims 
to develop a nonlinear DOB design method that uses only 
the output of the nonlinear system. The basic block diagram 
structure for a DOB system of this kind is shown in Fig. 
1 where the plant output variable provides the input to a 
nonlinear inverse model block. In general, inverse dynamic 
models allow time histories of input variables to be found that 
correspond to a given set of output time history requirements. 
Thus, if one can construct the inverse dynamics of a nonlinear 
system, the disturbance can then be directly estimated using 
the type of approach suggested by the block diagram of 
Fig. 1. Inverse models of nonlinear systems have received 
much attention in recent years and several inverse simulation 
methods are available that allow inverse dynamic models to 
be implemented. Some of these were developed for specific 
application areas such as fixed-wing a ircraft a nd helicopter 
handling qualities and agility investigations (see, e.g., [27],
[28]) but have also been used with success for a number of 
other types of problems. The most widely used approaches 
have involved iterative methods and a useful review of these

techniques, as developed for aeronautical applications, has
been provided in [29]. Other approaches have been developed
that are based on continuous system simulation principles and
the most important of these has origins that can be traced back
for more than sixty years to the use of feedback principles for
operations such as division and inverse function generation in
electronic analog computers. In more recent years the method
was developed further and applied to more general problems
of inverse modelling and simulation, as described in [30],
[31] and [32], [33]. This approach has been adopted for the
application considered in this paper, leading to development
of a new form of nonlinear DOB which can be constructed
for a class of nonlinear systems represented by input-output
differential equations.

As described in [30] and [31]–[33], the inverse of the
nonlinear system can be developed in a direct fashion using
the ordinary differential equations which describe the plant
model simply through the addition of high gain feedback.
It has been shown that analysis based on linear minimum-
phase models can be extended to the nonlinear case, not only
for smooth nonlinearities but also for saturation and rate-
limited dynamics [31]–[33]. In the context of DOB design
those results imply that the disturbance may be estimated
by subtracting the control input in the DOB block diagram
(Fig. 1) from the reconstructed input obtained from the inverse
simulation model. This offers the possibility of extending the
inverse simulation approach based on feedback to provide
a new form of nonlinear DOB for system described by
nonlinear input-output ordinary differential equations. There
are two main contributions in the paper. The first one is that a
new DOB design method has been developed using only the
information from the output and the control input, while the
conventional nonlinear DOB requires the information relating
to all the state variables. The second contribution is that the
basic idea of developing the proposed nonlinear DOB is to
construct the inverse of the original system, which is analogous
to the conventional frequency-domain DOB.

II. PROBLEM FORMULATION

In this paper, we consider the following nonlinear single-
input-single-output (SISO) system described by an input-
output differential equation of the following form:

y
(n)
1 = f(Y1) + g0(Y1)v + · · ·+ gm(Y1)v(m),m ≤ n (1)

where y1 ∈ R is the output variable;

Y1 = (y1, ẏ1, · · · , y(n−1)
1 );

v is the input; f(Y1) and gi(Y1), i = 0, 1, · · · ,m, are smooth
functions.

Remark 1: The input-output model (1) has been widely
used to describe nonlinear systems in the literature, such
as [34], [35], and also for the realization of the state-space
descriptions of nonlinear systems, as described in [35]. Addi-
tionally, equation (1) also represents a large class of nonlinear
systems which may be described as having flatness properties.
Mathematical descriptions of this kind have been used in a
wide range of applications, including the modelling of a DC
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electric motor [14] and virus dynamics [36]. As a matter of 
fact, in many practical systems, gi(Y1), i = 1, · · · , m directly 
equal to zero. When the actuator is considered, we may have 
g0 6= 0, g1 6= 0 and gi(Y1) = 0, i = 2, · · · , m.

Generally speaking, the aim of control design is to ensure 
the stability or convergence of the output and, accordingly, it 
is reasonable to give the following assumption:

Assumption 1: There exists a proper control input u such 
that the output variable y1 of system (1) and its higher-order 
derivatives ẏ1, · · · , y(n−1) are bounded.

In addition, system (1) also satisfies the following assump-
tion

Assumption 2: The following dynamic system representa-
tion:

g0(Y1)v + g1(Y1)v̇ + · · ·+ gm(Y1)v(m) = 0 (2)

is globally asymptotically stable.
Remark 2: It should be mentioned that Assumption 1 ap-

plies to almost all the nonlinear control systems that meet the
conditions of smoothness stated already for (1). On the other
hand, by a simple calculation, the zero dynamics of system
(1) can be expressed as

g0(0)v + · · ·+ gm(0)v(m) = 0.

According to Assumption 2, we know that the dynamic system
g0(0)v + · · · + gm(0)v(m) = 0 is globally asymptotically
stable. This means that system (1) is minimum-phase and it
appears that condition (2) can be considered as an extension
of the minimum-phase property of system (1). In other words,
condition (2) implies that the zero dynamics of system (1)
represent a globally asymptotically stable situation. In the
special case where system (1) is a linear system, the model
can be rewritten as

y
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

= bmv
(m) + bm−1v

(m−1) + · · ·+ b0v

with some constants ai, i = 0, 1, · · · , n − 1 and bj , j =
0, 1, · · · ,m. Condition (2) can then be written as bmv(m) +
bm−1v

(m−1) + · · · + b0v = 0, which leads directly to the
minimum-phase property of the given linear system. It can
be observed from the literature that there are many models of
practical systems that satisfy Assumption 2, including the virus
dynamics model [36], continuous stirred tank reactor model
(CSTR) [37], the robotic manipulator system [38], the battery
dynamics models [39], buck converter [40], etc.

The next step is to consider the disturbance estimation
problem in the presence of a matched disturbance. That is,
the disturbance is applied to the nonlinear system (1) in the
same channel as the input. Therefore, the input v consists of
the terms u ∈ R and d(t) ∈ R (i.e., v = u+ d(t)), where u is
the control input and d(t) is the disturbance.

The goal of this paper is to design a DOB to estimate the
disturbance d(t) of the nonlinear system (1) by using only
information from the control input u and the output variable
y1.

III. THE NEW DOB DESIGN FOR NONLINEAR SYSTEMS

In this section, we will show how to construct a new form of
nonlinear DOB based on the input-output model (1). The key
technique involves the use of the inverse of the input-output
model (1), and the methodology which has been applied is
inspired directly by the inverse simulation work in [31]–[33].

To design the DOB for system (1) using the system structure
of the input-output model, we first construct an auxiliary
system as follows

y
(n)
2 = f(Y2) + g0(Y2)h+ · · ·+ gm(Y2)h(m) (3)

where the functions f(Y2) and gi(Y2), i = 0, 1, · · · ,m with

Y2 = (y2, ẏ2, · · · , y(n−1)
2 )

are defined to be the same as in that of (1), and y2 and h are
the output and input of system (3), respectively. Specifically,
the input h can be defined as

h = K(y1 − y2) (4)

where K > 0 is a sufficient large constant.
On this basis, the disturbance d(t) can be estimated as

d̂(t) = h− u. (5)

The detailed block diagram of the nonlinear DOB for system
(1) is given by Fig. 1. It can be seen clearly from (3)-(5) that
the proposed new DOB only requires the system output y1,
and that higher-order derivatives of the output variable are not
required in the DOB design.

Now we start to analyse the performance of the proposed
nonlinear DOB (3)-(5). It will be shown that the output of the
nonlinear DOB can gradually recover the unknown disturbance
d(t).

From Eq. (4), it follows that
h = K(y1 − y2)

ḣ = K(ẏ1 − ẏ2)
· · ·
h(n) = K

(
y
(n)
1 − y(n)2

)
,

(6)

which, in turn, implies that

y2 = y1 − h
K

ẏ2 = ẏ1 − ḣ
K

...
y
(n−1)
2 = y

(n−1)
1 − h(n−1)

K

y
(n)
2 = y

(n)
1 − h(n)

K .

(7)

From the last equation of (7), we have y(n)1 = h(n)

K + y
(n)
2 .

This, together with (3), implies that

y
(n)
1 =

h(n)

K
+ f (Y2) + g0 (Y2)h+ g1 (Y2) ḣ

+ · · ·+ gm (Y2)h(m). (8)
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Fig. 1. Block diagram of the nonlinear DOB (3)-(5)

Applying Eq. (7) again to Eq. (8) yields

y
(n)
1 =

h(n)

K
+ f

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)

+ g0

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
h

+ g1

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
ḣ

+ · · ·

+gm

(
y1 −

h

K
, ẏ1−

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
h(m).

(9)

Adding and subtracting the same term f (Y1) + g0 (Y1)h +
g1 (Y1) ḣ + · · · + gm (Y1)h(m) to the right-hand side of Eq.
(9) gives

y
(n)
1

= f (Y1) + g0 (Y1)h+
h(n)

K
+ g1 (Y1) ḣ+ · · ·+ gm (Y1)h(m)

+ f

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
− f

(
y1, ẏ1, · · · , y(n−1)

1

)
+

(
g0

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
−g0

(
y1, ẏ1, · · · , y(n−1)

1

))
h

+

(
g1

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h(n−1)

K

)
−g1

(
y1, ẏ1, · · · , y(n−1)

1

))
ḣ

+ · · ·

+

(
gm

(
y1 −

h

K
, ẏ1 −

ḣ

K
, · · · , y(n−1)

1 − h
(n−1)

K

)
−gm

(
y1, ẏ1, · · · , y(n−1)

1

))
h(m). (10)

Since the functions f(y1, · · · , y(n−1)
1 ) and

gj(y1, · · · , y(n−1)
1 ), j = 0, · · · ,m are smooth functions,

it can be concluded that the following inequalities hold, at
least locally∥∥∥∥∥f
(
y1−

h

K
, ẏ1−

ḣ

K
, · · · , y(n−1)1 −h

(n−1)

K

)
−f
(
y1, · · · , y(n−1)1

)∥∥∥∥∥
≤ L1

∥∥∥∥∥
(
h

K
,
ḣ

K
, · · · , h

(n−1)

K

)∥∥∥∥∥=
L1

K

∥∥∥(h, ḣ, · · · , h(n−1)
)∥∥∥

(11)

and∥∥∥∥∥gi
(
y1−

h

K
, ẏ1−

ḣ

K
, · · · , y(n−1)1 −h

(n−1)

K

)
−gi

(
y1, · · · , y(n−1)1

)∥∥∥∥∥
≤ L2

∥∥∥∥∥
(
h

K
,
ḣ

K
, · · · , h

(n−1)

K

)∥∥∥∥∥
=
L2

K

∥∥∥(h, ḣ, · · · , h(n−1)
)∥∥∥ (12)

with L1 and L2 being Lipschitz constants.
Let H1 =

∥∥∥(h, ḣ, · · · , h(n−1)
)∥∥∥. Substituting (11) and (12)

into (10) implies that∣∣∣y(n)1 − f (Y1)− g0 (Y1)h− g1 (Y1) ḣ− · · · − gm (Y1)h(m)
∣∣∣

≤ |h
(n)|
K

+
L1

K
H1 +

L2

K
H1

(
|h|+ |ḣ|+· · ·+|h(m)|

)
.

(13)

It follows from Eq. (13) that∣∣∣y(n)1 −f (Y1)−g0 (Y1)h−· · · − gm (Y1)h(m)
∣∣∣

|h(n)|+L1H1+L2

(
H1|h|+ · · ·+H1|h(m)|

) ≤ 1

K
. (14)

When K →∞, one has

y
(n)
1 = f (Y1) + g0 (Y1)h+ g1 (Y1) ḣ+ · · ·+ gm (Y1)h(m).

(15)
Combining (15) and (1) gives

g0 (Y1) (h−v)+g1 (Y1) (ḣ−v̇)+· · ·+gm (Y1)
(
h(m)−v(m)

)
= 0.

(16)
Letting the error e1 be e1 = h−v, it follows from (16) that

g0 (Y1) e1 + g1 (Y1) ė1 + · · ·+ gm (Y1) e
(m)
1 = 0. (17)
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From Assumption 2, we know that system (17) is globally 
asymptotically stable. Therefore, the error between h and v ap-
proaches zero asymptotically, which implies that h converges 
to v. Hence, the estimate d̂(t) converges asymptotically to the 
disturbance d(t).

Remark 3: It can be seen from (17) that the estimation error 
will asymptotically converge to zero, provided the gain K 
tends to infinity. T hus, t he p roposed D OB a ppears t o b e a 
form of high-gain observer, but this is not the case. More 
specifically, i t c an b e o bserved f rom [ 41], [ 42] t hat high-
gain observers are used to estimate the states of nonlinear 
systems, while the purpose of the proposed DOB is estimation 
of the disturbances. Also, the basic idea of the proposed DOB 
is to reconstruct an inverse model of the original system, 
which is different from the framework of Khalil’s high-gain 
observer. On the other hand, the point may be that both kinds 
of controllers use high gains to suppress the effect of the 
disturbances.

Remark 4: It can be deduced from Assumption 2 that 
system (1) can be rewritten as a Brunovsky form in the state 
space. We should note that the system in Brunovsky form 
represents a variety of practical systems, whose disturbances 
may be estimated by using an extended state observer (ESO)
[43] or Arie Levant’s differentiator [44], [45]. One point we 
should mention is that in order to estimate the disturbances of 
system (1) the proposed DOB only requires the information 
relating to the control input and output variables. However, 
apart from the information relating to the control input and 
output, the ESO [43] and Levant’s differentiator in [44], [45] 
also need information concerning the derivatives of the output 
or state variables.

Remark 5: We should note that the conventional DOB 
design has been widely applied to many kinds of nonlinear 
systems, such as those discussed in [46], [47]. However, it 
can be seen clearly from [46], [47] that accurate information 
relating to the control input and state variables must be 
available. The main difference between the proposed nonlinear 
DOB and the conventional type of DOB lies in the fact that the 
proposed form of observer requires only information relating 
to the control input and output variable. This implies that the 
conventional DOB design methods can not be applied to the 
systems considered in this paper.

IV. PERFORMANCE ANALYSIS

In this section, we will show how the parameter K affects 
the performance of the nonlinear DOB (3)-(5).

By Assumption 1 and the information about the structure 
of the DOB in (3)-(5), it is clear that y1, ẏ1, · · · y(n) and
h, ḣ, · · ·h(n) are at least locally bounded. Therefore, for a
large enough K, we can obtain from (14) that there exists
a constant λ such that∣∣∣y(n)1 − f (Y1)−g0 (Y1)h− · · · − gm (Y1)h(m)

∣∣∣
≤ |h

(n)|+L1H1 + L2(H1|h|+ · · ·+H1|h(m))

K
≤ λ.

This, together with (1), implies that

|g0 (Y1) e1 + g1 (Y1) ė1 + · · ·+ gm (Y1) e
(m)
1 | ≤ λ, (18)

which means that the estimation error will converge to a region
around the origin in a finite-time interval.

On the other hand, if there is measurement noise ∆Y1
and lumped disturbances, including system uncertainties and
external disturbances in the input-output model (1), then by a
simple calculation, inequality (18) can be rewritten as

|g0 (Y1 + ∆Y1) e1 + g1 (Y1 + ∆Y1) ė1 + · · ·
+gm (Y1 + ∆Y1) e

(m)
1 | ≤ λ+ ∆ (19)

with ∆ being the upper bound of the lumped disturbance. It
is clear that the estimation error will still converge to a region
around the origin determined by the parameter λ and the upper
bound of the lumped disturbance ∆.

To build up further understanding of the proposed DOB
design techniques, we want to compare the proposed new
nonlinear DOB with the existing ones. However, it can be seen
that all the existing nonlinear DOBs require the information
relating to the state variables or the output and its higher-order
derivatives. There is clearly no basis for making comparisons
and therefore the special case for linear systems is discussed
and then compared with the existing DOB techniques based
on the input and output model.

Consider the following linear system

y
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

= bmv
(m) + bm−1v

(m−1) + · · ·+ b0v (20)

where v = u + d(t), the positive integers n ≥ m, ai, i =
0, 1, · · · , n − 1 and bj , j = 0, 1, · · · ,m are known system
parameters. Based on Assumptions 1-2, system (20) satisfies
the following assumption

Assumption 3: Linear system (20) is stable and minimum-
phase.

The new linear DOB for system (20) can be constructed as

d̂ = h− u (21)

where h is defined as

h = K(y1 − y2), (22)

with K > 0 being a sufficiently large constant and y2 being
generated by the following auxiliary system

y
(n)
2 + an−1y

(n−1)
2 + · · ·+ a1ẏ2 + a0y2

= bmh
(m) + bm−1h

(m−1) + · · ·+ b0h. (23)

The structure of DOB for system (20) is shown in Fig. 2.
In the following, we will show the convergence of the linear

DOB described by Eqs. (21)-(23). From (22), we can also
obtain a relation of the same form as (7) which has the specific
form

y2 = y1 −
h

K
, y

(i)
2 = y

(i)
1 −

h(i)

K
, i = 1, · · · , n. (24)

Using the auxiliary system equation (23), we have

h(n) = K(y
(n)
1 − y(n)2 )

= Ky
(n)
1 −K(bmh

(m) + bm−1h
(m−1) + · · ·+ b0h

− an−1y
(n−1)
2 − · · · − a1ẏ2 − a0y2). (25)
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Fig. 2. Block diagram of the linear DOB (21)-(23).

Substituting (24) into (25) yields

h(n)

= Ky
(n)
1 −K

(
bmh

(m) + bm−1h
(m−1) + · · ·+ b0h

)
+K

(
an−1

(
y
(n−1)
1 − h

(n−1)

K

)
+ · · ·

+a1

(
ẏ1 −

ḣ

K

)
+ a0

(
y1 −

h

K

))
(26)

and it follows that

h(n) = Ky
(n)
1 −K

(
bmh

(m) + bm−1h
(m−1) + · · ·+ b0h

)
+

K
(
an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

− 1

K

(
an−1h

(n−1) + · · ·+ a1ḣ+ a0h
))

. (27)

System (27) can be rewritten as

h(n) + an−1h
(n−1) + · · ·+ a1ḣ+ a0h

= K
(
y
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

)
−K

(
bmh

(m) + bm−1h
(m−1) + · · ·+ b0h

)
. (28)

Both sides of Eq. (28) divided by K(h(n) + an−1h
(n−1) +

· · ·+ a1ḣ+ a0h) yields

y
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

h(n) + an−1h(n−1) + · · ·+ a1ḣ+ a0h

− bmh
(m) + bm−1h

(m−1) + · · ·+ b0h

h(n) + an−1h(n−1) + · · ·+ a1ḣ+ a0h
=

1

K
. (29)

When K →∞, one has

y
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1ẏ1 + a0y1

= bmh
(m) + bm−1h

(m−1) + · · ·+ b1ḣ+ b0h. (30)

From (20) and (30), we also get

bmv
(m) + bm−1v

(m−1) + · · ·+ b1v̇ + b0v

= bmh
(m) + bm−1h

(m−1) + · · ·+ b1ḣ+ b0h. (31)

And if we let e2 = v − h, it follows from (31) that

bme
(m)
2 + bm−1e

(m−1)
2 + · · ·+ b1ė2 + b0e2 = 0. (32)

From Assumption 3, we know that system (20) is minimum-
phase. This implies that the polynomial bmsm + bm−1s

m−1 +
· · ·+b1s+b0 = 0 is Hurwitz stable. Thus, we have e2 → 0 and
h→ v = u+d. Hence, we may conclude that the disturbance
d(t) can be estimated as h− u.

It should be mentioned that the disturbance in system
(20) can also be estimated well by using the conventional
frequency-domain DOB proposed in [14], [43]. In the case of
the frequency-domain DOB methodology, the key point is how
to choose the parameters for the low-pass filter Q(s) shown in
Fig. 4. This is especially important for higher-order cases and
it is important to note that in the proposed method, as shown
in (21)-(23), there is only one parameter, K, which must
be adjusted. In comparison with the conventional frequency-
domain DOB, the choice in terms of the specific value for the
tuning parameter for this new form of DOB given in (21)-(23)
will thus be significantly more straightforward.

Remark 6: From a theoretical viewpoint, it is clear that
the use of larger values of parameter K implies improved
estimation performance. On the other hand, increasing the
value of K may increase the noise level at the output. This
implies that the gain K has to be chosen to have a moderate
value. A basic rule is to adjust the tuning parameter K from
an initial small value to larger values until the performance
requirements are satisfied.

In the following, we will compare the proposed linear DOB
(21)-(23) with the conventional frequency-domain DOB using
a numerical example, which also shows how the performance
is affected by the parameter K and the noise level at the output.

Example 1: Consider a linear system described by the fol-
lowing transform function

G(s) =
s+ 1

s3 + 9s2 + 26s+ 24
. (33)

Assume that the disturbance d(t) is defined as

d(t) = d0(t) + sin(y1) + 0.5u

where

d0(t) =

{
2 sin

(
t
4

)
0 ≤ t < 16π

0.7 sin(t) 16π ≤ t < 100.
(34)

Let the input signal be u = sin(t) and the sampling time is
taken as 0.0001s. Fig. 3 shows the performance comparisons
of the proposed linear DOB (21)-(23) for four different values
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Fig. 3. Time response of d̂(t) and estimation error for the DOB (21)-(23)
for several different values of the adjustable parameter K
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Fig. 4. Diagram of conventional frequency-domain DOB

of the parameter K. From Fig. 3, it can be seen clearly that
larger values of K give increased estimation accuracy.

Comparisons between DOB (21)-(23) and the conventional
frequency-domain DOB are also necessary. According to the
frequency-domain DOB theory given in [43], we design a
conventional linear DOB for system (33) having the form
shown in Fig. 4, where Gn(s) and Q(s) are designed as

Gn(s) =
s+ 1

s3 + 9s2 + 26s+ 24
, Q(s) =

1

as2 + bs+ c
.

with some proper constants a, b and c.
Choosing the parameters (a, b, c) in Q(s) as

(0.001, 0.05, 1), (0.01, 0.5, 1) and (1, 1, 1), respectively
provides three set of results for the frequency-domain DOB,
as shown in Fig. 5. Those results include a comparison with
the performance obtained using the proposed DOB structure
with K = 1500. It can also be observed from Fig. 5 that
when the parameters of the filter Q(s) are properly chosen,
the estimation performance of the two types of DOB is
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Fig. 5. Time response of d̂(t) and estimation error for the conventional
frequency-domain DOB and the DOB (21)-(23) with K = 1500

similar. It should be pointed out that the performance of the
conventional frequency-domain DOB depends on the choice
of the parameters for Q(s) which can present difficulties. By
contrast, the choice of K in DOB (21)-(23) is much easier.
The maximum errors for these DOBs are also given in Table
I. It can be seen clearly from Table I that larger values of K
produce smaller values of the estimation error.

TABLE I
MAXIMUM ERROR FOR DIFFERENT CASES

Case Maximum Error
K = 100 0.6448
K = 500 0.1509
K = 1000 0.0771
K = 1500 0.0518

a = 0.001, b = 0.05, c = 1 0.0654
a = 0.01, b = 0.5, c = 1 0.5900

a = 1, b = 1, c = 1 1.8484

One additional point that must be considered concerns
the estimation accuracy in the presence of output noise and
parameter perturbations. For this it is assumed that a small
amount of random noise (2%) and parameter perturbation (8%)
are added to system (33). The corresponding simulation results
are given in Fig. 6, which indicates that the large values of
K may lead to increased noise levels. This suggests that in
selecting the parameter K account must be taken of output
noise levels and K cannot be made arbitrarily large.

V. NONLINEAR DOB DESIGN EXAMPLE

In this section, the nonlinear DOB (3)-(5) will be applied
to a continuous stirred tank reactor (CSTR) system model to
evaluate its performance through simulation.
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Fig. 6. Time response of d̂(t) and estimation error for the DOB (21)-(23)
with additional random noise (2%) and parameter perturbation (8%)

Consider a jacketed CSTR system involving reactor mass
balance, reactor energy balance and the cooled jacket energy
balance [37]. Specifically, in this model, the reactor mass
balance can be described by:

ẋ1 = q(u1 − x1)− 0.072F (x2)x1 + d(t) (35)

while the reactor energy balance is

ẋ2 = q(u2 − x2) + 0.576F (x2)x1 − 0.3(x2 − x3) (36)

and the cooled jacket energy balance is

ẋ3 = δ1qc(u3 − x3) + 3(x2 − x3) (37)

where F (x2) = e
x2

1+x2/20 is the kinetic constant, x1 is the
concentration of the chemical reactive, u1 is the reactive
input concentration, d(t) is the disturbance including external
temperature variations, chemical feed quality, sulphur parti-
cle levels, parameter perturbations and the effects of cross-
couplings, etc. The variable x2 is the reactor temperature,
u2 is the input reactor temperature, x3 is the cooled jacket
temperature, u3 is the input cooled jacket temperature, q is the
inverse of the residence time, qc is the inverse of the residence
time of the cooled jacket and δ1 is a parameter.

In this model, x2 and x3 are normally regarded as measur-
able, while the variable x1 is considered as unmeasurable as
any measurement may be very expensive or even impossible.
Therefore, the outputs of CSTR model are usually chosen as:

y1 = x2, z1 = x3.

The objective here is to design a DOB based on the output
variables y1 and z1 to estimate the disturbance d(t).

First of all, from (36), one has

x1 =
ẏ1 + 0.3(y1 − z1)− q(u2 − y1)

0.576F (y1)
, F (y1) = e

y1
1+y1/20

which implies that

ẋ1 =
F (y1)[ÿ1 + 0.3(ẏ1 − ż1) + qẏ1]

0.576F 2(y1)

− Ḟ (y1)[ẏ1 + 0.3(y1 − z1)− q(u2 − y1)]

0.576F 2(y1)
.

It follows from (35) that qu1 + d(t) = ẋ1 + qx1 +
0.072F (y1)x1. This implies that

qu1+d(t) =
q + 0.072F (y1)

0.576F (y1)
[ẏ1+0.3(y1 − z1)−q(u2 − y1)]

+
F (y1)[ÿ1 + 0.3(ẏ1 − ż1) + qẏ1]

0.576F 2(y1)

− Ḟ (y1)[ẏ1 + 0.3(y1 − z1)− q(u2 − y1)]

0.576F 2(y1)
.

And, by a simple calculation, it may be seen that

ÿ1 + (q + 0.3)ẏ1 − 0.3ż1

+[ẏ1+0.3(y1 − z1)−q(u2 − y1)]

[
q + 0.072F (y1)− Ḟ (y1)

F (y1)

]

= 0.576qF (y1)

[
u1 +

d(t)

q

]
. (38)

Under normal working conditions, the concentration of the
chemical reactive x1, the reactor temperature x2 and the
cooled jacket temperature are always bounded. This implies
that the output y1 and its derivative will be bounded, which
also means that Assumption 1 holds. In addition, by (38), we
can let v = u1 + d1(t)

q and g0(Y1) = 0.576qF (y1). Since
g0(Y1) > 0, it follows directly that Assumption 2 holds. Then,
from DOB (3)-(5), the disturbance d(t) can be estimated as

d̂ = q(h− u1) (39)

with h = K(y1 − y2) and y2 being generated by

ÿ2 + (q + 0.3)ẏ2 − 0.3ż1 + [ẏ2 + 0.3(y2 − z1)− q(u2 − y2)]

×

[
q + 0.072F (y2)− Ḟ (y2)

F (y2)

]
= 0.576qF (y2)h.

The block diagram of the control system is given as in Fig.
7.

Let the inputs and parameters of the CSTR system be
u1 = 1, u2 = 0, u3 = −1 and K = 69, q = 1, qc =
0.28, δ1 = 10, respectively. The initial states are chosen as
x1(0) = 0.58, x2(0) = 2.67, x3(0) = 0.12. Here we assume
that the the disturbance d(t) is given as

d(t) =



0 0 ≤ t < 2
1 2 ≤ t < 20
− t

10 + 3 20 ≤ t < 30
2 sin

(
t−30
4

)
30 ≤ t < 30 + 8π

0.7 sin(t− 30) 30 + 8π ≤ t < 30 + 17π
0 t ≥ 30 + 17π

(40)
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Fig. 7. Block diagram of CSTR system with nonlinear DOB

The simulation result is shown in Fig. 8 and it can be observed
clearly that the disturbance is estimated well.
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Fig. 8. The disturbance estimation and error for CSTR system (35)-(36)-(37)

VI. CONCLUSIONS

This paper proposes a new DOB design method for a class
of nonlinear systems based on input-output representations.
It overcomes the restriction that applies currently to all dis-
turbance observer design methods for nonlinear systems that
all the state variables must be measurable. It is shown that by
using only the input and output variables of a nonlinear system,
the estimate yielded by the proposed DOB can asymptotically
converge to the disturbance. This work provides the first
step in the development of a general disturbance observer
design method for nonlinear systems based on an input-
output representation. It is required that the input-output model
satisfies a minimum-phase-like property. The special case of
the proposed DOB design method for linear systems was also
presented and compared with the existing DOB design method

using the input-output description. Our future work will focus
on applying this method to practical cases, with experimental
tests, and extending the proposed results to MIMO systems
and problems involving mismatched disturbances. And we will
also develop new nonlinear disturbance observer techniques
for systems being unstable or with unstable zero dynamics.
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