The preference and costs of sleeping under light at night in forest and urban great tits

Ulgezen, Z. N., Käpylä, T., Meerlo, P., Spoelstra, K., Visser, M. E. and Dominoni, D. M. (2019) The preference and costs of sleeping under light at night in forest and urban great tits. Proceedings of the Royal Society of London Series B: Biological Sciences, 286(1905), 20190872. (doi: 10.1098/rspb.2019.0872) (PMID:31213184) (PMCID:PMC6599990)

[img]
Preview
Text
189211.pdf - Accepted Version

423kB

Abstract

Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dominoni, Dr Davide
Authors: Ulgezen, Z. N., Käpylä, T., Meerlo, P., Spoelstra, K., Visser, M. E., and Dominoni, D. M.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Proceedings of the Royal Society of London Series B: Biological Sciences
Publisher:The Royal Society
ISSN:0962-8452
ISSN (Online):1471-2954
Published Online:19 June 2019
Copyright Holders:Copyright © 2019 The Authors
First Published:First published in Proceedings of the Royal Society of London Series B: Biological Sciences 286(1905): 20190872
Publisher Policy:Reproduced in accordance with the publisher copyright policy
Data DOI:10.5061/dryad.dr8277c

University Staff: Request a correction | Enlighten Editors: Update this record