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ABSTRACT

Sustainable waste management and climate change have been two of the major
challenges worldwide. This study designed township-based bioenergy systems to treat solid
waste in Glasgow based on anaerobic digestion and gasification technologies. The economic
feasibility and environmental impacts (i.e. global warming potential, eutrophication potential,
and acidification potential) were evaluated using Monte Carlo simulation-based cost-benefit
analysis and life cycle assessment. It was found that township-based bioenergy systems could
save over 300 kg of CO> per tonne of municipal solid waste treated when biogenic carbon is
excluded. It was shown that the proposed systems have profitability chances ranging from 68-
98 %, when the sale of by-products (digestate and biochar) is considered. This study also
explored the effects of by-product selling and carbon tax on the economic feasibility of
township-based bioenergy systems. The township-based bioenergy system can satisfy 20-23
% of electricity demands and 4-5 % of heat demands of each township served. The study can
facilitate investors and policymakers to make informed decisions about planning distributed

Waste-to-Energy (WLE) systems.
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Glossary

AD Anaerobic digestion HUR Heat utilisation rate

AP Acidification potential IR Interest rate

AW Annual worth ISO International Standards
Organization

BCR Benefit-cost ratio LCA Life cycle assessment

BL Biogas leakage LCI Life cycle inventory

CAPEX Capital cost LCIA Life cycle impact assessment



CEPCI  Chemical Engineering Plant Cost LWTR Leather-Wood-Textiles-Rubber

Index
CHP Combined heat and power MSW Municipal solid waste
CT Carbon tax O&M Operation and maintenance
EP Eutrophication potential OFMSW  Organic fraction of municipal
solid waste
Fl Feedstock input PW Present worth
FIT Feed-In Tariff RHI Renewable Heat Incentive
FU Functional unit TS Total Solids
FW Food waste VS Volatile Solids
GWP Global warming potential WTE Waste-to-energy

1. INTRODUCTION

Over the past two decades the global population has increased by over 1.5 billion,
leading to ever greater energy demand and waste volume [1]. A Municipal Solid Waste
(MSW) generation rate of 2.2 billion tonnes per annum is expected by 2025 worldwide [2]. In
2015, 31 % of all MSW was still landfilled in the EU and about 25 % in the UK. This
represents a significant percentage. Furthermore, the UK is the largest exporter of waste in
Europe, mostly shipping their waste to other European countries, India, Turkey, and China
[3]. In Glasgow, UK, the council disposes of around 30 million bin collections every year. To
improve the waste treatment and collection process, the first Cleansing Waste Strategy and
Action Plan was implemented by the local government in 2010 [4]. Some of the government
goals include that no more than 5 % of all waste can be landfilled by 2025 and that 70 % of
all waste will be recycled, composted or prepared for re-use by 2025 [4]. All this clearly
indicates that suitable solutions to these issues need to be found.

Significant effort has been put to design sustainable waste treatment systems based on
various waste-to-energy (WTE) technologies, such as anaerobic digestion (AD) and

gasification [5]. Anaerobic digestion is an attractive way for recovering energy from organic
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waste, whilst potentially generating a valuable by-product in the form of digestate. Digestate
can be utilised as fertilizer for agricultural land application to displace mineral fertilisers [6].
Gasification can recover energy from organic and non-organic waste, making it a more
versatile technology. The biochar generated from the gasification process has various
potential uses, e.g. soil amendment being one of the most common ones.

The economic and environmental feasibility of AD- and gasification-based WTE
systems have been extensively explored by existing studies using cost-benefit analysis (CBA)
and life cycle assessment (LCA). For example, Ahamed et al. [7] compared three different
food waste (FW) management technologies (incineration, AD, and food waste-to-energy
biodiesel) for Singapore and found incineration was the least favoured option for FW
treatment on environmental and economic basis. Whiting and Azapagic [8] evaluated the life
cycle environmental impacts of AD plants treating agricultural wastes for combined heat and
power (CHP). They found that using energy crops, such as maize, as an alternative feedstock
reduced the overall global warming potential (GWP) at the cost of increasing 8 of the 11
impact categories considered. Luz et al. [9] evaluated the techno-economic feasibility of
municipal solid waste (MSW) gasification and found that the net present value (NPV) was
positive for municipalities with more than 35,000 inhabitants based on an annual rate of
interest of 7.5 %.

In recent years, much research has been conducted on designing decentralised WTE
systems due to their advantages over centralised systems in terms of transportation reduction
and pathogen transmission alleviation. You et al. [10] evaluated the economic feasibility and
environmental impact of a decentralised palm biomass gasification system in Indonesia and
found that the electrical efficiency and capital cost both had a significant impact on the

economic feasibility of the proposed systems. Patterson et al. [11] compared centralised and



distributed biogas infrastructures. CHP with 80 % heat utilisation was found to be the most
environmentally friendly alternative.

This study explores the techno-economic and environmental feasibility of
decentralised waste treatment utilising AD and gasification to tackle the issues of waste pile-
up and a need for renewable energy in Glasgow. This is in line with the local government
goal of increasing landfill diversion as defined in the Cleansing Waste Strategy and Action
Plan [4]. Monte Carlo simulation-based CBA is used to evaluate the economic feasibility.
Environmental feasibility is explored using LCA with various impact categories, such as
global warming potential. The novelty of this work is twofold. Firstly, the focus of this work
lies on decentralised waste treatment systems utilising a combination of AD and gasification.
Secondly, the feasibility of such a system is studied in terms of different sub-areas
(townships) in a European city (Glasgow). This allows for a comparison of different degrees
of decentralisation, as well as a comparison of different WTE technologies. Thus, the focus
does not lie on comparing AD and gasification to more commonly employed waste treatment
alternatives such as landfilling and incineration; but rather on finding the most suitable waste

treatment system, based on AD and gasification.

2. METHODOLOGY
2.1 Waste-to-energy (WTE) technologies
2.1.1 Gasification

Gasification is a thermochemical conversion technology capable of converting solid
waste to syngas (also called synthesis gas) in an oxygen-deficient environment at a
temperature range of generally around 550°C to 1000° C where the oxidation is too low for

stoichiometric combustion [12,13]. The syngas generally comprises of CO, H,, CH4, CO2 and



potentially N2 if air is used as a gasifying agent. Moharir et al. suggests a typical Hz content
of 33.7% for syngas produced from MSW [12].

This study considers gasification using a moving grate reactor design (e.g. ENERGOS
technology) [14,15]. This allows for the gasification of feedstocks with high moisture
contents, such as the organic fraction of municipal solid waste (OFMSW). Additionally,
moving grate gasification requires little pre-treatment, is suitable for non-uniform
morphology in the feedstock, and can have a conversion efficiency of over 90 %. An
important operating parameter for gasification is the equivalence ratio, which is the ratio of
the oxygen content in the air supply to the value required for complete stoichiometric
combustion. Moving grate gasification utilises higher ratios, of up to 0.5, than most other
types of gasification. The major drawback of a moving grate reactor design is an increased
capital cost and higher ash contents in the syngas, compared to e.g. a fixed bed downdraft
gasifier [14]. Furthermore, this reactor design has the potential to replace existing moving
grate incineration plants in the UK, which are the dominant type of incineration plants. The
conversion to gasification is possible without extensive hardware modifications [16].

When it comes to gasifying agents, air generally produces a gas with a high nitrogen
content and low calorific values (4 to 7 MJ/m®) [10,14]. This is much lower than the calorific
value of e.g. natural gas which is approximately 38 MJ/m®. However, due to recent
advancements in gas turbine technologies, low heating value syngas can be used effectively
in a gas turbine-based CHP unit [14].

Biochar produced during the gasification process has the potential to become an
environmentally and economically valuable by-product [17]. Biochar can be used for soil
amendment which has a positive effect on groundwater contamination and soil fertility [18].
The soil application of biochar presents a valid strategy for climate change mitigation as it

acts as a carbon sink by drawing carbon from the atmosphere. Furthermore, it represents a



stable form of carbon which is released slowly [19]. However, the potential of biochar from
MSW is uncertain. The utilisation for soil applications might not be suitable for biochar from
MSW, due to contaminants in the feedstock [20]. A biochar yield ranging from 10 % to 20 %
was frequently reported [7,21,22], and thus the biochar yield is assumed to be 15 % in this
study.

Depending on the pre-treatment required and the main energy generation device used
gasification can have high overall efficiencies with the potential of higher efficiencies than
incineration. For example, the net electrical efficiency of gasification plants using a gas

turbine lies around 20-30 % [14,23].

2.1.2 Anaerobic digestion (AD)

Anaerobic digestion describes a biological treatment method for the treatment of
organic wastes.Biogas is the main gaseous end-product of AD and consists of mainly
methane (CH.) and carbon dioxide (COz) [24].

AD is mostly classified by their solid content, operating temperature and reactor
design. Low solid content processes are called wet digestion (~ 12 % TS) and high solid
content processes are called dry digestion (~ 20 % TS) [25]. Operating temperatures of
approximately 35-40 °C are classified as mesophilic, whereas conditions of 55-60 °C are
classified as thermophilic. Thermophilic conditions generally increase gas production and
decrease operating time for organic matter degradation. However, they are less stable and
require a higher heat input than mesophilic ones [26]. An increased heat input does not matter
as much for cases where excess heat is not utilised or for plants in high-temperature regions.
In this study however, the excess heat will be used for district heating. Dry digestion at

mesophilic conditions has a high organic matter removal rate combined with a low specific



growth rate of microorganisms and a small accumulation of volatile acids [26]. Hence,
mesophilic AD is considered in this work.

In this work, the design is assumed to be a two-stage process with a continuously
stirred tank reactor. This is comparable to the system considered by Renda et al. [27]. The
benefit of this reactor design is that it’s already commonly employed in industrial scale
plants, making it a mature technology. It is suitable for high moisture waste such as the
OFMSW and has good biogas yields with relatively low operational costs [28].

Digestate production is highly dependent on the feedstock composition and reactor
used. A dry digestate production of approximately 700 kgt of input was stated in Monson et
al. [6], whereas Tan et al. [5] quoted a production rate of 300 kgt of input. Based on the
reasonable range, a digestate production rate of 500 kgt of input is assumed for this work.
Digestate has the potential to displace mineral fertilisers. A previous UK study showed that
the heavy metal concentrations in digestate from AD complied with PAS 110 from the British
Standards Institution, which made the digestate suitable for farmland application [29].

The specific energy of CH4 is 55.6 MJ/kg, which corresponds to an energy density of
21.9 MJ/m? for biogas with a CH4 content of 60 % [30]. Biogas fired CHP units offer high
conversion efficiencies and thus are an attractive way of generating electricity and thermal
energy. Poschl et al. reported an electrical efficiency of 33 %, a thermal efficiency of 50 %
and a required electricity input of 4.5 % of the electricity produced by a biogas fired CHP
unit [31]. The values given apply to small-scale units, which is consistent with Walla and
Schneeberger that reported electrical efficiencies ranging from 32.8-37.4 % for CHP units
sized 50-500 kWe [32]. Even higher electrical conversion efficiencies of 40 % have been
used for larger AD plants [33].

Typical waste categories that are suitable for AD include food/kitchen waste, garden

waste and other organics which can be further categorised as OFMSW. The European



Commission defined OFMSW as "biodegradable park and garden waste, food and kitchen
waste from household, restaurants, caterers and retail premises and comparable waste from
food processing plants™ [34,35].

Existing studies compared the biogas yield from digesting the OFMSW at various
conditions. The biogas yield for dry digestion at mesophilic conditions generally lies around
approximately 250-500 Nm?®/t VVS. Hence, a biogas yield of 350 Nm3/t VS is assumed with a
methane content of 60 %. The biogas yield is highly contingent upon the process conditions
and other factors, such as the local climate. However, the value chosen is based on relevant
literature and tries to estimate a realistic value for the given conditions. Nonetheless, all
uncertainty in this value cannot be eliminated, but the assumed value is rather conservative
and AD has the potential for better performances, especially with potential technological

improvements [31,36,37].

2.2 Waste Generation

Exact data on MSW generated per capita for Glasgow itself was not available, but in a
recent report by SEPA (Scottish Environment Protection Agency), a household waste
generation of 216,873 t/y was reported for 2016 in Glasgow. This corresponds to
approximately 349 kg per annum per capita of household waste, considering a population of
621,020 in 2017 for Glasgow [38]. However, the definition of household waste used in their
study is narrower than the one used for MSW in this report. For example, public institutions
like hospitals, school and prisons as well as industrial waste were not included in their study
[39-41]. In a study by Evangelisti et al. [34], a value of 440 kg of household waste per
annum per capita was used. This value was reported in 2010 for London Borough of
Greenwhich. In the most recent OECD (Organisation for Economic Cooperation and

Development) environment statistics report UK values of 534, 521, 491, 477, and 494 kg of



MSW per annum per capita were documented for the years 2009, 2010, 2011, 2012, and 2013
respectively [42]. This agrees with recent values reported by Eurostat. For the UK, 483 kg of
MSW per annum per capita was reported for 2016 by Eurostat [43]. Thus, in this study it is
assumed that 480 kg of MSW per annum per capita is generated in Glasgow, which
corresponds to approximately 300,000 tonnes of MSW per annum.

The MSW waste composition is based on the data obtained from Zero Waste
Scotland. This national-level study analysed the composition of MSW in Scotland. The
findings are based on waste sampling of eight Scottish councils; one of which is Glasgow
[44,45]. A detailed breakdown is shown in Table 1.

The OFMSW will be treated by AD and represents the combination of the categories
“food/kitchen waste”, “garden waste”, and “other organics” which makes up for 31.6% of all
MSW on weight basis.

The categories “Paper”, “Cardboard”, “Plastic film & dense plastic”, and “Leather-
Wood-Textiles-Rubber (LWTR)” are treated by the gasification plant. The combination of
these four categories sums up to 46.3% of all MSW on weight basis. The proximate and
ultimate compositions, and heating values of the waste from existing literature are
summarised in Table 2.

It is critical to have accurate parameters as the input of the analysis, such as biogenic
and fossil carbon content, and heating values. In this study, we rely on the use of average and
indicative values from existing reports and literature to make the consideration of the local
waste composition as representative as possible. Unfortunately, data specific to Glasgow with

a higher level of accuracy is not available at this point.

10



2.3 Township and scenario design

Glasgow is made up of 23 wards which act as electoral districts. For this study,
several wards are clustered together to make up a township (Figure 1), and each township is
allocated with a decentralised system as proposed in this study. Population data for
Glasgow’s wards was obtained from the local city council [46].

The feasibility of a decentralised waste treatment system is studied in terms of three
different scenarios. A summary of the different three different Scenarios is shown in Table 3.
For Scenario 6A&G, either three or four wards are grouped together to make up a township.
The number of inhabitants per township ranges from 84,232 to 114,194 which corresponds to
an MSW generation of 39,476 to 53,518 t. It is assumed that each township has both a
gasification and AD plant installed to treat local MSW. The size of each system is dependent
on the total amount of waste produced in the township.

Scenario 6G uses the same township arrangement as Scenario 6A&G, but it only
utilises a gasification plant. Having one bigger plant instead of two smaller ones is generally
more economical due to economies of scale.

Economies of scale is also the main incentive for Scenario 3A&G. For this scenario,
each two townships (i.e. 1 and 2, 3 and 4, and 5 and 6) are combined to create a larger
township, resulting in 3 instead of 6 townships. This results in a township size of around
200,000 inhabitants. Each of those townships utilises both AD and gasification for waste
management. The townships for Scenario 3A&G are shown in Figure 1 (b).

Lists of input parameters for the AD system in scenarios 6A&G and 3A&G, and for
the gasification system in scenarios 6A&G, 6G, and 3A&G are given in Table 4 and Table 5

respectively.
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2.4 Life cycle assessment (LCA)

LCA is a standardised tool for evaluating the possible environmental impacts of a
product, process, or system. In LCA, the environmental aspects and impacts of the product,
process, or system are considered throughout its entire life cycle. It assists in identifying hot
spots e.g. excess CO2 produced, in a system's life cycle and thus shows opportunities for
improvement. The LCA of waste management practices helps government and investors to
identify the most preferable practice in terms of environmental impacts.

An LCA consists of four sequential phases, i.e. goal and scope definition, inventory
analysis, impact assessment, and interpretation. The LCA of this work is carried out using the
software “GaBi” and ReCiPe 1.08 Midpoint impact categories [47].

The goal of this study is the comparison of different MSW treatment options, and
evaluating the suitability of a township-based, distributed waste treatment system based on
AD and gasification for Glasgow.

A functional unit (FU) is defined to allow a comparison of different processes and
scenarios. Alternatives can only be compared fairly if they all fulfil the same essential
purpose or function. In the analysis of this work, the FU is taken to be 1 tonne of MSW.
Specifically, the FU can be divided into three categories: (i) 316 kg of OFMSW which can be
treated by either AD or gasification; (ii) 463 kg of waste most suitable for gasification; (iii)
221 kg of waste which cannot be treated by either AD or gasification. The third fraction can
be assumed to be treated in the same fashion for all scenarios. As a result, the treatment of
this fraction is neglected in the comparison.

A system can become over complex to include every single impact or process and
thus, it is important to define suitable system boundaries. The system boundary and a basic
flow chart of the different processes are shown in Figure 2. We exclude the environmental

impacts related to the by-products of gasification and AD in the system boundary. Both
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digestate and biochar have the potential to impose a major positive environmental impact
(carbon saving). However, the quality of these by-products is highly variable based on the
feedstock and technology used. This generally results in different utilisation options for
which additional treatment becomes necessary. All these factors lead to the exclusion of
biochar and digestate from the system boundary. These by-products generally result in an
overall positive environmental impact [34], making the results obtained in this study
conservative.

Furthermore, the electricity and heat generated are assumed to substitute electricity
and heat generated by natural gas. Currently, electricity from natural gas is the greatest
contributor to the UK’s national grid. In the first quarter of 2018, 31.6 % of the electricity
generated in the UK came from natural gas [48].

Data is collected and processed to model relevant emissions. Input parameters to the
AD and gasification conversion pathways have been summarised in Tables 4 and 5
respectively. It should be noted that the efficiency was increased from 34 % to 40 % for the
larger plants used in scenarios 6G and 3A&G due to the increase in efficiency for larger
plants [33,49].

Emissions from an AD-based CHP system are shown in Table 6. Complete
combustion of methane is assumed for the biogas utilisation in the CHP unit. The biogas
consists of 60 % CHa4 and 40 % CO., where the CO; is directly emitted to the air in addition
to the CO2 generated in the combustion process [6]. Emissions from biogas leakage are based
on a 3 % biogas loss [34]. The impact of the biogas loss on the overall environmental impact
is also considered in the sensitivity analysis in Section 3.3. The waste heat emissions are
calculated from the electric and thermal efficiency of the process.

Emissions resulting from the energy generation by a gasification-based CHP system

are shown in Table 7. The syngas production rate is assumed to be 2600 m®/t of feedstock
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input based on Yao et al. [21]. A syngas composition of 20 % CO, 15 % CO., 2 % CHg4, 52
% N2 and 11 % Ha is assumed [10,21].

Exact distances travelled during the waste collection process and the resulting
emissions are difficult to model. However, the MSW collection process itself can be assumed
to be the same for each scenario. The only difference lies in the transport distance from the
collection point to the treatment facility. Based on this, transport emissions are modelled
using in-built GaBi processes. For the transport from the waste collection point to the
treatment facility, a Euro 5 truck with a gross weight of 20-26 t, a payload of 11 t and an
average transport distance of 16 km (return) is used for scenarios 6A&G and 6G. For
Scenario 3A&G, the transport distance is increased to 32 km (return). A utilisation factor of
0.5 is used for all scenarios to account for the empty return trip. The transportation of the
fraction of MSW which cannot be treated with gasification or AD — namely glass, metals,
electronic waste, etc. — is modelled using a Euro 3 truck with a gross weight of 7.5-12 t, a
payload of 5 t and an average transport distance of 50 km (return). Again, a utilisation factor

of 0.5 is used.

2.5 Cost-benefit analysis (CBA)

The economic feasibility is evaluated using a Monte Carlo simulation-based CBA
[50]. Monte Carlo simulation is a suitable technique to assess risks and uncertainties in an
investment [51]. The Monte Carlo simulation-based CBA was conducted using MATLAB.
Data from previous studies and existing literature on various cost and benefit elements is used
as a reference. Triangular distributions are assumed for variable elements to account for
uncertainties.

The benefit to cost ratio (BCR) is used as the economic indicator and calculated as

14



AW (B)

BCR = S0/ (CAPEX) + AW (0&M) )

where AW denote an annual worth; B denotes the benefits of the project, CAPEX denotes the
capital cost of the project (without a salvage value at the end of the lifetime), and O&M
denotes the operation and maintenance cost [52]. When BCR is greater than 1 meaning the
benefits outweigh the costs, the system is considered economically feasible.

AW and present worth (PW) are related by

W = i(1+ )N
W_PWl(1+i)N—1l
)

where i denotes the effective interest rate and N denotes the study period in years, which in
this case is the AD/gasification systems' lifetime (20 years) [52]. An interest rate of 6-8 % has
been suggested for solid waste management in developed countries [51]. A constant interest
rate of 6 % is used for all scenarios in this work.

The capital cost is based on the capacity of the plant and consists of the construction
cost and the land cost. For Scenario 6A&G and 3A&G, each AD plant has a capacity of
approximately 12,000-17,000 t and 28,000-34,000 t, respectively. The capital cost is based on
recent findings by Renda et al. and includes the CHP unit [27]. Additionally, the systems are
assumed to operate for 8000 hours per annum.

The values are converted from Euro to US$ using an average exchange rate of 1.0656
for 2016. The Chemical Engineering Plant Cost Index (CEPCI) is used to convert the cost
from the base year 2016 to a 2017 equivalent which corresponds to the most recent CEPCI
value:

COSti = COStJ(CEPCIl/CEPCI])
3)
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where i and j represent the reference year (2017) and base year (2016), respectively. The
value for 2017 was used since the value for 2018 was not available. The CEPCI value for
2016 was 541.7 and the value for 2017 was 567.5 [50,53]. The capital cost is strongly
dependent on scale, thus further scaling was done using the power-sizing technique given by

Costj, = Cost;(S,/S))” 4)
where the designed facility capacity and base capacity are denoted by Sk and Sj, respectively
[50]. The scaling factor is denoted by f and is taken as 0.7 for all cases [50]. The capacity of
the base facility is taken as 300 kW based on Renda et al. and the average designed facility
capacity is taken as 1000 kW and 2000 kW for scenarios 6A&G and 3A&G respectively [27].
Finally, the calculated values are converted to US$/kW and lower and upper limits of
triangular distributions are assumed. The capital cost distribution used in the Monte Carlo
simulation, as well as other cost elements are summarised in Table 8.

The capital cost of the gasification system is calculated in a similar fashion as the one
for AD. However, the capital cost of the gasifier and the CHP unit are calculated separately
and then added. The gasifier cost is based on Basu [54]: a gasifier with a capacity of 170
tonnes of feedstock input per day has a corresponding capital cost of 25,000 US$ per tonne
per day. These values are updated using Eq. (3) with a CEPCI value of 394.3 for 2001 [53]. It
is assumed that each gasification system operates for 330 days per year and scaling is done
using Eq. (4), where the average capacities are 20,000, 35,000, 45,000 t/y for scenarios
6A&G, 6G, and 3A&G respectively. A US$/t feedstock cost is then calculated and the upper
limit, mode, and lower limit of triangular distribution for the Monte Carlo simulation are set
as shown in Table 8.

The capital cost of the CHP unit for gasification is based on [49]: a 5000 kW CHP
unit has a capital cost of 2,910,000 € in 2015. This is converted to USD using an exchange

rate of 1.1097 and further updated using Eqg. (3) and a CEPCI value of 556.8 for 2015 [53].
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Values are further updated using Eq. (4) with an average kW, size of 4500, 4800 and 9000
for scenarios 6A&G, 6G, and 3A&G respectively. The US$/kW. costs used in the Monte
Carlo simulation can be found in Table 8 as well.

The ratio between capital cost and annual O&M cost for AD plants was calculated for
four UK plants with capacities of 20,000 — 60,000 t/y [51]. This resulted in ratios ranging
from 5.9 % to 8.8 %. Reference [55] considered a value of 4 % for the ratio. Hence, a
triangular distribution with a lower limit, mode, and upper limit of 3 %, 7 %, and 10 % of the
capital cost, respectively, is assumed for the O&M cost.

The annual O&M costs for gasification plants were reported to be approximately 17
% of the capital cost [10,56]. This is comparable to You et al. where a triangular distribution
of 9.6 %, 16.8 %, and 24 % was used for the ratio of O&M cost and capital cost [50]. A
distribution of 12 %, 17 %, and 20 % is used for this analysis.

Any income from the sale of digestate is not considered for the baseline scenarios
6A&G, 6G, and 3A&G. Monson et al. reviewed the potential market for digestate from MSW
and suggested that the sale of digestate should be excluded from economic considerations
until the market was more mature [6]. In a recent Italian study income from digestate sales
was quoted at 15 €/t which is used as a reference value for altered scenarios considering the
sale of digestate [27].

The economic benefit from biochar sales is, as with digestate sales, hard to quantify
for the current UK market. A global average biochar price of 2650 US$/t was reported for
2016 in [57]. In comparison, the average biochar price in Australia was found to be
approximately 800 US$ in 2015 [58]. However, the actual price achievable in the UK is
uncertain. Thus, any biochar sales are not considered for the base scenarios. However,
biochar sales are considered in a sensitivity analysis to assess their impact on the economic

feasibility of the different scenarios.
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In 2010, the Feed-In Tariff (FIT) scheme was implemented by the British government
to promote small-scale renewable and low-carbon electricity generation. One of the
technologies eligible is AD. AD plants of capacities ranging from 500 to 5000 kW receives a
tariff of 1.57 p/kWh [59]. A lower limit, mode and higher limit of 1.30, 1.60, 1.70 p/kWh,
respectively are assumed for the triangular distribution. Currently, the FIT scheme does not
cover electricity generated from gasification. However, it is assumed that electricity
generated from gasification would receive the same tariffs as AD and thus the same
distribution is applied [59].

The Non-Domestic Renewable Heat Incentive (RHI) scheme currently offers tariffs
for the heat generated by the combustion of biogas or syngas. Plants of a size greater than
600 kWi currently receive a tariff of 1.36 p/kWhi. Based on this, a distribution of 1.10, 1.40,
1.50 p/kWh is assumed [60].

It is assumed that all the heat generated (after subtracting auxiliary needs) is fed into a
district heating network. The capital cost of implementing a district heating network is based
on a 2011 study by Tremborg et al. [61]. Scenarios 6A&G and 6G have a capital cost of
approximately 45 €/ MWh heat exported, whereas Scenario 3A&G has a capital cost of
approximately 42 €/ MWh heat exported. An average Euro to US$ conversion rate of 1.39 is
used for the year 2011 to convert these values, before they are further updated to current time.
Additionally, a constant annual O&M cost of 1 % of the capital cost is used based on [61].

It is worth noting that the transportation logistics can significantly contribute to the
costing of overall waste management processes [64], however, they are not considered in the
CBA of this work for three reasons. Firstly, waste collection and transport can be run by
some existing businesses that are separate from the waste treatment systems and can be paid
by the waste gate fee not considered as an income of the CBA in this work. This will

probably make the CBA conservative. Secondly, without accurate logistics date, additional
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uncertainty may be incurred if the cost of logistics is incorporated in the CBA of this work.
Thirdly, this work focuses on the comparison of different technology and system options. It
can be assumed that the transportation logistics remain the same across the different scenarios
and would not affect the comparative assessment. Actually, existing studies [50,62,63]
showed that transportation would generally have limited effect on the results of strategy

studies comparing different waste treatment.

3. RESULTS AND DISCUSSION

The total electricity generated throughout all six townships of Scenario 6A&G was
found to be 204,562 MWh/year. In comparison, scenarios 6G and 3A&G yielded 198,672
MWh/year and 239,301 MWh/year respectively. Households in Glasgow consumed on
average 3332 kWh of electricity per year [68]. Based on this, it was calculated that each
waste treatment system in Scenario 6A&G covers the annual electricity demand of on
average 10,232 households located in its township. In comparison, each system in Scenario
6G provides electricity for 9938 households. Each system in Scenario 3A&G covers 23,940
of its local households. These values correspond to 20 %, 19 %, and 23 % of local
households, based on average township sizes, for scenarios 6A&G, 6G and 3A&G
respectively. The total thermal energy generated throughout all six townships of Scenario
6A&G was 196,136 MWh/year. Values of 149,004 MWh/year and 197,487 MWh/year were
obtained for scenarios 6G and 3A&G respectively. Based on the latest typical domestic
consumption values an annual heat demand of 12 MWh/year is assumed [65]. Thus
approximately 5 %, 4 %, and 5 % of all households’ annual thermal energy demand can be
covered by scenarios 6A&G, 6G and 3A&G respectively. Similarly, to the electricity
generation, Scenario 6G is outclassed by Scenario 6A&G and 3A&G in terms of heat

generation.
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The seasonal demand for district heating is bound to fluctuate due to higher heating
demands in winter than summer. However, the heating demand in the UK is still substantial
all year round, with the minimal daily heat demand, which is occurring in the summer
months, being approximately one third of the maximum daily demand [66]. Furthermore, the
district heating system only covers a small fraction of the annual thermal energy demand. For
these reasons, the baseline scenario assumes that all the heat generated can be sold.

The increased efficiency of larger plants contributes to the increase in electricity
generation of Scenario 3A&G compared to Scenario 6A&G. Additionally, the obtained
results indicate that AD is more suitable than gasification for the treatment of the OFMSW
when looking at energy recovery. This can be seen from the decrease in both electricity and
thermal energy generated in Scenario 6G where the OFMSW s treated by AD instead of

gasification.

3.1LCA

The LCA results for the four impact categories (GWP (including biogenic CO,),
GWP (excluding biogenic CO>), AP, terrestrial EP) are shown in Figure 3. Figure 3 (a) and
(b) show that throughout the different scenarios, transportation has a minimal effect on both
GWP (including biogenic CO.) and GWP (excluding biogenic COy). Including biogenic CO>
results in Scenario 3A&G emitting 539 kg COz.eq, Which is the lowest GWP out of the three
scenarios. Scenario 6A&G has a similar impact as Scenario 3A&G, whereas Scenario 6G has
a substantially greater adverse effect on global warming (911 kg COz.q.) than the other two
scenarios when biogenic CO: is included. However, Scenario 6G is the most preferred
alternative, when biogenic CO; is not considered in the analysis.

For the case of biogenic carbon being included in the GWP, the waste treatment has a

detrimental effect on the environment due to positive CO2 emissions. However, gasification
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and AD have been shown to result in substantially lower CO2 emissions than, for example
incineration [67]. It has also been shown, that landfilling results in substantially higher CO>
emissions than thermal treatment methods, such as gasification [68]. Thus, gasification and
AD represent a better alternative than conventional treatment methods, such as incineration
and landfilling.

The overall results for the impact categories terrestrial EP and AP (Figure 3 (c) and
(d)) are very similar for all three scenarios. All the scenarios obtained negative totals in these
two impact categories, indicating a beneficial environmental impact. Looking at terrestrial
EP, Scenario 6A&G resulted in 0.718 Mole of N.eq. being displaced, whereas scenarios 6G
and 3A&G displaced 0.736 and 0.686 Mole of N.q. respectively. The impact category AP
yielded a displacement of 0.191, 0.167, and 0.190 Mole of H+.¢q. for scenarios 6A&G, 6G,
and 3A&G respectively. Negative values mainly resulted from the displacement of electricity
and heat generated by natural gas. Transportation has a much greater impact on these impact
categories than on GWP. Transportation contributed to a similar extent to terrestrial EP as
AD and gasification. For example, transportation contributed 0.229 Mole of N.eq. to Scenario
6A&G, while AD and gasification contributed 0.288 and 0.215 Mole of N.eq. respectively. In
comparison, the contribution of transportation to the impact category GWP (including
biogenic CO2) was approximately 44 times smaller than that of AD and approximately 160
times smaller than that of gasification for Scenario 6A&G.

Throughout all scenarios and impact categories the factor ED was found to have a
much greater impact than HD. For example, for Scenario 6A&G ED displaced 324 kg COz.q,
when looking at GWP (excluding biogenic CO.), whereas HD displaced only 106 kg CO2-eq.
Values of -0.266 and -0.0874 Mole of H+.eq were obtained for the impact category AP for
Scenario 6A&G. Similar results were found for the other two impact categories considered,

as shown in Figure 3.
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3.2 Cost-benefit analysis (CBA)

3.2.1 Without Carbon Tax

The CBA results of the three different baseline scenarios are presented in comparison
with their altered scenarios which consider the potential benefit resulting from the sale of by-
products as shown in Figure 4.

The altered scenarios are denoted by a * symbol (e.g. Scenario 6A&G*). For the
altered scenarios, the lower limit, mode, and upper limit of the biochar price distribution was
set to be 100, 500, 700 US$/t, which is more conservative than a recent study by You et al.
where a triangular distribution of 0, 500, 2650 US$/t was used [10]. The biochar yield is
taken to be 15% of the feedstock input on weight basis. The digestate price was set to a
triangular distribution of 0, 15, 25 US$/t. A digestate production rate of 500 kg per tonne of
OFMSW input was used.

None of the scenarios reaches the threshold BCR of 1 without considering the sale of
any by-products, making them non-profitable. The ratios for scenarios 6A&G, 6G, and
3A&G are in the range of 0.39-0.6, 0.4-0.75 and 0.55-0.8 respectively. When considering the
sale of by-products all three scenarios have the potential to be economically viable and to
generate profits in the long run. Hence, the potential economic benefit of digestate and
biochar sales can be substantial and even determine if an alternative is feasible.

Scenario 6A&G* represents the riskiest alternative among the three altered scenarios
and has a profitability chance of 68 %. The profitability chances of scenarios 6G* and
3A&G™* are 95 % and 98 % respectively. Additionally, the maximum BCRs of 3.0 and 2.2
obtained for scenarios 6G* and 3A&G™* respectively are greater than the one obtained for

Scenario 6A&G* which is 1.6.
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3.2.2 With Carbon Tax

The implementation of a carbon tax has been long been seen as an effective mean of
reducing carbon emissions [69]. In 2009 the Scottish Government introduced the Climate
Change (Scotland) Act which included a target to reduce the net Scottish emissions by at
least 80 % by 2050 compared to the baseline year 1990 [70]. Allan et al. suggested a carbon
tax of £50 per tonne of CO> as an effective mean to meet this target [71].

It is assumed that a carbon tax may result in revenues due to negative CO2 emissions.
For the purpose of this study it is further assumed that a carbon tax excludes biogenic CO..
Figure 5 shows a comparison of the baseline scenarios to an altered scenario using a carbon
tax of £50 per tonne of CO». These are further compared to a scenario using a carbon tax
resulting in 95+1 % of the BCRs being greater than 1, which is considered as the break-even
level. CT is used as an abbreviation for carbon tax followed by the carbon tax value in £ per
tonne of CO..

Introducing a CT of £50, as proposed by Allan et al., resulted in profitability chances
of 0, 21, and 57 % for scenarios 6A&G, 6G, and 3A&G respectively [71]. Increasing the
carbon tax of Scenario 6A&G to £140 resulted in 94 % of all BCRs being greater than 1.
Scenario 6G required a CT of £90 to guarantee a break-even based on 95 % of all BCRs
being greater than 1. A carbon tax of £70 was required for Scenario 3A&G.

These results demonstrate that a CT may be a sufficient incentive for a switch to
green WTE technologies. Even without considering the sale of by-products scenarios 6G and
3A&G have the chance to break-even when a carbon tax of £50 was used. Scenario 6A&G
has lower efficiencies and displaces less CO2. This results in a higher CT being required to

make this scenario economically feasible without considering the sale of by-products.
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3.3 Sensitivity analysis

A sensitivity analysis is carried out to study the impacts of variable parameters on the
results of LCA and CBA. Laurent et al. reviewed the sensitivity analysis of various LCA
studies and found that collection and transport generally had a minor effect on the overall
results [72]. Hence, collection and transport were not considered in the sensitivity analysis of
LCA results.

Based on Scenario 6A&G, the sensitivity analysis was conducted by varying the heat
utilisation rate (denoted by HUR50% and HURO0%), interest rate (denoted by IR3% and
IR10%), and biogas leakage (denoted by BL10%). It is to be noted that the baseline scenarios
assume a heat utilisation rate of 100 % which is optimistic. The abbreviations used to denote
the various sensitivity analyses are summarised in Table 9. It is to be noted that an added *
symbol at the end of a sensitivity analysis denotes that the sale of by-products is considered
for the sensitivity analysis concerned. Furthermore, it is to be noted that not every sensitivity
analysis affects both LCA and BCR results (e.g. altering the interest rate does not alter the
environmental impacts of the system). Table 9 also indicates which results are affected by
which sensitivity analysis.

The impacts of altering the heat utilisation rate and biogas leakage on the GWP of
Scenario 6A&G are shown in Figure 6. Although the impact of a reduced heat utilisation is
only shown for the impact category GWP and Scenario 6A&G, it affects all other impact
categories similarly, as well as the other two scenarios. Namely, a 50 % reduction in heat
utilisation (HUR50%) halves the environmental benefit related to the displacement of heat
generated from natural gas. A reduction to 0 % (HURO0%) leads to none of the heat generated
from natural gas being displaced which eliminates the positive impact of this contributor

entirely.
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Increasing the biogas leakage (BL10%) was found to increase the GWP (including
biogenic CO2) from 562 kg CO2-eq. t0 614 kg CO2.¢q. This represents a substantial impact on
the GWP, which suggests the importance of creating an efficient system with minimal
leakage. It is worth noting that AP and EP were not affected by the biogas leakage. Not
utilising any of the generated heat (HUR0%) has the highest GWP impact among all the
cases. Specifically, the favourable impact of Scenario 6A&G on the impact category GWP
(excluding biogenic CO.) was reduced by about one third (-320 kg CO2-eq. t0 -214 kg CO2-¢q.)
by sensitivity analysis HUR0%. HUR50% and BL10% impacted the GWP to a similar
magnitude. They both reduced the benefit on the impact category GWP (excluding biogenic
CO) by about one sixth or more specifically by 53 kg CO2.¢q. and 58 kg CO2.¢q. for HUR50%
and BL10% respectively.

Impacts of heat utilisation rate and interest rate changes on the BCR of Scenario
6A&G are shown in Figure 7. The effects on the BCR results are only shown for Scenario
6A&G. However, the different factors considered in the sensitivity analysis affect all three
scenarios in a similar fashion. Figure 7 (a) and (b) indicate that the economic feasibility of
even Scenario 6A&G™* is unlikely when the heat utilisation rate is reduced. The probability of
the BCR being greater than 1 is lower than 50 %, indicating a significant risk involved with
such an investment.

Decreasing the interest rate to 3% for sensitivity analysis IR3% increases the
economic viability of Scenario 6A&G substantially. A BCR of greater than 1 is obtained with
a likelihood of 84 % when considering biochar and digestate sales. IR10% reduces the
probability of the BCR being greater than 1 to below 50 %. This will, similar to HUR50%

and HURO0%, make Scenario 6A&G a risky investment.
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4. CONCLUSIONS

This study examined the economic feasibility and environmental impacts of township-
based bioenergy systems based on AD and gasification using Monte Carlo simulation-based
CBA and LCA. It was found that all scenarios resulted in an avoidance of over 300 kg CO2-¢q.
per tonne of waste treated (excluding biogenic CO). Digestate and biochar can have a
significant impact on the economic feasibility of a distributed bioenergy system. The BCR
distribution lies under 1 for the baseline Scenarios, however upon considering the sale of by-
products, Scenarios 6G* and 3A&G™* stand out with profitability chances of 95 % and 98 %
respectively.

The results of the sensitivity analysis indicate the importance of utilising as much of
the heat generated as possible. Replacing heat otherwise generated by natural gas results in
avoiding significant emissions. Heat sales represent a major source of income which strongly
effects the economic feasibility of the project.

One of the aspects which is not considered in this study, is the potential
environmental benefit of digestate and biochar. Both by-products show great potential in
further increasing the environmental benefits of employing a waste treatment system based
on AD and gasification. Furthermore, this study considered separate CHP units fired on
biogas and syngas, respectively. A CHP unit capable of running on a combination of biogas
and syngas might be more efficient than two separate ones.

Another relevant factor which is not considered in this study is how changes in
recycling and composting, changes in the population, and changes in the waste production
per capita may alter the amount of waste available for the proposed system in the future.
Accounting for such factors is difficult due to uncertainties in future developments and are

beyond the scope of this study.
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