Optimal superadiabatic population transfer and gates by dynamical phase corrections

Vepsäläinen, A., Danilin, S. and Paraoanu, G.S. (2017) Optimal superadiabatic population transfer and gates by dynamical phase corrections. Quantum Science and Technology, 3(2), 024006. (doi: 10.1088/2058-9565/aaa640)

Full text not currently available from Enlighten.


In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Danilin, Dr Sergey
Authors: Vepsäläinen, A., Danilin, S., and Paraoanu, G.S.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Quantum Science and Technology
Publisher:IOP Publishing
ISSN (Online):2058-9565

University Staff: Request a correction | Enlighten Editors: Update this record