Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures

Palva, J. M. , Wang, S. H., Palva, S. , Zhigalov, A., Monto, S., Brookes, M. J., Schoffelen, J.-M. and Jerbi, K. (2018) Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures. NeuroImage, 173, pp. 632-643. (doi:10.1016/j.neuroimage.2018.02.032) (PMID:29477441)

Full text not currently available from Enlighten.

Abstract

When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed. Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here, however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large numbers of spurious false positive connections through field spread in the vicinity of true interactions. This fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most importantly, beyond defining and illustrating the problem of spurious, or “ghost” interactions, we provide a rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when using measures that are immune to zero-lag correlations.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Palva, Professor Matias and Palva, Professor Satu
Authors: Palva, J. M., Wang, S. H., Palva, S., Zhigalov, A., Monto, S., Brookes, M. J., Schoffelen, J.-M., and Jerbi, K.
College/School:College of Medical Veterinary and Life Sciences > Institute of Neuroscience and Psychology
Journal Name:NeuroImage
Publisher:Elsevier
ISSN:1053-8119
ISSN (Online):1095-9572
Published Online:22 February 2018

University Staff: Request a correction | Enlighten Editors: Update this record