
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/176027/

Deposited on: 20 December 2018

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Mantle volatiles and heat contributions in high sulfidation epithermal deposit from the Zijinshan Cu-Au-Mo-Ag orefield, Fujian Province, China: evidence from He and Ar isotopes

Li-Yan Wua, Rui-Zhong Hu*, Xiao-Feng Lia,b, Finlay M. Stuartc,e, Guo-Hao Jianga, You-Qiang Qia, Jing-Jing Zhua

aState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
bKey Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
cScottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, G75 0QF, UK

*Corresponding author: Tel: +86-851-85891497; Fax: +86-851-85891664.
Email address: huruizhong@vip.gyig.ac.cn (R.Z. Hu).
The source of metal and sulphur in porphyry and related epithermal deposits is a long debated issue. The role of mantle-derived magmas in providing the metals has proved particularly problematic. Here we report new He and Ar isotope determinations from ore fluids from the Zijinshan high sulfidation-epithermal Cu-Au deposit and Wuziqilong transitional Cu deposit from the giant Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system (from 105 to 91 Ma), to decipher the contribution of mantle-derived volatiles and heat. Hydrothermal fluids in pyrite and digenite have 3He/4He up to 5.7 Ra, among the highest measured in ancient ore-forming fluids. A linear correlation between He and Ar isotopes indicate that the ore fluids were, to a first order, a mixture between a shallow crustal fluid, with low 3He/4He, and a dominantly mantle-derived fluid with high 3He/4He. The mantle 3He/4He is close to values typical of the upper mantle indicating the initial magmas that provided the heat for hydrothermal systems did not assimilate large volumes of continental crust. The ore-forming fluids have 3He/heat ratios that are 10 to 80 times higher than that of mid-oceanic ridge hydrothermal fluids, indicating that the metal-bearing fluids acquired heat and volatiles in a convective, rather than conductive, hydrothermal regime. It appears that mantle-derived volatiles, heat and probably metals have made a major contribution to the Cu-Au-Mo-Ag mineralization in the Zijinshan orefield.

Keywords: He and Ar isotopes; Ore-forming fluids; mantle magmas; Zijinshan orefield; China
The source of metals and sulphur in porphyry mineralization and related epithermal deposits has been debated for several decades. The magmatic δ^{34}S of sulfide minerals from many porphyry deposits (Eastoe, 1983; Field and Gustafson, 1976) and meteoric water isotope signatures (Sheppard and Taylor, 1974) led many to consider that the felsic magmas (Burnham, 1979) and/or the surrounding country rocks (Ohmoto and Goldhaber, 1997; Sheppard and Taylor, 1974) are the main source of metals However, the low solubility of sulphur in felsic magmas (Hattori and Keith, 2001; Wallace and Carmichael, 1992) rules them out as suppliers of the metal in the ore-forming systems (Imai et al., 1993; Sillitoe, 1997; Sun et al., 2004). It is likely that mafic magmas play an important role in triggering felsic magmatism, and in generating the conditions necessary to form porphyry deposits (Chiaradia et al., 2012; Hattori, 1993; Hattori and Keith, 2001), especially giant deposits (Porter, 2005). Mafic magmas have great capacity to transfer sulphur and metal from the mantle to the shallow crust due to the high sulphur solubility (Hattori and Keith, 2001; Sun et al., 2004), which could supply enough metal and S for the porphyry and related epithermal deposits. Understanding the relationship between the mantle melting, felsic magmas and porphyry-epithermal deposits is essential to establishing genetic models of ore deposition.

Noble gas isotopes are unique tracers of the involvement of mantle magmas in the generation of ore deposits (Burnard et al., 1999; Burnard and Polya, 2004; Davidheiser-Kroll et al., 2014; Hu et al., 2012; Kendrick et al., 2001; Stuart et al., 1995; Wu et al., 2011) by virtue of the difference between $^3\text{He}/^4\text{He}$ of upper mantle (7-9 R_a; Graham, 2002, where R_a is the atmospheric $^3\text{He}/^4\text{He}$ ratio, 1.39×10$^{-6}$) and crustal rocks (0.01-0.05 R_a; O’Nions and Oxburgh, 1983).

The Zijinshan orefield is a unique and giant Cu-Au-Mo-Ag ore system that includes several major porphyry, high sulfidation (HS)- and low sulfidation (LS)-epithermal, and transitional deposits (Jiang et al., 2013). The mineral
deposits are spatially, temporally and genetically related to Cretaceous granodiorite and volcanic rocks which are believed to have formed by mixing of mantle-derived magmas with crustal magmas (Jiang et al., 2013; Li and Jiang, 2014). How, and to what extent, mantle melting initiated the felsic magmatism, and drove the ore-forming hydrothermal fluid system are still not clear. Here we present study of the He and Ar isotopic composition of the ore fluids trapped in pyrite and digenite from the Zijinshan high sulfidation Cu-Au deposit and Wuziqilong Cu deposit, in order to reveal the genesis of the deposits and the contribution of mantle-derived volatiles and heat.

Geological background

The Zijinshan ore field is located in the Cathaysian block (Fig. 1) in Fujian Province. The ore field is host to several types of hydrothermal Cu-Au-Mo-Ag deposits (Jiang et al., 2013; Zhang et al., 2003): high-sulfidation epithermal deposit (Zijinshan), porphyry deposit (Luoboling), low-sulfidation epithermal deposit (Yueyang), and a transitional type (Wuziqilong) which share some features with both epithermal and porphyry deposits in the region. The major deposits tend to be located at the intersection of the Xuanhe anticlinorium and Shanghang-Yunxiao fault zone. Mineralization is likely driven by Mesozoic felsic magmatism (Hu and Zhou, 2012; Mao et al., 2013). Hydrothermal Cu ± Au ore deposits of the Zijinshan are spatially and temporally associated with the Sifang, Luoboling, Zhongliaox plutons and dacite porphyry. They are believed to have formed by mixing between mantle-derived magma with crustal magmas (Jiang et al., 2013; Li and Jiang, 2014). The magmatic intrusion and contemporaneous mineralization lasted at least 10 Ma, from 105 Ma to 91Ma (Jiang et al., 2015 and references therein). By the end of 2008 the region had proven reserves of 323 tonnes Au (~0.5 g/t), 2.36 Mt Cu (~0.5 wt.%), 1554 t Ag (20–156 g/t), and 4647 t Mo (0.03 wt.%) (Zhong et al., 2014).

The Zijinshan high-sulfidation Cu-Au deposit and Wuziqilong Cu deposit mineralization is fault controlled, filling a system of NW-trending fractures (Fig. 1). The hydrothermal alteration and mineralization are typically zoned,
including silicic, alunite, dickite and phyllic alteration (So et al., 1998). Intense silification and limonitization are dominant in the leached zone at levels shallower than 350 m in Zijinshan Cu-Au deposit, where it is associated with Au-Ag mineralization (So et al., 1998; Liu et al., 2016). Copper ore bodies occur in the alunite alteration zone, at levels less than 650 m, and mineralization is dominated by massive digenite-covellite ore. The mineral assemblage is characterized by the presence of digenite, covellite, enargite, pyrite, alunite, along with trace bornite and chalcopyrite. The mineralization of Wuziqilong Cu deposit is dominated by pyrite and covellite, with minor digenite, bornite, chalcopyrite and luzonite (enargite).

Primary fluid inclusions in gangue quartz deposited during mineralization have homogenization temperatures that range from 160 °C to 380 °C (Zijinshan) and from 230 °C to 570 °C (Wuziqilong), with salinities between 1 and 22 wt % NaCl eqv (Zijinshan, So et al., 1998; Zhang et al., 1992) and 0.2-14.7 wt % NaCl eqv (Wuziqilong, Chen et al., 2011). The relationship between homogenization temperatures and salinity indicate that a simple cooling and dilution of the hydrothermal fluids occurred due to the addition of meteoric waters to the hydrothermal fluids (So et al., 1998). The δD and δ¹⁸O (Zhang et al., 1992) of the ore-forming fluids is consistent with derivation as mixtures of meteoric fluid with magmatic hydrothermal fluid.

Sampling and analytical methods

The samples used in this study were collected from ~390 m deep within the Wuziqilong Cu mine and ~350 m below the original land surface from the open pit of the Zijinshan high-sulfidation Cu-Au deposit. All samples are from veins and are mostly euhedral crystals. Pure pyrite (1-3 mm) was picked from the crushed ore under a binocular microscope. The analytical methods used here were similar to those described in Hu et al. (2012). Approximately 0.5-1g of 0.8-1.5 mm grains were cleaned ultrasonically in alcohol. The dried samples were loaded to an in vacuo crusher comprised of modified Nupro-type valves.
(Stuart et al., 1994b) and baked at ~150°C at ultra-high vacuum for more than 24 hours to remove adhered atmospheric gases. Sample weights reported in Table 1 are the fraction which passed through a 100 μm sieve after crushing. The volatiles in fluid inclusions were extracted by sequential crushing, and exposed to a titanium-sponge furnace at 800°C for 20 minutes to remove active gases such as H₂O and CO₂, and then to two SAES Zr-Al getters at lower temperatures (250°C and room temperature) each for 10 minutes. Argon was separated from the remaining gas by exposure to activated charcoal cooled by liquid N₂(-196°C) for 40 minutes. Helium and argon isotopes were determined using a GV5400 mass spectrometer. Mass spectrometer sensitivity and mass fractionation were determined by repeated measurements of air. Crush blanks were <2 x 10^{-10} cm³ STP ⁴He and <4 x 10^{-10} cm³ STP ⁴⁰Ar, which are two orders of magnitude less than those of the samples and the air standard.

The sulfur isotope composition of the sulfide minerals was determined using a MAT253 continuous flow isotope ratio mass spectrometer coupled to an elemental analyzer (EA-IRMS) at the State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences. Measurements are reported using standard δ-notation relative to V-CDT international standard. The reproducibility of replicate analyses of the IAEA international standards: IAEA S1 (−0.3‰), IAEA S2 (+22.62‰) and IAEA S3 (−32.49‰) yields a precision that is better than 0.2‰ (1σ).

Results

The He, Ar and S isotopic compositions of pyrite and digenite separates of the Wuziqilong Cu deposit and Zijinshan high sulfidation Cu-Au deposit are listed in Table 1. The large range of the abundance of ⁴He and ⁴⁰Ar (2.1-178 x 10⁻⁷ cm³ STP g⁻¹ and 1.1-11.5 x 10⁻⁷ cm³ STP g⁻¹, respectively) are likely due to variation in the volume of fluid inclusions in the samples, and variable crushing efficiency. ³He/⁴He ratios of the ore fluids vary from 0.87 to 5.5 Ra (Wuziqilong) and 0.16 to 5.7 Ra (Zijinshan). The highest ratios from each deposit are amongst the highest values recorded for ancient ore-forming fluids. ⁴⁰Ar/³⁶Ar vary from 315 to 468 (Wuziqilong) and from 320 to 612 (Zijinshan).
Zijinshan pyrite and digenite δ^{34}S range from -5.83 to +3.61‰, while the Wuziqilong pyrite δ^{34}S range from -0.69 to +3.23‰.

Discussion

Post-entrapment modifications of fluid inclusions

Several processes may affect the He and Ar isotope composition since mineral crystallisation such that the crush-released volatiles may not reflect the composition of the fluid inclusions. Cosmogenic He (e.g. Foeken et al. 2009) can be ruled out as all samples were taken from significantly below the Earth surface. U and Th concentrations in hydrothermal fluids are commonly low (Hu et al., 2012; Normal and Musgrave, 1994), therefore the radiogenic 4He produced \textit{in situ} in fluid inclusions is also negligible (Hu et al., 2012). Trace amounts of U and Th in mineral structures may produce \textit{in situ} radiogenic 4He. However, empirical observations provide no evidence that significant volumes of radiogenic He diffuses or recoils into or out of fluid inclusions in ore minerals (Stuart et al., 1995; Burnard and Polya, 2004).

The 40Ar produced by the decay of K in fluid inclusions and the host mineral such as pyrite are also negligible, because the diffusion of Ar in pyrite and the concentrations of K are extremely low (Smith et al., 2001; York et al., 1982). The measured 40Ar/36Ar of the volatiles released from fluid inclusions are likely lower than the true fluid value due to the release of atmospheric Ar (Burnard et al., 1999).

Sources of He, Ar and S

The most important sources of He and Ar in ore fluid inclusions trapped in hydrothermal minerals are air-saturated water, mantle-derived volatiles and radiogenic decay of U, Th and K in crustal rocks (Turner et al., 1993; Stuart et al., 1995). Helium in the atmosphere is too low to exert a significant influence on the abundance and isotopic compositions of He in most crustal fluids thus it is predominantly mantle-derived and crustal-radiogenic in origin (Stuart et al., 1994a). This is supported by the high 4He/36Ar of the fluids (151 to 22,131, the
atmospheric 4He/36Ar = 0.167). The 3He/4He ratios of the sulfide fluids from the two deposits (0.16-5.67 Ra; Table 1 Fig. 2, 3) are consistent with an origin as a mixture of crustal radiogenic (0.01-0.05 Ra; O’Nions and Oxburgh, 1983) and mantle component, which could be upper mantle (7-9 Ra; Graham, 2002) and/or subcontinental lithospheric mantle (SCLM, 6-7 Ra; Gautheron and Moreira, 2002) sources.

All 40Ar/36Ar are in excess of the air ratio indicating the presence of radiogenic 40Ar in the fluids. Radiogenic Ar in ore-forming fluids originates from both crust and mantle (e.g. Stuart et al. 1995). The linear correlations between 3He/4He and 40Ar*/36Ar (where 40Ar* is non-atmospheric Ar, i.e. 40Ar* = 40Ar - [36Ar x 298.6]) (Fig. 2), and between 3He/36Ar and 40Ar/36Ar (Fig. 3) indicate that the sulphide-hosted volatiles from both deposits are mixtures of two fluids; a high 3He/4He-40Ar/36Ar component and a low 3He/4He-40Ar/36Ar component. These reflect mantle-derived magmatic gases and crust-derived gases, respectively (e.g. Stuart et al. 1995). This may be reflected in the occurrence of two types of fluid inclusions in the quartz associated with sulfides in the deposits, namely high temperature-salinity magmatic-hydrothermal fluids and low temperature-salinity fluids (Chen et al., 2011; So et al., 1998; Zhang et al., 1992).

The crustal volatiles are likely present in meteoric waters that originated at the surface, which has been modified by the addition of radiogenic 4He and 40Ar. This is termed modified air saturated water (MASW). In Fig. 3, extrapolating the data trend to the 3He/36Ar value of air-saturated water (2.4 x 10^{-7}) suggests that the MASW component had a 40Ar/36Ar ~ 325, slightly higher than atmosphere value (298.6; Lee et al., 2006). Extrapolating the mixing line in Figure 2 to a 3He/4He of crustal radiogenic He (~0.02 Ra; O’Nions and Oxburgh, 1983) implies that the fluid had 40Ar*/4He < 0.0001 (Fig.2). This is significantly lower than the 40Ar*/4He produced in the crust (~0.2, Torgersen et al., 1988), and is consistent with observations that the shallow fluids contain little radiogenic 40Ar. Extrapolating this trend to 3He/4He = 5.67 Ra, the highest value of the ore-forming fluid, implies that the magma had a 40Ar*/4He ratio of 0.27. This is within the range of mantle production ratios (0.24–0.63, Graham, 2002). The 3He/40Ar* ratio of the samples range from 2.3 – 6.7 x 10^{-5}, close to that of MORB mantle value (~ 10^{-4}, Kennedy et al., 1991) and 200-600 times of
that of the crust value (~ 10^{-8}, Kennedy et al., 1991), indicating a dominantly mantle origin of He and Ar. The absence of significant contribution of crust-derived radiogenic He and Ar, therefore implies that the volume of crustal magma in the deep ore system was low in comparison to the mantle magma.

The $\delta^{34}S$ values of sulfides from the Zijinshan and Wuziqilong deposits have a large range (-5.8 to +3.6‰; Table 1 and Fig. 5). While this range overlaps the magmatic value (0 ± 2‰; Kyser, 1990), it is not particularly diagnostic, and certainly requires other S sources, or significant fractionation during deposition. The sulfides with high $^3\text{He}/^4\text{He}$ ratio have $\delta^{34}S$ range from 0.16‰ to 3.61‰, which is consistent with the $\delta^{34}S$ values of the 21ºN East Pacific Rise and Mid-Atlantic Ridge sulfides (+1‰ to +3.5‰, Stuart et al., 1994), indicating mantle origin. The decrease of $\delta^{34}S$ with low $^3\text{He}/^4\text{He}$, $^{40}\text{Ar}/^{36}\text{Ar}$, $^3\text{He}/^{36}\text{Ar}$ and high $^4\text{He}/^{40}\text{Ar}$ ratios (Fig. 5) indicate a common origin for the radiogenic He and isotopically light S. However the absence of a linear relationship between $\delta^{34}S$ and the He-Ar isotopes (Fig. 5) indicates that the S isotope systematics have not been controlled by the type of fluid mixing that is traced by the noble gases. This most likely reflects the low S concentration in the shallow, low temperature aqueous fluid in comparison to that of the magmatic-hydrothermal fluid.

Helium and heat

The high concentration of mantle-derived ^3He in the ore-forming fluids implies that the bulk of the heat (Q) for the main phase of hydrothermal activity derived from the mantle. The $^3\text{He}/Q$ ratio of the fluids can provide constraints on the hydrothermal regime. Following the method of Turner and Stuart (1992) we have:

$$^{3}\text{He}/Q = ^{3}\text{He}/^{36}\text{Ar} \times \left[^{36}\text{Ar}_{\text{masw}}/(C_p \theta)\right]$$ (1)

where $[^{36}\text{Ar}_{\text{masw}}$ is the concentration of ^{36}Ar in modified air saturated water (MASW, 7.65×10^{-7} cm3 STP g$^{-1}$), C_p is the specific heat of MASW (4.4 J K^{-1} g$^{-1}$) and θ is the temperature increase of the cold fluid (°C) (Burnard et al., 1999,
of atmosphere-derived Ar tends to decrease the 3He/4Ar ratio, because the He abundance in air is low, so air contamination does not significantly affect He analyses, but air-derived contaminants may comprise a significant fraction of measured Ar, and it is impossible to distinguish fluid-derived Ar from absorbed atmospheric Ar (Burnard et al., 1999). Although rigorous analytical procedures can minimise atmospheric contamination, it is unlikely to completely eliminate air-derived noble gas. Fluid inclusion homogenization temperatures in coexisting gangue minerals of the same mineralizing stage (Chen et al., 2011; So et al., 1998; Zhang et al., 1992) are used to calculate θ in eqn. (1).

The estimated 3He/Q ratio of the fluids from the Zijinshan and Wuziqilong deposits range from 0.07 to 8.35 x 10^{-12} cm^3 STP J^{-1} (Fig. 4). These values are 10 to 80 times higher than those recorded by hydrothermal fluids from mid-oceanic ridges (0.1-0.2 x 10^{-12} cm^3 STP J^{-1}) (Baker and Lupton, 1990; Lupton et al., 1989), though notably they are similar to the values recorded for trapped ore fluids from the Mesozoic granite-related Panasqueria Sn-W mineralisation (Burnard and Polya, 2004). The large variations in 3He/heat between samples cannot be accounted for by variable atmospheric 3He addition and the uncertainties of θ. These variations reflect real changes in the 3He contents and enthalpies of the fluids at the time of trapping (Burnard et al., 1999). The high 3He/Q suggests that the deep hydrothermal fluids derived both heat and volatiles by convection across magma/hydrothermal interface in the deep crust, rather than in a conductive regime (Burnard and Polya, 2004). Meanwhile the near MORB mantle 3He/4Ar* ratio indicate that convective transport of gases from the mantle.

Ore formation at the Zijinshan ore field likely occurred over ~10 Ma between 105 and 91 Ma (Liang et al., 2012, Liu and Hua, 2005). This is considerably longer than the length of time a single intrusion can sustain hydrothermal circulation (~5 x 10^5 yr; Hayba and Ingebritsen, 1997). This requires several pulses of mantle-derived heat in order to ensure a productive hydrothermal system, consistent with the intrusion of multiple plutons (Jiang et al., 2013; Li and Jiang, 2014; Wu et al., 2013).
Most hydrothermal ore fluids have $^3\text{He}/^4\text{He}$ ratios that reflect mixing of shallow and deep magmatic fluids (Hu et al., 2004, 2009, 2012; Stuart et al., 1995; Wu et al., 2011). In most cases $^3\text{He}/^4\text{He}$ are lower than 3 R$_a$ (Fig. 6) demonstrating the importance of crust-derived fluids in the genesis of ore deposits. The $^3\text{He}/^4\text{He}$ of the Zijinshan and Wuziqilong deposits contrasts with, in particular, other porphyry deposits (Fig. 6) are significantly high. Besides there are several other deposits, such as Dongping orogenic Au deposit and Panasqueira W-Sn deposit, have high $^3\text{He}/^4\text{He}$ ratios (Mao et al., 2003; Burnard and Polya, 2004). Mao et al. (2003) suggested that the high $^3\text{He}/^4\text{He}$ (0.3-5.2 R$_a$) in the ore forming fluid of Dongping Au deposit indicate that ore-forming fluid is dominantly sourced within the mantle, however, there is another hydrothermal fluid that is magmatic origin but unrelated to the main mineralization. Burnard and Polya (2004) proposed that the high $^3\text{He}/^4\text{He}$ in ore fluids from the Panasqueira W-Sn deposit reflected the direct addition of mantle-derived He to the ore-fluids, and suggested that they were unrelated to the granite that was spatially and temporally associated with the deposits.

The Zijinshan Cu-Au deposit and Wuziqilong Cu deposits are spatially and temporally associated with early Cretaceous granodiorite and volcanic rocks (Jiang et al., 2013; Li and Jiang, 2014; Zhang et al., 2003), which were generated above subducting Pacific plate (Jiang et al., 2013; Li and Jiang, 2014). The Sr-Nd-Hf-Pb isotopic compositions of Luoboling and Zhongliao granodiorites show a subduction-modified mantle origin, which is associated with slab-derived fluids or melts (Chen et al., 2008; Meng et al., 2012), with assimilation of ancient crustal materials (Li and Jiang, 2014). So the felsic magmas are unlikely be the source of the high $^3\text{He}/^4\text{He}$, because the assimilation of ancient crustal materials produces low $^3\text{He}/^4\text{He}$ ratios. Thus the high $^3\text{He}/^4\text{He}$ may be the result of direct intrusion of mantle-derived volatiles. This is consistent with the presence of contemporaneous mafic dykes in the Zijinshan orefield. The mafic reservoir can keep a prolonged thermal condition, resulting in a long-lived, continuous fertilization of the shallow magmatic-hydrothermal systems (Chiaradia et al., 2009), which may be the key point of generating large porphyry-epithermal ore system in Zijinshan orefield.
Underplating by mafic magmas, providing the high heat flux, volatiles, as well as metal to the ore-forming fluids without transport in felsic magma, may be a common phenomenon in giant porphyry and related epithermal deposits (Hattori, 1993; 1996; Hattori and Keith, 2001).

Porphyry Cu systems are generated mainly in compressional tectonic settings (Sillitoe, 2010), strongly extensional settings appear to lack significant porphyry Cu systems (Sillitoe, 1999; Tosdal and Richards, 2001). However, the Zijinshan orefield was formed under strongly extensional tectonic regime, evidenced by the coexistence of A-type granites, highly fractionated I-type granites and bimodal volcanic rocks during the Mid-Late Cretaceous (107-86 Ma) in Southeast China (Li et al., 2014; Zhou et al., 2006). The main factor controlling formation of porphyry Cu deposits may not be the tectonic settings but the conditions necessary to generate mafic reservoirs in the depth.

Conclusions

The ore-forming fluids of the Zijinshan Cu-Au deposit and Wuziqilong Cu deposit were a mixture of shallow crustal fluid containing crustal ^4He and near atmospheric Ar and magmatic fluid that contains a significant proportion of gases from the mantle. The crustal fluid was low temperature meteoric fluid that interacted with crustal rocks. The high $^3\text{He}/^4\text{He}$ ratio of magmatic fluid indicates at least 80% of the He in the magmatic fluid was derived from the mantle. The high $^3\text{He}/Q$ of the mineralizing fluids (0.07 x 10^{-12} to 8.35 x 10^{-12} cm3 STP J$^{-1}$) and near MORB $^3\text{He}/^4\text{Ar}^*$ ratios suggest that the hydrothermal fluids derived heat and volatiles from the magma through advection rather than conduction which will lead to low $^3\text{He}/Q$ and $^3\text{He}/^4\text{Ar}^*$ ratios. The absence of clear relationship between $^4\text{Ar}/^3\text{Ar}$ and $^3\text{He}/^3\text{Ar}$ vs $\delta^{34}\text{S}$ suggests that S is primarily derived from magma and crustal fluid doesn’t supply significant S to the ore-forming system. Volatile, heat and metals (if not all at least part) may derive directly from underplating mafic magma.

Acknowledgements
This work was financially supported jointly by the National Basic Research Programs of China (2012CB416705, 2014CB440906), National Natural Science Foundation of China (41103023) and the National Key Research and Development Program of China (2016YFC0600207). The fieldwork was carried out with major support from the Zijin Mining Group Co. Ltd. We thank two anonymous reviewers and Chusi Li for very constructive and helpful comments which largely improved the manuscript.

References

Kendrick, M.A., Burgess, R., Pattrick, R.A., Turner, G., 2002. Hydrothermal fluid origins in a fluorite-rich Mississippi valley-type district; combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field, United Kingdom. Econ. Geol. 97, 435-451.

Smith, P.E., Evensen, N.M., York, D., Szatmari, P., Oliveira, D.C., 2001. Single-crystal 40Ar-39Ar dating of pyrite: No fool’s clock. Geology 29,

Figure captions

Figure 1. Geological map of the Zijinshan orefield, South China modified from Hu and Zhou (2012) and Zhong et al. (2014)

Figure 2. $^{40}\text{Ar}*/^{4}\text{He}$ vs. $^{3}\text{He}/^{4}\text{He}$ (R_a) of sulfides from the Zijinshan high sulfidation Cu-Au deposit and Wuziqilong Cu deposit. Symbols: red filled squares: Wuziqilong transitional Cu deposit; yellow filled circles: Zijinshan HS Cu-Au deposit. The linear correlation is obtained by least squares regression: $^{3}\text{He}/^{4}\text{He}$ (R_a) = 21.0 x $^{40}\text{Ar}*/^{4}\text{He}$ + 0.07, $r^2 = 0.69$. Error bars not displayed are concealed in the sample symbols, as follows.

Figure 3. $^{3}\text{He}/^{36}\text{Ar}$ vs. $^{40}\text{Ar}/^{36}\text{Ar}$ of sulfides from the Zijinshan high sulfidation Cu-Au deposit and Wuziqilong Cu deposit. The linear correlation is obtained by least squares regression: $^{40}\text{Ar}/^{36}\text{Ar}$ = 0.2 x 10^{-5} x $^{3}\text{He}/^{36}\text{Ar}$ + 324, $r^2 = 0.92$. Symbols as for Figure 2.

Figure 4. $^{3}\text{He}/Q$ vs. $^{4}\text{He}/^{36}\text{Ar}$ for sulfides from the Zijinshan high sulfidation Cu-Au deposit and Wuziqiulong Cu deposit. Symbols: red filled squares = Wuziqilong deposit; yellow filled squares = Zijinshan deposit; filled circles = Panasqueira arsenopyrite (Burnard and Polya, 2004); green filled circles = Ailaoshan Au deposit (Burnard et al., 1998); gray filled circle = East Pacific Rise sulfides (Turner and Stuart, 1992); pink filled circles = Iceland hydrothermal fluids (Poreda and Arnorsson, 1992); solid horizontal lines = range in $^{4}\text{He}/^{36}\text{Ar}$ of EPR vent fluids and plumes (Lupton et al., 1989; Lupton et al., 1995); box = Lucky Strike vent fluids (Jean-Baptiste et al., 1998).

Figure 5. $^{3}\text{He}/^{4}\text{He}$ vs. $\delta^{34}\text{S}$, $^{40}\text{Ar}/^{36}\text{Ar}$ vs. $\delta^{34}\text{S}$, $^{3}\text{He}/^{36}\text{Ar}$ vs. $\delta^{34}\text{S}$, and $^{4}\text{He}/^{40}\text{Ar}$ vs. $\delta^{34}\text{S}$ for sulfides from the Zijinshan high sulfidation Cu-Au deposit and Wuziqilong Cu deposit. There is a poor relationship between S and He-Ar.
isotopes, though the decrease of $\delta^{34}S$ with low $^{3}\text{He}/^{4}\text{He}$, $^{40}\text{Ar}/^{36}\text{Ar}$, $^{3}\text{He}/^{36}\text{Ar}$ and high $^{4}\text{He}/^{40}\text{Ar}$ ratios. Symbols as for Fig. 2.

Figure 6. $^{3}\text{He}/^{4}\text{He}$ of different types of ore deposits (data from Burnard et al., 1999; Burnard and Polya, 2004; Davidheiser-Kroll et al., 2014; Gautheron and Moreira, 2002; Graupner et al., 2006, 2010; Hu et al., 1998a, 1998b, 2004, 2012; Kendrick et al., 2001, 2002, 2005; Li et al., 2007, 2010; Mao and Li, 2003; Morelli et al., 2007; Pettke et al., 1997; Simmons et al., 1987; Stuart and Turner, 1992; Stuart et al., 1995; Sánchez et al., 2010; Tang et al.(in review); Wei et al., 2010; Wu et al., 2011). Most porphyry deposits have $^{3}\text{He}/^{4}\text{He}$ ratios lower than 2.5 Ra, while deposits from Zijinshan orefield have $^{3}\text{He}/^{4}\text{He}$ ratios up to 5.7 Ra. Most W-Sn deposits have $^{3}\text{He}/^{4}\text{He}$ ratios between 0.06 and 3.2 Ra, but there is an exception of Panasqueira W-Cu (Ag)-Sn deposit which has $^{3}\text{He}/^{4}\text{He}$ ratios up to 6.7 Ra. Most magmatic hydrothermal orogenic-gold deposits have $^{3}\text{He}/^{4}\text{He}$ ratios lower than 1.42 Ra, but with an exception of Dongping orogenic-gold deposit from Hebei Province, China, with $^{3}\text{He}/^{4}\text{He}$ ratios up to 5.2 Ra. Most sedimentary hosted Pb-Zn deposits (MVT) share $^{3}\text{He}/^{4}\text{He}$ ratios lower than 0.3Ra.
Table 1 He, Ar and S isotopic compositions of the sulfides from Wuziqilong and Zijinshan deposits

Sample	Mineral	Weight (g)	^4He (10$^{-8}$ cm3 STP)	^4He (10$^{-8}$ cm3 STP)	$^{3}\text{He}/^{4}\text{He}$ (Ra)	$^{40}\text{Ar}/^{36}\text{Ar}$ (10$^{-3}$)	$^{40}\text{Ar}/^{4}\text{He}$ (10$^{-3}$)	^{4}He (cm3 STP g$^{-1}$)	^{40}Ar (cm3 STP g$^{-1}$)	$^{\delta^{34}}\text{S}$ (%)	
Wuziqilong											
WZQL-1	Pyrite	0.272	18.39±0.28	16.11±0.09	5.01±0.12	385±5	3.06±0.10	196.8±8.0	6.77×10$^{-7}$	5.93×10$^{-7}$	2.88±0.02
WZQL-3	Pyrite	0.341	10.41±0.16	12.11±0.07	2.89±0.08	341±3	1.18±0.04	143.2±4.8	3.05×10$^{-7}$	3.55×10$^{-7}$	1.82±0.03
WZQL-4	Pyrite	0.214	4.82±0.07	9.29±0.05	3.99±0.10	342±7	0.98±0.04	245.4±14.1	2.25×10$^{-7}$	4.34×10$^{-7}$	1.45±0.10
WZQL-5-2	Pyrite	0.407	21.81±0.33	46.66±0.27	5.50±0.14	341±3	1.22±0.03	264.1±8.4	5.36×10$^{-7}$	1.15×10$^{-6}$	3.23±0.20
WZQL-8	Pyrite	0.277	19.81±0.30	7.09±0.04	0.87±0.02	315±7	1.06±0.04	18.2±1.0	7.14×10$^{-7}$	2.55×10$^{-7}$	-0.26±0.04
WZQL-10	Pyrite	0.186	6.26±0.10	4.81±0.03	4.99±0.15	405±26	3.65±0.33	201.5±29.3	3.37×10$^{-7}$	2.59×10$^{-7}$	0.16±0.08
WZQL-14	Pyrite	0.146	4.77±0.07	1.68±0.01	2.63±0.07	468±96	4.86±1.11	127.6±54.5	3.27×10$^{-7}$	1.15×10$^{-7}$	-0.69±0.06
Zijinshan											
ZJS-3	Pyrite	0.235	7.70±0.12	2.46±0.01	5.41±0.15	612±64	14.41±1.84	163.7±37.1	3.28×10$^{-7}$	1.05×10$^{-7}$	3.61±0.08
ZJS-4	Pyrite	0.145	257±3.95	5.62±0.03	0.16±0.01	482±20	4.87±0.32	8.30±0.8	1.78×10$^{-5}$	3.87×10$^{-7}$	3.59±0.03
ZJS-6	Pyrite	0.210	36.55±0.56	19.30±0.11	5.67±0.14	536±7	8.00±0.25	233.7±9.3	1.74×10$^{-6}$	9.21×10$^{-7}$	2.47±0.05
ZJS-36	Digenite	0.141	2.92±0.04	6.20±0.04	0.41±0.02	320±10	0.09±0.01	143.8±11.2	2.08×10$^{-7}$	4.41×10$^{-7}$	-5.83±0.02

(1) Sample weights are the <100μm fractions after crushing
(2) Errors quoted are at the 1σ confidence level
(3) $^{40}\text{Ar}^{*}$ is non-atmospheric Ar, $^{40}\text{Ar}^{*}=^{40}\text{Ar}-[^{36}\text{Ar}×298.6]$
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6