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TOY TEICHMULLER SPACES OF REAL DIMENSION 2:
THE PENTAGON AND THE PUNCTURED TRIANGLE

YUDONG CHEN, ROMAN CHERNOV, MARCO FLORES, MAXIME FORTIER BOURQUE,
SEEWOO LEE, AND BOWEN YANG

ABSTRACT. We study two 2-dimensional Teichmiiller spaces of surfaces with
boundary and marked points, namely, the pentagon and the punctured triangle.
We show that their geometry is quite different from Teichmiiller spaces of closed
surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons
with a fixed number of sides, and their geodesics diverge at most linearly.

1. INTRODUCTION

Let 2 be a connected, compact, oriented surface with (possibly empty) boundary
and let P C X be a finite (possibly empty) set of marked points. The Teichmiiller
space T (Z, P) is the set of equivalence classes of pairs (X, f) where X is a bordered
Riemann surface and f : £ — X is an orientation-preserving homeomorphism
(sometimes called a marking). Two pairs (X, f) and (Y, g) are equivalent if there
is a conformal diffeomorphism A : X — Y such that g~'ohof is isotopic to the
identity rel P. The Teichmiiller metric on 7 (Z, P) (to be defined in Section
is complete, uniquely geodesic, and homeomorphic to R¢ for some d > 0. The
dimension of 7 (X, P) is

d=6g—6+3b+2n+m+o

where g is the genus of X, b is the number of boundary components, # is the number
of interior marked points, m is the number of boundary marked points, and o is the
dimension of the space of biholomorphisms X — X isotopic to the identity rel
f(P) for any [(X, f)] in T (Z, P). This parameter ¢ is equal to

« 6 for the sphere;

4 for the sphere with 1 marked point;

3 for the disk;

2 for the torus, the sphere with 2 marked points, and the disk with 1 bound-
ary marked point;

1 for the annulus, the disk with 1 interior marked point, and the disk with
2 boundary marked points;

« 0 otherwise.

When ¢ = 0, the Teichmiiller space 7 (X, P) coincides with the space of complete
hyperbolic metrics with totally geodesic boundary on X\ P up to isometries isotopic
to the identity.
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After the pioneering work of Teichmiiller, most people working on the subject
restricted their attention to the case where the surface X is closed. One reason for
this choice is that theorems are often simpler to state and prove in this context.
Another reason is that by doubling a Riemann surface across its boundary, one
obtains a closed surface with a symmetry, and most results which are true for closed
surfaces hold automatically for surfaces with boundary via this doubling trick.

However, we feel that Teichmiiller spaces of surfaces with boundary should not
be ignored. They exhibit phenomena which are fundamentally different from the
closed surface case. Moreover, they embed isometrically inside Teichmiiller spaces
of closed surfaces via the doubling trick. Thus what happens in these spaces also
happens in spaces of closed surfaces. Finally, they serve a pedagogical purpose:
the low-dimensional Teichmiiller spaces are fairly easy to understand and illustrate
the general theory in a concrete way.

For surfaces of small topological complexity, the Teichmiiller metric can be des-
cribed explicitly. This is the case when (X, P) is:

(1) the disk with at most 3 marked points on the boundary (and none in the
interior);
(2) the disk with 1 marked point in the interior and at most 1 on the boundary;
(3) the sphere with at most 3 marked points;
(4) the disk with 4 marked points on the boundary;
(5) the disk with 1 marked point in the interior and 2 on the boundary;
(6) the disk with 2 marked points in the interior;
(7) the annulus with at most 1 marked point on the boundary;
(8) the sphere with 4 marked points;
(9) the torus with at most 1 marked point.
The Teichmiiller space 7 (X, P) is a single point in cases (1)—(3), is isometric to R
in cases (4)—(7), and is isometric to the hyperbolic plane H? with curvature —4 in
cases (8) and (9). We would like to add two entries to this list where we understand
the Teichmiiller metric at least qualitatively, namely when (Z, P) is:
(10) the disk with 5 marked points on the boundary;
(11) the disk with 1 marked point in the interior and 3 on the boundary.
We call these surfaces the pentagon and the punctured triangle respectively, and
denote them (3 and A\. Their Teichmiiller spaces are 2-dimensional, yet are quite
different from the hyperbolic plane. Note that if (Z, P) is:
(12) the annulus with 2 marked points on the same boundary component,

then 7 (Z, P) is isometric to 7 ({)) (see Subsection . Only two Teichmiiller
spaces of dimension at most 2 are missing from this list, namely when (Z, P) is:

(13) the disk with 2 marked points in the interior and 1 on the boundary;

(14) the annulus with 1 marked point on each boundary components.
The Teichmiiller spaces for (13) and (14) are isometric to one another. We hope to
return to them in later work.

Our results are as follows.

Theorem 1.1. 7 (Q)) is a nested union of convex, regular, geodesic pentagons.
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Theorem 1.2. 7 (A\) is a nested union of convex, regular, geodesic triangles.
Note the immediate consequence:
Corollary 1.3. The convex hull of any compact set in T (QY) or T (A\) is compact.

Proof. Let C be a compact set in 7 (()) or 7 (A). By the previous theorem, C
is contained in some compact convex polygon P. The (closed) convex hull of C,
being contained in P, is therefore compact. ([

Whether this property holds for Teichmiiller spaces in general is an open question
of Masur [MasQ9]].

We use these exhaustions by polygons to estimate the rate of divergence between
geodesics in 7((Y) and 7 (A). In any metric space, the divergence between two
distinct geodesic rays y; and y, with y,(0) = y,(0) = p at distance ¢ is defined as
the infimum of lengths of paths joining y,(#) and y,(¢) outside the ball of radius ¢
around p. In Euclidean space the divergence is linear in ¢ while it is exponential in
hyperpolic space. Teichmiiller spaces of closed surfaces are in some sense hybrids
between Euclidean spaces and hyperbolic spaces since they contain quasi-isometric
copies of both [Bow16]| [LS14]. In that vein, Duchin and Rafi proved in [DRO9] that
the divergence between geodesic rays is at most quadratic (and can be quadratic)
in Teichmiiller spaces of closed surfaces with marked points, when the dimension
is at least 4. In contrast, we show that divergence is at most linear in 7 (Q)) and

T(A).

Theorem 1.4. The rate of divergence between any two geodesic rays from the same
point in T(Q) or T (A) is at most linear.

Finally, we observe that 7 ((3) and 7 (A\) have the following universal property:

Theorem 1.5. 7 () and T (L) both embed isometrically in T (O), the Teichmiiller
space of the hexagon, which in turn embeds isometrically in the Teichmiiller space
T(Zg) of any closed surface of genus g > 2 (without marked points).

Unlike Teichmiiller disks, two distinct totally geodesic planes arising from such
isometric embeddings can intersect in more than one point, hence along a geodesic.
This is explained in Section [5]

Acknowledgements. This research was conducted during the 2016 Fields Under-
graduate Summer Research Program. The authors thank the Fields Institute for
providing this opportunity. MFB was partially supported by a postdoctoral research
scholarship from the Fonds de recherche du Québec — Nature et technologies.

2. PRELIMINARIES

We start by recalling standard definitions and results from Teichmiiller theory
in their most general form. We then specialize to the case of the pentagon and the
punctured triangle where many of these notions become quite simple.
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2.1. Quasiconformal maps. A K-quasiconformal diffeomorphism between bor-
dered Riemann surfaces is a diffeomorphism whose derivative at all points distorts
oriented angles by a factor at most K, or equivalently sends circles to ellipses of
eccentricity at most K and preserves orientation [AhlO6]. A K-quasiconformal
homeomorphism is a limit of a sequence of K, -quasiconformal diffeomorphisms
such that liminf K, < K.

2.2. Teichmiiller metric. The Teichmiiller distance on 7 (%, P) is defined as

a1, PV ) = inf 3 log K

where the infimum is taken over all K > 1 such that there exists a K -quasiconformal
homeomorphism 4 : X — Y with g~'oho f isotopic to the identity rel P.

From now on, we will suppress the marking f : ¥ — X from our notation. All
we need to remember is that any pair X,Y € 7 (X, P) comes with an isotopy class
of homeomorphism X — Y rel the marked points.

2.3. Quadratic differentials. A guadratic differentialon X € T (%, P) is a tensor
g which takes the form Q(z)dz? in local coordinates for some function Q which
is holomorphic except possibly at the marked points, where it is allowed to have
simple poles. Near a boundary point, if we take a coordinate chart which sends the
boundary to the real axis, then it is required that the function Q be real along the
real axis. In other words, when evaluated at vectors tangent to the boundary of X,
the tensor ¢ must return a value in R U {0 }.

Away from the singularities of ¢, the holomorphic 1-form \/E can be integrated
along arcs. On small enough simply-connected open sets this defines charts to C,
called natural coordinates, in which g becomes dz? [Str84]. These can be used
to decompose X into a union of Euclidean polygons with some sides identified
via translations or central symmetries. The polygons can actually be chosen to be
rectangles with sides parallel to the coordinate axes [Hub06, p.213], in which case
we call the decomposition a rectangular structure.

2.4. Teichmiiller’s theorem. Teichmiiller’s theorem states that for any X,Y €
T (%, P) with X # Y, the Teichmiiller distance d(X,Y) is equal to %logK for
some K-quasiconformal homeomorphism 2 : X — Y in the correct homotopy
class. Moreover, there exist quadratic differentials on X and Y with respect to
which A has derivative

£ (VF

0
0 1/VK )
in natural coordinates away from singularities.

Conversely, a quasiconformal homeomorphism 4 of the above form (called a
Teichmiiller homeomorphism) has minimal quasiconformal constant K in its ho-
motopy class. Furthermore, any K-quasiconformal homeomorphism g homotopic
to h is equal to A unless X is an annulus or a torus and P is empty, in which case
g can be equal to A post-composed with a biholomorphism of Y homotopic to the
identity [Tei1l6] [BerS8].
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As a consequence, 7 (X, P) is uniquely geodesic and the geodesic rays from a
point X are in one-to-one correspondence with the quadratic differentials of unit
area on X. Although this seems to suggest that quadratic differentials are the tan-
gent vectors to Teichmiiller space, they are really the cotangent vectors. Tangent
vectors can be represented as ellipse fields, and there is a natural bilinear pairing
between tangent and cotangent vectors.

2.5. Covering constructions. Let f : (£, P) — (I1, Q) be an orbifold covering.
This means that for every p € Z, there are neighborhoods U = pand V' 3 f(p), and
embeddings ¢ : U — R?andy : V — R?such that yo fog~! is the restriction of
aquotient map R> — R?/G where G is a finite subgroup of O(2). The pullback map
op ! TI1,Q) — T (%, P) associates to any complex structure 7 on IT a complex
structure 6 »(7) on X in such a way that f is holomorphic or anti-holomorphic away
from orbifold points with respect to those structures.

A critical point of f is a point ¢ € X such that f is not injective in any neigh-
borhood of ¢ with the following exception: if ¢ € £°, f(c) € JII, and f is 2-to-1
in a neighborhood of ¢, then c¢ is not a critical point. In other words, interior points
where f acts as the quotient by a single reflection are not critical points. The set of
critical points of f is denoted Crit(f).

The following result is folklore [MMW16, Section 6]. The special case where
the covering is assumed to be normal goes back to Teichmiiller’s original paper
[Teil6l Section 28].

Theorem 2.1. If f : (Z, P) - (I1, Q) is an orbifold covering such that
f7H0) = PuCrit(f),

then the pullback map o is an isometric embedding.

Proof. The condition f~1(Q) = P U Crit(f) implies that the lift of a Teichmiiller
homeomorphism by f is again a Teichmiiller homeomorphism. Indeed, simple
poles of quadratic differentials pullback to either simple poles at marked points or
to singularities of order > 0 at critical points. Since the quasiconformal dilatation
of the Teichmiiller homeomorphism upstairs is the same as the one downstairs,
distance is preserved. ([

An isometric embedding of Teichmiiller spaces arising in this way is known as a
covering construction. For example, there are orbifold coverings of degree 2 from:

« the quadrilateral to the once-punctured bigon;

« the annulus to the quadrilateral;

« the annulus to the twice-punctured disk;

« the torus to the four-times-punctured sphere;

« the annulus with 2 marked points on the same boundary component to the
pentagon;

« the annulus with 1 marked point on each boundary component to the twice-
punctured monogon.

All of these give rise to (surjective) isometries since the corresponding Teichmiiller
spaces have the same dimension.
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FIGURE 1. Degree two orbifold coverings giving rise to isome-
tries. The marked points are indicated in black and the critical
points in white.

Another classical example comes from doubling. Given a surface S = (I1, Q)
with nonempty boundary, its double R = (Z, P) is the union of two copies of .S, one
with each possible orientation, with the boundaries glued via the identity map. The
double R comes with an orientation-reversing involution exchanging the two copies
of S. The quotient by that involution is an orbifold covering f : R — .S without
critical points. Thus the Teichmiiller space of any surface with boundary embeds
isometrically in the Teichmiiller space of some closed surface. The pullback map
oy @ T(S) = T(R) is simply the doubling construction, but done in the category
of bordered Riemann surfaces. If S has genus g, b boundary components, » interior
marked points, and m boundary marked points, then R has genus 2g + b — 1 and
2n + m marked points. Assuming S has negative Euler characteristic, then

dim T (R) = 6Q2g+b—1)—6+22n+m) = 2(6g — 6+ 3b+2n+m) = 2dim T(S).

The same equation holds when .S has non-negative Euler characteristic.

Theorem [I.5]from the introduction is an easy consequence of Theorem 2.1} one
only has to find appropriate orbifold coverings between the corresponding surfaces.
The details are provided in Section [3]

2.6. Measured foliations. A measured foliation on a compact surface (Z, P) is a
foliation with isolated prong singularities (1-prong singularities are only allowed at
the marked points) equipped with an invariant transverse measure [FLP12| p.56].
The latter quantifies “how many” leaves of the foliation are crossing any given trans-
verse arc. For example, if g is a quadratic differential then its horizontal trajectories
(maximal arcs along which g > 0) form a measured foliation with transverse mea-
sure | Im 4/q].
A multiarc on (£, P) is an embedded 1-dimensional submanifold « of £\ P with
boundary in 0Z \ P such that
« no circle component of « bounds a disk or a once-punctured disk in X \ P;

 no arc component of & bounds a disk with only 0 or 1 marked point on 0Z;
» no two components of « are isotopic to each other in X rel P.

The first two conditions define what it means for a simple closed curve or simple
arc to be essential. A weighted multiarc is a multiarc together with a positive weight
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associated with each of its components. We generally consider (weighted) multiarcs
only up to isotopy rel P. When we want to emphasize that we are talking about the
isotopy class as opposed to a specific representative, we will write [a] for the isotopy
class of a.

Two measured foliations F and G are equivalent if i(a, F) = i(a, G) for every
connected multiarc a, where i(-, -) is the geometric intersection number. The space
MF(Z, P) of equivalence classes of measured foliations on (X, P) is given the weak
topology by considering each measured foliation F as a function on connected mul-
tiarcs via a — i(a, F). Every weighted multiarc f can be enlarged to a measured
foliation F’ 5 on (X%, P) such that i(a, f) = i(a, Fﬂ) for every connected multiarc a.
Thus the space of weighted multiarcs embeds inside the space of measured folia-
tions.

For any X € T(Z,P) and F € MF(Z, P), there exists a unique quadratic
differential g on X whose horizontal foliation is equivalent to F. Moreover, the
map F — g is a homeomorphism. This is called the Hubbard—Masur (or heights)
theorem [HM79]]. If F is a weighted multiarc, then g is called a Jenkins—Strebel
differential.

The space of projective measured foliations P MF (X, P) is defined as the quo-
tient of MF(Z, P) \ {0} by positive rescaling. We will write F for the projective
class of a measured foliation F. It follows from the Hubbard—Masur theorem that
MF(Z, P) is homeomorphic to R? and PMF(Z, P) is homeomorphic to S¢~!
where d is the dimension of 7 (Z, P).

2.7. Extremal length. There are three equivalent definitions of extremal length
for a weighted multiarc @ = Y, h; - ; on a bordered Riemann surface X € 7 (Z, P).
The first one is

2.1 EL(a, X) = (o)’
(2.1) (a, )—Sgpm

where the supremum is over all Borel-measurable conformal metrics p on X and

is the minimal weighted length of any rectifiable representative y = ). h; - y; of a.

For example, the extremal length across a Euclidean rectangle is equal to its
length divided by its height, and the extremal length around a Euclidean cylinder is
its circumference divided by its height [AhIO6l p.10]. Taking this as the definition
of the extremal length of a rectangle or cylinder, the second definition of extremal
length of a weighted multiarc is

(2.2) EL(a, X) = inf )’ h? EL(R))

where the infimum is taken over all collections {R;} of rectangles and cylinders
embedded conformally and disjointly in X with R; homotopic to «;.
The third definition of extremal length is

2.3) EL(a, X) = Area(q,)
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where g, is the quadratic differential on X whose horizontal foliation is equivalent
to a. This definition extends to all measured foliations in view of the Hubbard—
Masur theorem.

The equivalence between the three definitions is explained in [KPT15[]. See also
[AhI10] for examples, properties and applications of extremal length.

2.8. Kerckhoff’s formula. Teichmiiller distance can be expressed in terms of ex-
tremal lengths via Kerckhoff’s formula [Ker80]:
EL(F,Y

2.4) dX,Y)= sup 1 log #

FEPMF(Z,P) 2 EL(F, X)
Moreover, the supremum is realized precisely when F is the horizontal foliation
of the initial quadratic differential for the Teichmiiller homeomorphism X — Y.
Note that the supremand in 1| does not depend on the choice of F € F. Indeed,
extremal length scales quadratically in the sense that EL(AF, X) = A2EL(F, X)
for every F € MF(Z, P)and A > 0.

3. PENTAGONS

3.1. Representation. An element of 7 (()) is (an equivalence class of) a bordered
Riemann surface X homeomorphic to the closed disk together with a 5-tuple X =
(x1, Xy, ..., x5) of distinct points appearing in counter-clockwise order along d.X.
Two pairs (X, X) and (Y, y) are equivalent if there is a conformal diffeomorphism
h . X — Y such that h(xj) =Y for j = 1,...,5. We don’t need a marking from
a base topological surface here, since the labelling of the marked points provides
the same information. For convenience, the index j will be taken modulo 5 so that
S+l=1land1-1=5.

By the Riemann Mapping Theorem, every element of 7 (()) can be represented
uniquely as the closed upper half-plane HU {oo} with 5-tuple (x{, x5, 00,—1,0),
where 0 < x; < x,. In particular, we see that 7 ((3) is homeomorphic to R? via the
coordinates

(H U {00}, (X1, Xy, 00, —1,0)) > (log(x,), 1og(xy — /).

One could also represent elements of 7 ((3) with the closed unit disk, but we found
the upper half-plane to be more convenient.

From the point of view of hyperbolic geometry, 7 (()) is the space of ideal pen-
tagons in H? with labelled vertices up to isometry, or the space of right-angled
pentagons with labelled vertices up to isometry. There are other equivalent defini-
tions. For example, 7 () is the space of Euclidean pentagons with 5 prescribed
angles up to similarity.

3.2. The five axes of symmetry. The dihedral group D5 acts on 7 ((O) by permut-
ing the labels of the marked points and reversing orientation when the permutation
does so. This action is isometric with respect to the Teichmiiller metric. There are 5
special geodesics in 7 ((Y) given by the loci of fixed points of the 5 reflections in Ds.
For example, the permutation (25)(34) fixes all pentagons (X, X) which admit an
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anti-conformal involution A such that A(x) = x;, hA(x,) = x5 and h(x3) = x4. This
locus is a geodesic. Indeed, the quotient of (O by any of these reflections is an orb-
ifold covering onto a quadrilateral. Hence it gives rise to an isometric embedding
of the Teichmiiller space of quadrilaterals into 7 ((3). But the Teichmiiller space of
quadrilaterals is isometric to the real line by Grotzsch’s theorem (a special case of
Teichmiiller’s theorem). By definition, a geodesic is an isometric embedding of the
real line.

Let us denote by o, the reflection in Ds which fixes the vertex labelled j. If (X, X)
is realized as the upper half-plane with marked points (x;, x,, 00, —1,0), then the
locus y, = Fix(a,) is given by the equation x, + 1 = (x; + 1). The reason for this
is that every anti-conformal involution of HU {0} is either an inversion in a circle
centered on the real line or a reflection in a vertical line. Now, the the anti-conformal
involution realizing the permutation ¢, on (x;, x,, 00, —1,0) must fix x;, swap x,
and 0, and swap oo and —1. The involution is therefore equal to the inversion in the
circle centered at —1 passing through x;. The above equation is just the condition
that |x, — (=1)||0 = (=1)| = |x; — (=1)|2. Similarly,

« 7, = Fix(0,) has equation x(x; + 1) = (x, — x;)%

* y3 = Fix(o3) has equation x, = x; + 1;

* y4 = Fix(o,) has equation x;x, = 1 subject to x; < 1;
» vs = Fix(os) has equation (x, — x)(x; + 1) = xJ.

Let ¢ = <1 + \/g ) /2 be the golden ratio. We leave it to the reader to check

that x; = 1/¢ and x, = ¢ satisfy all of the above equations. In other words, the
regular pentagon (which is fixed by all of Ds) is conformally equivalent to the upper
half-plane with marked points (1/¢, ¢, 00, —1,0). We call this point the origin of
T (Q). The geodesics y; all intersect at the origin and this is the only intersection
point of any two of them.

3.3. Measured foliations. Measured foliations on the pentagon are of the simplest
possible kind.

Lemma 3.1. Every measured foliation of Q) is a weighted multiarc.

Proof. Let F be a measured foliation on (3. It suffices to prove that every leaf of F
is a proper arc. Suppose not, i.e., let A be a leaf of F which is recurrent to some part
of 0. Let a be a short arc transverse to F to which A returns. Starting from a, follow
Auntil it first returns to a. The region enclosed by these arcs is a disk. Doubling this
disk across the boundary, we get a measured foliation on the sphere with at most
two 1-prong singularities (where @ and A meet). But a measured foliation on the
sphere must have at least four 1-prong singularities by the Euler—Poincaré formula
[FLP12, p.58]. (]

A multiarc on (O can have either 1 or 2 components. Thus the space P MF(Q)
has the structure of a graph whose vertices correspond to essential arcs and whose
edges correspond to pairs of disjoint essential arcs (the position of a point along
an edge indicates the relative weights on the corresponding arcs). Since there are
5 essential arcs in (O and each arc is disjoint from exactly two other essential arcs,
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log(zy — 1)

72

log(21)

FIGURE 2. The five axes of symmetry of 7 (Q)) plotted in log-
coordinates.

PMF(Q) is isomorphic to a pentagon. We use the following notation for the es-
sential arcs in (. For each j € {1,2,3,4,5}, the arc «; is the one which separates
the vertex labelled j and its two neighbors in d(Q) from the other two vertices (see
Figure E[) Equivalently, a; is the isotopy class of essential arc which is sent to itself
by o;.

® 8 @

FIGURE 3. PMF(Q) = . In each small pentagon, the bottom
left corner is the vertex labelled 1 and the remaining vertices are
labelled in counterclockwise order.

3.4. Quadratic differentials. Similarly, quadratic differentials and the rectangular
structures they induce on the pentagon are easy to describe geometrically.

Lemma 3.2. Every rectangular structure on Q is a (possibly degenerate) L-shape.
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Proof. Let g be a quadratic differential on H U {co0} with marked points at X1, Xo,
o0, —1 and 0. Recall that g has at most simple poles at the marked points. Since
q is real along R, it extends to a quadratic differential on C which is symmetric
about the real axis. By the Euler—Poincaré formula (or by considering the quadratic
differential d z>, which has a pole of order 4 at infinity), the degree of the divisor of
qis —4.

If g has exactly 4 simple poles, then it has no other singularities and the corre-
sponding rectangular structure is a rectangle. This is because the sign of ¢ along
R changes exactly at the poles, so the image of H U {0} under the natural coordi-
nate for g is a polygon with 4 sides which are alternatingly horizontal and vertical.
Note that the rectangle has one marked point along one of its sides. We call this a
degenerate L-shape.

Otherwise, ¢ has a simple pole at each of the 5 marked points as well as 1 simple
zero. Since the zeros of g are symmetric about the real axis, its only zero must be
on the real line. Therefore the natural coordinate z — /l.z \/5 is globally defined

on HU {oo}. Its image is an immersed polygon with sides parallel to the axes,
5 corners of angle z /2 (corresponding to the poles) and 1 corner of angle 3z /2
(corresponding to the zero). Any such polygon is actually embedded, and looks
like the letter L up to reflections in the coordinate axes. U

=

FIGURE 4. An L-shape and a degenerate L-shape.

3.5. Parametrizing the axes. We parametrize each of the 5 geodesics y; by ar-
clength with yj(O) equal to the origin. It remains to orient them. Since Yj is fixed
pointwise by the reflection o;, the horizontal and vertical foliations for its defin-
ing quadratic differential are also fixed by o;. Up to scaling, there are only two
measured foliations invariant by ¢;, namely «; and a;_; + a;,;. We orient y; by
declaring that a;_; + &, is the horizontal foliation and «; is the vertical foliation
for the quadratic differential. This way, a; gets pinched along y; in the sense that
EL(a;,7;() — 0ast — +oo.

The origin splits the 5 geodesics y; into 10 rays yji, and their order of appearance
around the origin is the same as the order of appearance of their vertical foliation in
PMF(Q). This implies that y]+ is followed by o then y;“ , and so on (see Figure
[3). In other words, the geodesics appear in sequential order around the origin but
with alternating orientation.

3.6. Half-planes. We define an open half-plane in T (()) to be either connected
components of the complement of a geodesic. A closed half-plane is the closure of
an open half-plane, i.e., an open half-plane together with its defining geodesic.

Lemma 3.3. Closed half-planes are convex.
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o N @

FIGURE 5. The cyclic order and orientation of the axes of sym-
metry in 7(Q)). The backward direction of each axis is dashed.
PMF(Q) is drawn to indicate the projective class of the vertical
foliation for each ray. This is intended only as a visual guide; it
does not correspond to a compactification of 7 (()).

Proof. Suppose that a closed half-plane H is not convex. Then there is a geodesic
segment [x, y] with endpoints in H which is not contained in H. Consider a max-
imal subinterval (z, w) C [x, y] which is contained in the complement of H. Then
z and w belong to 0 H by maximality. Since dH is a geodesic and the geodesic
between any two points is unique, the segment [z, w] is contained in 0H C H,
which is a contradiction. ([

3.7. Pentagons in the space of pentagons. For any ¢+ > 0, we define P, to be
the geodesic pentagon with vertices y(¥), y3(¢), y5(?), yo(2), v4(t) together with the
region it bounds. More precisely,

5
P=H®
j=1

where HY(t) is the closed half-plane bounded by the geodesic through v;() and
¥j+2(1) which contains the origin.

Lemma 3.4. P, is convex for any t > 0.
Proof. P, is the intersection of 5 closed half-planes each of which is convex. U
Lemma 3.5. If0 < s <t, then P, C P,

Proof. First observe that the vertices of P, are contained in P,. Since P; is the
convex hull of its vertices and P, is convex, the inclusion follows. ]

By construction, P, is also regular since D5 acts on it by isometries in a faithful
manner. The only part of Theorem left to prove is that 7 () = J,»o P-
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3.8. Symmetric geodesics. In order to prove that the pentagons P, exhaust 7 (D),
we will shift our point of view slightly. We need to better understand the geodesics
that form the sides of P,. What can we say about the geodesic through y,(f) and y5(¢)
for example? What do the underlying rectangular structures look like? To answer
this, observe that the isometry of 7 () induced by the permutation ¢, switches
the points y,(#) and y5(¢). Therefore it sends the geodesic through y, () and y5(¢) to
itself in an orientation-reversing manner, thereby fixing the midpoint of the segment
[¥2(2), ¥s(®)].

We will say that a geodesic which is sent to itself in an orientation-reversing
manner by o is symmetric about y;. It is interesting to note that the geodesics
symmetric about y; foliate 7 (). This is analogous to the existence and uniqueness
of perpendiculars in the Euclidean plane and the hyperbolic plane.

Lemma 3.6. For any x € T (Q), there exists a unique geodesic through x which is
symmetric about y,.

Proof. First assume that x does not belong to the axis of reflection y,. Then ¢,(x) #
x and the geodesic through these two points is sent to itself in an orientation-
reversing manner by o,. Conversely, if # is a geodesic containing x and o;() = 7,
then # contains o (x), which proves uniqueness.

Now suppose that x € y;. Consider a non-zero tangent vector v to y; at x. The
space of quadratic differentials g on x which pair trivially with v is 1-dimensional.
Let g # 0 be such a quadratic differential. Since o fixes v and preserves the pairing
between tangent and cotangent vectors, it sends g to a quadratic differential of the
same norm which pairs trivially with v yet is different from g, i.e., to —q. Thus o
sends the geodesic cotangent to g to the geodesic cotangent to —g, that is, to itself
in an orientation-reversing manner.

Conversely, let 7 be a geodesic through x which is symmetric about y; and let g
be its unit cotangent vector at x. Then ¢, sends g to —g while it fixes v. Since o, is
an isometry, it preserves the pairing between tangent and cotangent vectors, so that

(v.g) =(v.—q) = (v.q)=0.

As we observed before, the orthogonal complement vt is 1-dimensional, which
means that g is determined up to a scalar and that # is unique. U

Actually, the geodesics symmetric about y,; can be described explicitly. For any
a > 0, consider the L-shape ®, with vertices at 0, (1+a), (14+a)+i, 1 +i, 1+(1+a)i
and (1 + a)i where all vertices except 1 + i are marked and the first marked point
is the origin (see Figure[6). Let R be the reflection about the line y = x. Observe
that R(®,) = @, and that R acts as the permutation o; = (25)(34) on the marked
points. Thus @, represents a point on y;. More generally, for any ¢t € R we have

(0 2)2)-(5 9o

meaning that Teichmiiller flow followed by reflection is the same as negative Teich-
miiller flow. In particular, the Teichmiiller geodesic 7, = {g,®, | t € R} cotangent
to @, is sent to itself in an orientation-reversing manner by o;.
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FIGURE 6. The symmetric L-shape ®, and an embedded circular
rectangle homotopic to a;.

Remark. The geodesic #, ;4 was used in [FBR16] to prove the existence of a non-
convex ball in 7 (). The proof presented there implies that some ball B centered
on y; is such that a segment of 7, ,, symmetric about y; has its endpoints in B but
its midpoint @, , outside B. However, the ball B could have very large radius a
priori. In the course of this project, we found numerical evidence suggesting that
there is a non-convex ball of radius less than 1.

We now show that every geodesic symmetric about y, is of this form.
Proposition 3.7. Any geodesic symmetric about y| is equal to n, for a unique a > Q.

Proof. We already observed that 7, is symmetric about y; forany a > 0. If ris a
geodesic symmetric about y,, then it intersects y; at some point x. By uniqueness
of the symmetric geodesic through x, it suffices to prove that x € 7, for a unique
a > 0. In other words, we have to show that the map a = ®, from (0, o0) to y; is a
bijection.

Observe that y,(¢) can be represented by a rectangle of length e’ / \/% and height

coe”" with vertex x; in the middle of the left side, where ¢, = EL(«a/,7;(0)).
Indeed, this describes a Teichmiiller geodesic fixed pointwise by o;. In particular,
the map y,(t) = EL(a;,7,(t)) = cye~? is a bijection from y, to (0, ). Thus in
order to prove the above statement, it suffices to show that the map

a v~ EL(a,D,)
is a bijection of (0, co) onto itself.
If0 < a < b, then ®, C ®,. Let g be the quadratic differential on @, realizing

the extremal length of @, and let p = 1/|q| be the corresponding conformal metric.
We extend p to a conformal metric p on @, by setting it to be 0 on @, \ ®,. Every
arc homotopic to @; on @, contains a subarc homotopic to «; on ®, so that

Clearly, p'is not the extremal metric on ®, hence
5l (¢, 1)’

Area(p)  Area(p) = EL(@, ©,)-

EL(a,;, ®,) >
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This shows that extremal length is monotone in a.
It remains to prove surjectivity. For 0 < a < — the L-shape ®, contains a

V-1
quarter of an annulus centered at (1 + a) + (1 + a)i with inner radius a\/i and outer
radius (1 + a) (see Figure @ The extremal length around this circular strip is equal
to
/2
log(1 + a) — log(aV/2)

which is an upper bound for EL(a;, ®,). This implies that EL(a;,®,) — 0 as
a — 0. On the other hand, the Euclidean metric p on @, gives the lower bound

(2a)*
14 2a
which tends to infinity with a. By continuity, every positive value is attained. [

EL(a;, ®,) >

© S @

FIGURE 7. T (Q)) is foliated by geodesics #, symmetric about y,.
The projective horizontal and vertical foliations for #, are a, + aa,
and a3 + aas respectively.

Let U, be the closed half-plane bounded by #, which points towards yi* . By
Lemma [3.6 and Proposition [3.7] these half-planes exhaust 7 () as @ /' co. Simi-
larly, the sets

5
0, =)W
j=1

exhaust 7(Q)) as a /* co. This almost implies what we want. The issue here is that
a priori Q, could be non-compact for large a, as would happen in the hyperbolic
plane for example. What we need to show is that each side of Q, intersects its
neighbors and hence that Q, is equal to P, for some ¢ > 0, provided that a is large
enough so that Q,, is not empty. Figure [/|suggests the proof: the projective classes
of the horizontal and vertical foliations for #, are linked with those of o5(y,) in
PMF(Q), forcing 1, and o5(#,) to intersect.
In order to make that argument rigorous, one needs to put a topology on

T(Q) UPMF(Q)
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in which the closure of #, disconnects the endpoints of ¢5(77,). Thurston’s compac-
tification [[FLP12| p.118] —which is homeomorphic to a closed disc— does the job.
By Lemma 3.1]every geodesic ray in 7 (()) is Jenkins—Strebel, hence converges in
Thurston’s boundary to the vertex corresponding to its vertical foliation or to the
center of the open edge containing its vertical foliation [Mas82|]. In particular, the
geodesics 7, all converge to a4 + a, in the backward direction and to a3 + a5 in the
forward direction, while o5(#,) converges to a; + a3 and a, + as.

We will give another proof that 5, intersects o5(,) which yields more informa-
tion such as estimates on the lengths of the sides of Q,. Observe that 7, intersects
o5(n,) if and only if #, intersects y5, and this is what we will show. To do this, we
will characterize y5 as the set of solutions to an equation involving extremal length
and then use the intermediate value theorem.

3.9. Equal extremal lengths implies symmetry. Recall that a5 is the arc in O
which separates the vertices 4, 5, 1 from 2 and 3. By conformal invariance of
extremal length, if X € y5 then

EL(a;, X) = EL(ay, X)
as o5 permutes the arcs @; and @,. The converse is also true.

Lemma 3.8. Let X € T(Q). Suppose that EL(a;, X) = EL(ay, X). Then X € ys,
i.e., X admits an anti-conformal involution fixing the vertex xs.

Proof. Map X conformally onto a rectangle in such a way that the vertex x5 is
on a side and the other vertices are at the corners of the rectangle. Suppose that
the segment [x,, xs] is strictly shorter than [xs, x;]. Then the topological quadri-
lateral joining [x4, Xs] to [x,, x3] embeds conformally in (and is different from)
the quadrilateral joining [xs, x;] to [x,, x3]. To see this, simply reflect about the
perpendicular bisector of [x4, x;]. By monotonicity of extremal length, this implies
that EL(a;, X) > EL(ay4, X) which is a contradiction. As the argument is symme-
tric in x; and x,, the vertex x5 must lie in the middle of its side. The reflection
of the rectangle about the perpendicular bisector of [x4, x;] is an anti-conformal
involution of X fixing xs. U

3.10. Extremal length estimates. By the previous subsection, y5 is the locus of
points X in 7 () such that EL(a,, X) = EL(a,, X). Recall also that

rla = {gt(ba | t e R}
where g, is the diagonal matrix ( %t 69,
of length a. Note that g,®, is conformally equivalent to h,®, where h, = (eé' ‘1)) .
We will use this rescaling when convenient for calculations.

) and @, is the symmetric L-shape with legs

Proposition 3.9. If a > 2, then n, intersects ys. More precisely, g,®, belongs to ys
for some t € [0,log(1 + a)].

We break down the proof into several lemmata. The main idea is that at t = 0 we
have EL(«;, g,®,) > EL(ay, g,®,) while the inequality is reversed at t = log(1 +a).
By the intermediate value theorem, equality occurs somewhere in between.
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Lemma 3.10. For every a > 0, we have

4a?
EL(a;,®,) > .
@-%) 2 77,
Proof. Use the first definition of extremal length with the Euclidean metric on ®,
(see the proof of Proposition [3.7). O

Lemma 3.11. For every a > 0, we have
EL(ay,®,) <1+a.

Proof. There is a horizontal rectangle of length 1 + a and height a embedded in the
homotopy class of ay. U

Corollary 3.12. Ifa > 3+4—\/ﬁ then EL(a;, ®,) > EL(ay, ®,).

Proof. The condition implies

4q?
>1 .
1+2a ™~ ta

The conclusion follows from the previous lemmata. ([
Lemma 3.13. For every a > 0 and t > 0, we have
EL(a;,g®,) < 1 +a+e¥a.

Proof. Let K = e, Let T be the family of all essential arcs in (O which intersect
every representative of a;. As a set we have I' = a, U as. This should not be
confused with a, 4+ a5: each element of I is a single arc, not a multiarc. By duality
of extremal length for rectangles,

1 1
EL(, g®,) ELT,h,®,)

Consider the metric p which is defined to be |dz| at points in #,®, with real part
bigger than (K — 1) and 0 elsewhere. In other words, p is the Euclidean metric on
h,®, but with a (K — 1) X (1 + a) rectangle cut off on the left. The distance across
the leftover region (from the two upper-right sides to the two lower-left sides) is at
least 1, while its area is equal to 1 + a + Ka. This shows that

EL(ay, g,®,) =

1

l1+a+ Ka
from which the conclusion follows. |

EL(T, h,®,) >

Lemma 3.14. For every a > 0 and t > 0, we have
1

EL(ay,®) > ¢ (—— +a).

(4. £Po) 2 ¢ 1+a ¢

Proof. Let K = ¢ Consider the metric p on h,®, which is equal to |dz|/(1 + a)
on [0,K] X [0,1+ a] and |dz| on (K, K(1 + a)] X [0, 1]. This choice comes from
the series law for extremal length: a, crosses the previous two rectangles, hence its
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FIGURE 8. The conformal metric p in the proof of Lemrnais
equal to the Euclidean metric on the shaded region and zero else-
where. Every arc in the family I" has length at least 1 with respect
to p. The extremal length of a, is the reciprocal of the extremal
length of T".

extremal length is at least the sum of theirs. Indeed, p has area K (ﬁ + a) and

the p-length of any arc y homotopic to a, is at least K <ﬁ + a). Thus

€ ()
— +a

1+a

EL(ay, ®,) = EL(ay, h,®,) > — ¢/ _ g (1 L, a). O
K (ﬁ +a> ta

Corollary 3.15. Ifa > 0 and t > log(1 + a), then EL(«a,, g,®,) < EL(ay, g,®P,).

Proof. The condition on ¢ implies that

1+a+e2’aSe2t( ! +a)
1+4+a
which gives the desired result in view of the preceding lemmata. ([

As indicated earlier, Proposition [3.9] follows from Lemma Corollary
Corollary[3.15]and the intermediate value theorem. By symmetry, 7, also intersects
7, = 0(y5) provided that a > 2. Therefore the convex set Q,, coincides with P, for
some ¢ > 0, and this concludes the proof of Theorem [I.1]

3.11. Inner and outer radii. It follows from Proposition[3.9|that the pentagon Q,,
has perimeter at most 101log(1 + a). We also want to estimate the inner and outer
radii of Q, with respect to the origin.

Lemma 3.16. There exists a constant C; > 0 such that for every a > 0, the penta-
gon Q, contains a ball of radius % log a — C| around the origin.

Proof. Denote the origin by X,,. By taking C larger than % log 2, we may assume
that @ > 2. In view of Proposition it suffices to show that d(X,, g,®,) >
% loga — C, for every t € [0,log(1 + a)]. By Kerckhoft’s formula ti we have

ElL(a;, g,®
d(X,y,g,®,) > 1 log M
2 ¢ EL(a;, X,)
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Let K = e?t. Using the Euclidean metric on h,®,, we estimate
(a+Kay’> (K +1)%d? S 4q?
K(1+2a) K(1+42a) ~ 1+2a

where we used the inequalities (K + 1)2 > 4K and 3a > 1 +2a. The result follows
by taking

EL(ay, g,®,) = EL(ay, h,®,) >

Zia
3

3EL(ay, X,

-2 4
Lemma 3.17. There exists a constant C, > 0 such that for every a > 0, the penta-
gon Q, is contained in a ball of radius log a + C, around the origin.

Proof. Since Q, C Q, if a < b, we may assume that a > 2. Once again, it suffices
to bound d (X, g,P,) from above for ¢ € [0, log(1 + a)]. By the triangle inequality,

d(X()a gtq)a) < d(XO’ q)a) + d(q)a’ gtq)a) < d(XO’ q)a) +1 < d(XO’ q)a) + log(l + a)-
Since @, is on the ray y, we have the equality

d(X.®,) = L 1og 2@ Po)
%) = 5 O B, X,)

in Kerckhoff’s formula. According to Lemma|3.13| EL(a;, ®,) < 14+2a. The result
follows by combining the above inequalities with (1 + a) < 2a and (1 + 2a) < 3a
(recall that a > 2). U

Corollary 3.18. There exits a constant C3 > 0 such that for every t > Cs, the
pentagon Q, with a = e8/3 contains the ball of radius t around the origin and is
contained in the ball of radius 3t around the origin.

Proof. If t is large enough then

ts%—q:%loga—cl and 10ga+C2=%+C2§3t
where C; and C, are the constants from Lemma [3.16|and Lemma [3.17] The result
follows from these. O

3.12. Linear divergence. Given two geodesic rays # and v starting from the same
point p in 7 (), the divergence div(y, v, ?) is defined as the distance between #(t)
and v(¢) as measured along paths disjoint from the open ball of radius 7 centered at
p. We can now prove that rays from the origin diverge at most linearly.

Proposition 3.19. There exists a constant C > 0 such that for any two geodesic
rays n and v starting from the origin in T (Q)) and any t > 0 we have

div(n, v,1) < 18t + C.

Proof. By adjusting the constant C if necessary, it is enough to prove the inequality
for ¢ large. Assume that + > Cj, the constant given in Corollary 3.18] Then the
pentagon Q, with a = ¢%/3 contains the ball of radius ¢ around the origin, and is
contained in the ball of radius 3.

We construct a path from #(¢) to v(¥) as follows. From #(#) we continue along the
same ray to reach Q,, then go around 0Q,, to the intersection x between v and 90,
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on the shortest of the two sides, then back to v(¢) along v. The constructed path has
length at most twice the difference between the outer and inner radius of Q, plus
half the perimeter of Q,. This gives an upper bound of

4t + 51log(1 + €¥/%) < 41 + % +log2 = % +log2 <18t +1log2. O

Using the triangle inequality, it is not hard to deduce that a similar estimate holds
for rays starting from any point, which is the content of Theorem [1.4] for 7 (Q)).

Corollary 3.20. For any p € T (Q), there exists a constant D > O such that for
any geodesic rays n and v from p and any t > 0 we have

div(y,v,t) < 18t + D.

Proof. Let X, be the origin of 7(()) and let b = d(X,,, p). We will show that the
result holds with D = 22b + C where C is the constant from Proposition By
the triangle inequality we have

t—b<dXyn)<t+b

and similarly for v(¢). It follows from the intermediate value theorem that there
exists some s € [t,7 + 2b] such that d(X,, n(s)) =t + b and some s’ € [t,1 + 2b]
such that d(X, v(s")) =t + b.

We can now construct an efficient path between #(¢) and v(¢). From #(t), we
follow 7 to 5(s). By Proposition[3.19] there is a path of length at most 18(¢ +b)+C
between 7(s) and v(s”) which is disjoint from the ball B(X,, + b), hence disjoint
from B(p,1). We complete the path by following v from v(s’) to v(). The total
length is at most

2b+ (18(t + b) + C) + 2b = 18t + D. O

Presumably, the dependence of the constant D on the point p can be removed
(cf. [DRQ9]), but this does not seem to follow from our methods.

Since every geodesic ray in 7 (()) is Jenkins-Strebel, a result of Masur [Mas75]]
implies that two geodesic rays in 7 (()) stay a bounded distance apart if and only if
their vertical foliations are topologically equivalent (see also [Amal4]). This con-
dition means that if we forget the weights, then the underlying multiarc is the same.
Said differently, two rays in 7 (()) stay a bounded distance apart if and only if their
projective vertical foliations either correspond to the same vertex or lie in the same
open edge of PMF(()). Thus the divergence is often sublinear.

4. PUNCTURED TRIANGLES

We prove similar results for the Teichmiiller space 7 (A\) of punctured triangles.

4.1. Representation. An element of 7(A\) is (an equivalence class of) a bor-
dered Riemann surface X homeomorphic to the closed disk together with a 4-
tuple (xg, x;, X,, x3) where x, € X° and x;, x, and x5 are distinct and appear
in counter-clockwise order along 0 X. Two pairs (X, X) and (Y, y) are equivalent if
there is a conformal diffeomorphism 4 : X — Y such that A(x;) = Yy for every
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Jj €1{0,1,2,3}. Again, the labelling of distinguished points plays the same role as
amarking A — X.

By the Riemann Mapping Theorem, every element of 7 (/) can be represented
uniquely as the closed unit disk D with Xo €D, x; =1, x, = ¥/3and x3 =
e**/3, With this normalization, x, € D is the only parameter. Hence T (A) is
homeomorphic to D or R2.

4.2. The three axes of symmetry. The dihedral group D5 acts on 7 (A\) by per-
muting the labels of the boundary marked points and reversing orientation when
the permutation does so. This action is isometric with respect to the Teichmiiller
metric. Let o; = (23), 0, = (13) and o3 = (12). The locus Y of fixed points of o;
is a geodesic since the quotient of A\ by & ; 18 a quadrilateral. If (X, X) is realized
as the closed unit disk with marked points (x,, X, X5, X3) = (X, 1, >7/3, e47/3),
then y; is the intersection of the straight line through 0 and x; with D. The most
symmetric configuration is when x, = 0; we call this point the origin of T (A).

4.3. Measured foliations. All measured foliations on the punctured triangle are
tame, just like on the pentagon.

Lemma 4.1. Every measured foliation on A\ is a weighted multiarc.

Proof. Let F be a measured foliation on A\. It suffices to prove that every leaf of
F is a proper arc. Suppose not and let A be a leaf of F' which is recurrent to some
part of A\. Let a be a short arc transverse to F to which A returns. Starting from «,
follow A until it first returns to a. The region enclosed by these arcs is a disk that
possibly includes the interior marked point of A\. By doubling this disk across the
boundary, we get a measured foliation G on the sphere with at most four 1-prong
singularities: at the two intersection points of @ and A as well as at the interior
marked point and its mirror image in the double. By the Euler—Poincaré formula,
G has exactly four 1-prong singularities and no other singularities. This implies
that A intersect @ from the same side at the two intersection points, for otherwise
one of these intersection points would form a 3-prong singularity in the double. But
this argument applies to all intersection points between A and a, which means that
they intersect only twice. Indeed, the next intersection would have to be from the
other side of a. This contradicts the hypothesis that A is recurrent. ([

There are two types of essential arcs in A\. There are those which separate two
boundary marked points from the other two marked points, and those which sepa-
rate the interior marked point from the 3 boundary ones. We label the former ones
by a; and the latter ones by f; in such a way that each of a; and f; is preserved
by the reflection o; (see Figure . Thought of as the arc graph, PMF(A) is an
hexagon with a bicoloring of its vertices. Indeed, the vertices «; and the vertices
p; form disjoint orbits under the action of the extended mapping class group Ds.

4.4. Quadratic differentials.

Lemma 4.2. Every rectangular structure on A\ is either a rectangle or an L-shape
with one of its horizontal segments folded in two.
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FIGURE 9. The disk bounded by « and 4 in the proof of Lemma
M.1] The situation on the left is forbidden by the Euler—Poincaré
formula; it would force a singularity of index —2 at the interior
marked point.

FIGURE 10. PMF(A) is an hexagon with D symmetry and two
types of vertices. In each small triangle, the bottom left vertex is
labelled 1 and the other vertices are labelled in counterclockwise
order.

Proof. Let q be a quadratic differential on X € T (A\). It is easy to see that ¢ must
have a simple pole at the interior marked point x,,. Indeed, g extends by symmetry to
the double X of X, whichis a sphere with 5 points marked. If ¢ did not have a pole
at x, its extension g would have at most 3 simple poles. The latter is forbidden
by the Euler—Poincaré formula. Cut X along the horizontal trajectory A from x
and call the resulting surface Y. Note that x; does not need to be marked in Y,
as it unfolds to a regular boundary point (the total angle around it is 7). However,
the other endpoint of 4 on 0X corresponds to 2 points in Y which we both mark.
Thus Y is a disk with 4 or 5 boundary marked points (depending on whether A ends
at a marked point of X or not) equipped with a rectangular structure. The only
rectangular structures on quadrilaterals are rectangles, while rectangular structures
on pentagons are L-shapes by Lemma [3.2] Since two of the marked points of Y
must match after folding a horizontal side, one of them must be folded exactly in
two. In the case of a non-degenerate L-shape, the folded side must be the top or
bottom one, as the inward corner is not marked. O
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Shl=

FIGURE 11. Some examples of rectangular structures on the punc-
tured triangle.

4.5. Symmetric geodesics. The exact same argument as in Lemma [3.6|applies to
the current situation: 7 (A\) is foliated by geodesics symmetric about y;. Moreover,
the symmetric geodesics can be described explicitly.

Given a € (0, 1), let @, be the convex hull of the points 0, 1, 1 + ia, a + i and
i in C with the side [1 + ia, a + i] glued to itself via the central symmetry at its
midpoint. The resulting object is a quadratic differential on a punctured triangle
X, € T(A) with marked points xo = 3(1+ a)(1 + 1), x; = 0, x, = L and x; = i.
A simple cut-and-paste procedure transforms @, into an L-shape with a horizontal
side folded in two (see Figure [I2). The advantage of the above representation is
that it is symmetric with respect to the reflection R in the line y = x, which realizes
the permutation o on the marked points. This implies that X, € y, and that the
geodesic n, = {g,®, | t € R} is symmetric about y,. Observe that the horizontal
and vertical foliations of @, are equal to aaz + %ﬂz and aa, + 1;—aﬁ3 respectively.

z3 a

FIGURE 12. A surgery which turns @, into an L-shape with a hor-
izontal side folded in two.

Proposition 4.3. Any geodesic symmetric about y, in T(A) is equal to n, for a
unique a > Q.

Proof. Any geodesic symmetric about y; intersects y; at some point x. Moreover,
there is a unique geodesic symmetric about y; through x. Thus we have to show
that one of the geodesics #, passes through x. In other words, we have to show that
the map a — @, is a bijection from (0, 1) to y;.

Any point on y; can be represented as a rectangle of unit area with vertical sides
[xq, x’l] and [x,, x3], with x; the midpoint of [x,, x’l] and that side folded in two.
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This rectangular structure is the Jenkins—Strebel differential for «; at the corre-
sponding point. In particular, the map

71() = EL(ay, 7,(#) = cpe™

is a bijection. Therefore, it suffices to prove that the map a —» EL(a,®,) is a
bijection.
If a < b, then there is a conformal embedding ®, < @, obtained by applying a

homothety of factor i%’ centered at 0. This conformal embedding sends xg to x and

maps the sides [x?, x3] and [x?, x}] into the corresponding sides of ®,. Thus every
arc homotopic to @; in @, maps to an arc homotopic to a; in @,. By monotonicity
of extremal length under conformal embeddings, we have EL(a, ®,) < EL(a, ®,)

so that the above map is injective. It remains to prove surjectivity.

b a

7

FIGURE 13. If a < b, there is a conformal embedding ®, — ®,
which sends all arcs homotopic to a; on @, to arcs homotopic to
a;on®,.

Given a € (0, 1), consider the quarter annulus
A,={z€eC : 1-a<|z-(1Q4+)|<1}nd,.
Every arc homotopic to a; in @, has to cross A, twice (see Figure[T4). Thus
4log(1/(1 —
EL(ay, ®,) > 22 EL(across A,) = W
7

tends to +co asa — 1.
Next consider

Ba={zeC D a 2<|z—(1+a)|<a\/5+(1_a)}ncpa
V2

and its mirror image R(B,) about the diagonal y = x (see Figure[T4). These two
annuli sectors glue together to form a quarter annulus C, = B, U R(B,) in ®,.
Every concentric circular arc in C, is homotopic to a; so that

/2

1-a
log <1 + Z)

tends to 0 as a — 0. By continuity, EL(a;, ®,) achieves every positive value. [J

EL(a, ®,) < EL(around C,) =
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FIGURE 14. The sectors of annuli used to bound EL(ay, ®,).

Let U, be the closed half-plane bounded by 7, which contains the origin and let

3
0, =)W,
j=1
It follows from the proof of Proposition that U, D U, and hence Q, D Q,
if 0 < a < b, provided that b is small enough (when b passes the value q for
which @, coincides with the origin, the orientation of the half-plane U, changes).
Moreover,
T = o,
ag(0,1)

since the geodesics #, foliate the space. By construction, Q,, is convex and has D5
symmetry. It remains to prove that Q, is compact, i.e., that 7, intersects y3.

4.6. Equal extremal lengths implies symmetry. We characterize the geodesic y;
in terms of equality of extremal lengths.

Lemma 4.4. Let X € T(A). The following are equivalent:

o X belongs to ys;
» EL(a;, X) = EL(a,, X);
 EL(f;, X) = EL(f},, X).

Proof. Suppose that X € y;. Then there is an anti-conformal involution of X
realizing the permutation o3 = (12) on the marked points. Since o3(a;) = aj,
o3(f;) = P, and extremal length is invariant under anti-conformal diffeomorphisms,
we have EL(a;, X) = EL(a,, X) and EL(f;, X) = EL(f,, X).

Next, we show that if X is not on y3, then the extremal lengths of «; and a, are
different, and similarly for #; and f,. To see this, map X conformally onto the unit
disk is such a way that x; = 0. Let L be the perpendicular bisector of the chord
[x;,x,] and let R; be the reflection in that line. Since X & y;, the point x5 does
not lie on L. Suppose that x5 is closer to x; than x,. Then the embedded rectangle
U of smallest extremal length homotopic to @; maps under R; to a rectangle of
the same extremal length homotopic to @,. Moreover, R; (U) is not extremal for a,
because its side contained in the circular arc from x, to x5 is properly contained in
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that arc. Thus
EL(a;, X) = EL(U) = EL(R; (U)) > EL(a,, X).

Similarly, the embedded rectangle V' of smallest extremal length homotopic to f,
maps under R; to a rectangle homotopic to ; which is not extremal, so that

EL(f,. X) = EL(V) = EL(R (V) > EL(4, X).
If x, is closer to x5 instead, the inequalities are reversed. ]

Of course, the statement still holds if the indices 1, 2 and 3 are permuted arbi-
trarily.

4.7. Extremal length estimates. We are ready to prove that the geodesics #, and
75 intersect if a is small enough.

Proposition 4.5. If a € (0 ), then n, intersects y3. More precisely, g,®,

1
? 2em/2-]
belongs to y5 for some t € [0, % log %]

There are four inequalities to prove.
Lemma 4.6. For every a € (0, 1), we have
/2
log <1 + 12;;)
Proof. See the proof of Proposition 4.3] O

EL(ay, ®,) <

Lemma 4.7. For every a € (0, 1), we have

EL(ay, ®,) > g1og<1 + 1'“).
4 2a

Proof. Every representative of a, intersects every representative of @; at least once.
Thus every representative of a, has to cross the quarter annulus C, defined in the
proof of Proposition #.3] Hence

log <1 + l;—;)
EL(a,, ®,) > EL(across C,) = ——————.
/2
This is an instance of the inequality
EL(F, X)EL(G, X) > i(F,G)?
due to Minsky [Min93]. O

The next corollary follows immediately.

Corollary 4.8. Ifa € (0 1 ) then EL(a;, ®,) < EL(a,, ®,).

> 2em/2—1
We then show that the reverse inequality holds for f large enough.
Lemma 4.9. Foreverya € (0,1) andt € R we have
EL(a;, g,®,) > ea.
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Proof. Every arc homotopic to ; in g,®,, has to cross the rectangle [0, e’a] X [0, e~’]
horizontally, so the extremal length of a; is at least the extremal length of that
rectangle. U

Lemma 4.10. For every a € (0,1) and t € R we have

1
EL((X2,gt(I)a) S T
e’a
Proof. The vertical segments in [0, e’a] X [0, e™'] are homotopic to @, so the ex-
tremal length of @, is bounded above by the (vertical) extremal length of that rec-
tangle. ([

We get obtain the following as a consequence.
Corollary 4.11. Ifa € (0,1) and t > 3 log <, then EL(a;, g,®,) > EL(a,, g,®,).

In turn, the two corollaries imply that 7, intersects y;.

. 1
Proof of Proposition|d.5] If a € (0, m) then EL(«,, g,®,) < EL(a,, g®,) at

t = 0, while the inequality is reversed at t = % log % By the intermediate value theo-

rem, the equality EL(e(, g,®,) = EL(a,, g,®,) occurs for some ¢t € [O, : log i]
By Lemma[4.4] equality of extremal lengths implies g,®, € 75.

Since 7, intersects ys, it also intersects o5(#,) at the same point. By applying
o, we see that o(,) = n, intersects ¢,05(1n,) = 6,030,(1,) = 0,(1,). Similarly,
o,(n,) and o3(n,) intersect. Thus the intersection Q, of the corresponding half-
planes U,, 6,(U,) and 03(U,) containing the origin is a geodesic triangle. This,
together with the remarks at the end of subsection[d.5] completes the proof of The-
orem[L.2]

4.8. Hexagons in the space of punctured triangles. It turns out that the triangles
Q,, are bad for estimating the divergence between geodesic rays in 7 (A\). Indeed,

one can check that the inner radius of Q, is of order of log log% while its outer

radius and perimeter are of order log i Following the same argument as for 7 (Q))
would only yield that the divergence is at most exponential. But the divergence is
not exponential; the triangles 0Q , are simply inefficient paths. We replace them by
more efficient hexagons.

Given a > 0, let ¥, be the rectangular structure on A\ with horizontal foliation
aa; + f, and vertical foliation af; + a,. We can obtain ¥, by taking the L-shape
[0, 11 % [0,1+a]U[1,2(1 + a)] X [0, 1], folding the bottom side [0, 2(1 + a)] X {0}
in two, and labelling the vertices appropriately (see Figure [I3).

Letv, = {g,¥, | t € R} be the Teichmiiller geodesic cotangent to ¥,. We will
show that v, intersects y; and y5.

Proposition 4.12. If a > 2, then v, intersects y, and y;. More precisely, g,¥,

belongs to y, for some t € [—% log(2(1 + a)), O] and g,¥ , belongs to y5 for some
‘e [0, Dlog(2(1 + a))].
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x3 1 T2
(&3] a
019 2a+1 T1
T T
I 53 | I
I I I
1
I I I
P2 I I I
T * T
1 a To a 1

FIGURE 15. The rectangular structure ¥, on A\ with horizontal
foliation aa; + f, and vertical foliation af; + 5.

The idea is again to estimate various extremal lengths.
Lemma 4.13. Ifa > 1, then EL(f;,¥Y,) < EL(5,,¥Y,).
Proof. There is an a X 2 rectangle embedded in ¥, whose vertical segments are

homotopic to f5. By the second definition of extremal length we have

EL(f;.'P,) < =.
a

The Euclidean metric on ¥, has area 2 4+ 3a < 3(1 + a) while any representative of
P, has length at least 2(1 + a). By the first definition of extremal length we have

Ql+a)* 4

EL(5,,¥ ) > > =(1+ a).
(B, ¥,) 7134 3( a)
Moreover, if a > 1, then
2 8 4
- <2< -<=-(1+a). O
a 373

Lemmad4.14. Ifa > Oandt < —% log(2(1+4a)), then EL(p5, g,¥,) > EL(p,,g,¥,).
Proof. Let K = e*. The Euclidean metric on g%, has area 2 + 3a while any
representative of f; has length at least 2/ \/E . This yields
21
> 4= 58
KQ2+3a)  3(14+a) 3

On the other hand, there is a 2(1 + a)\/E by 1/ \/E rectangle homotopic to f,
in g,¥, so that

EL(f3.8¥,) 2

EL(f,. g¥,) <2(1 + )K = 2(1 + a)e¥ <1 < % <EL(f;.g,%,). O

Corollary 4.15. Ifa > 1, then g,¥, € y, for some t € [—% log(2(1 + a)),O].

Proof. 1t follows from the previous two lemmata and the intermediate value the-
orem that EL(f,, g,%,) = EL(fs, g,'¥,) for some ¢ € [—%log(Z(l + a)),o]. This
equality implies that g,'¥', € y; by Lemma.4] O



TOY TEICHMULLER SPACES OF REAL DIMENSION 2 29

Lemma 4.16. Ifa > 2, then EL(a,,¥,) < EL(a,,¥,).

Proof. There is a 1 X a rectangle homotopic to @, so that EL(a;,¥,) < 1/a < 1.
Also, the Euclidean metric on ¥, is such that every arc homotopic to @, has length
at least 2 + a. Hence we have

2 + a)? J 1+a
243a — 3

Lemma 4.17. Ifa>2 andt > %log(2(l + a)), then EL(a;, g,¥,) > EL(ay, g,%¥ ).

ElL(a,,¥,) >

> 1> EL(a;,¥,). O

Proof. Let K = e*. In the Euclidean metric on g%, every arc homotopic to a,
has length at least 4/ K so that

K 2(+a)
EL(a,. 2P ) > > >
(@,8%) 2 =0 2573, 2

Moreover, there is a \/f by 2+a)/ \/E rectangle homotopic to a, in g,¥,,, which
implies

2
>

El(ay,g,%,) <

(2;261) _C2+a < 2+a EL(a;, 2¥,). 0

e T 2(1+4a)

IA
Wi
IA

Corollary 4.18. Ifa > 2, then g,¥, € y for some t € [o, Dlog(2(1 + a))].

Proof. The last two lemmata and the intermediate value theorem imply that
ElL(a;, 8¥Y,) = EL(a,, g,%¥,)

for some t € [O, : log(2(1 + a))#ln turn, equality of extremal lengths implies that

g/¥, belongs to y; by Lemma (]

This finishes the proof of Proposition[d.12] Let I,, be the segment of v, between
71 and y3, and let J, be the geodesic hexagon obtained by successively reflecting I,
across the axes of symmetry of 7 (A):

Then J, is a closed curve of length at most 6log(2(1 + a)) since I, has length at
most log(2(1 + a)).

4.9. Inner and outer radii. We now estimate the inner and outer radii of the
hexagon J,,.

Lemma 4.19. There exists a constant C; > 0 such that for every a > 2, the hexagon
J, is disjoint from the ball of radius % log a — C, centered at the origin.

Proof. Denote the origin of T(A) by X,. It suffices to show that
d(X,y, g,P,) > %loga -C

whenever [t| < %log(2(1 + a)).
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Let K = ¢*. In the Euclidean metric on g%, (which has area 3a + 2 < 4a),
every representative of a; has length at least

(2a+1)\/§+ﬁ2a<\/§+#>.

Thus

EL(a3,g,¥,) >

1
3a+2

2 2
Qa+DVE+-2) > Vk+-L) >a
ve) SR
By Kerckhoft’s formula we have
EL(a3’ gtha) > 1
EL(a3, X,) ~ 2

Since the last term on the right is a constant, the result follows.

d(Xy, 8%, = %log loga — %log EL(a3, Xj).

O

Lemma 4.20. There exists a constant C, > 0 such that for every a > 2, the hexagon
J, is contained in the ball of radius log a + C, centered at the origin.

Proof. Denote the origin of T(A) by X,. It suffices to prove that the segment
1, is contained in the ball, i.e., that d(X,, g¥,) < loga + C, whenever |t| <
3 log(2(1 + a)).

For every a > 1, there is a piecewise linear map f : ¥, — ¥, obtained by
stretching the top leg of ¥, vertically by a and stretching the subrectangle [1, 3] X
[0, 1] of the right leg horizontally by a. The homeomorphism f is a-quasiconformal
so that d(¥,,¥,) < % loga.

The triangle inequality yields the inequality

d(X09 g[lIJa) S d(X()7 lPl) + d(qjl’ lpa) + d(\lj(p gtlIJa)'

The first term on the right-hand side is a constant, the second term is bounded by
% log a and the last term is equal to |¢|, which is at most

%10g(2(1 +a)) < %log(?aa) = %10ga + %10g 3. O
Corollary 4.21. There exits a constant C; > 0 such that for every t > Cs, the

hexagon J, with a = e%/3 is disjoint from the ball of radius t around the origin and
is contained in the ball of radius 3t around the origin.

Proof. See the proof of Corollary [3.18] O

4.10. Linear divergence. Since the hexagons J, have comparable inner radius,
outer radius, and perimeter, it follows that geodesic rays from the origin in 7 (A)
diverge at most linearly.

Proposition 4.22. There exists a constant C > 0 such that for any two geodesic
rays n and v starting from the origin in T (/) and any t > 0 we have div(n, v, 1) <
12t + C.
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Proof. See the proof of Proposition[3.19] We obtain a better constant here because
the half-perimeter of the hexagon J, with a = e%/3 is at most

31log(2(1 + a)) < 3log3a = 8¢+ 3log 3.
to which we need to add at most 2t + 2¢ = 4¢ for joining #(¢) and v(¢) to J,. O

By the triangle inequality, the divergence from any other point is at most linear
as well.

Corollary 4.23. For any p € T(A\), there exists a constant D > 0 such that for
any geodesic rays n and v from p and any t > 0 we have div(n, v,t) < 12t + D.

This completes the proof of Theorem [I.4]

5. UNIVERSALITY

In this section, we prove Theorem which states that 7(Q)) and 7 (A) both
embed isometrically in 7 (), the Teichmiiller space of the hexagon, and that the
latter embeds isometrically in the Teichmiiller space of any closed surface of genus
at least 2.

The Teichmiiller space 7 () is defined analogously as for 7(()). Its points
are equivalence classes of bordered Riemann surfaces homeomorphic to the closed
disk, with 6 marked points labelled in counter-clockwise order along the boundary.

The dihedral group Dy = D5 X Z, acts isometrically on 7 (O) by permuting the
labels of the marked points and reversing the orientation when needed. If we take
our base topological surface O to be a regular hexagon in R?, then Dy acts on it
by isometries. The quotient of O by any of the 3 reflections about lines through
midpoints of opposite edges is a pentagon (the endpoints of the axis of reflection
are critical points, hence their images have to be marked in the quotient). Each of
these 3 quotient maps is an admissible orbifold covering & — (O which gives rise
to an isometric embedding 7 (()) & T (O) according to Theorem 2.1

Note that the 3 copies of 7 ({3) obtained in this way all intersect along a single
geodesic. Indeed, if an hexagon X € 7 ({) has two symmetries, it automatically
has a third one. For example, if X admits anti-conformal involutions acting as
o = (12)(36)(45) and = = (23)(14)(56) on the vertices, then it admits an anti-
conformal involution acting as oto = (34)(25)(16).

Similarly, there is a degree 2 branched cover & — A\ which we can view as
the quotient of O by the central symmetry about its center. This orbifold covering
induces an isometric embedding 7 (A) < 7 (O). Each of the 3 copies of 7 (()) in
T (QO) intersects the image of 7 (A) along a geodesic. Indeed, these 3 geodesics
arise by taking the quotient of O by Z,XZ, groups, each generated by a side-to-side
reflection together with the central symmetry. The quotient is a quadrilateral, whose
Teichmiiller space is isometric to R. These 3 geodesics of intersection correspond
to the 3 axes of symmetry in 7 (A\). See Figurefor a sketch of these 4 planes sit
inside T (O).

Each point in 7 () can be represented as the closed upper half-plane HU {0}
with marked points x;, x5, X3, 00, —1 and 0, where 0 < x; < x, < x3. With this
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,,,,,,,,,,

FIGURE 16. Orbifold coverings O — (O and O — A\, and a
sketch of how the resulting copies of 7(()) and 7 (A\) sit inside
T(O).

normalization, the coordinate

(log(xy),log(x, — x1), log(x3 — x5))

provides a homeomorphism between 7 () and R>. Recall that each of the 3 copies
of 7(()) and the copy of 7 (A\) in T () is the locus of fixed points of some involu-
tion in Dg. From this we find that they satisfy algebraic equations in the normalized
coordinates (x;, X,, X3, 00, —1, 0):
« Fix((12)(36)(45)) = T () has equation x3 + 1 = (x; + 1)(x, + 1);
« Fix((23)(14)(56)) = T (()) has equation x;(x; + 1) = (x, — x)(x3 — X;);
« Fix((34)(25)(16)) = T (()) has equation x3(x3 — x;) = (X3 — x,)(x3 + 1);
o Fix((34)(25)(16)) = T (A\) has equation

X3\2 X3 2 X, + 1 2 Xy — 1 2
() (o) = () - (-2
2 2 2 2
The regular hexagon corresponds to (x;, x5, x3) = (1/2,1,2). See Figure [I7|for a
plot of part of these planes in log-coordinates.
As explained earlier, the 4 planes described above intersect in pairs along 4

geodesics, which we call axes of symmetry of T({O). In analogy with what we
proved for 7 () and 7 (A ), we formulate the following conjectures:

Conjecture 5.1. For each of its 4 axes of symmetry, T (O) is foliated by totally
geodesic planes invariant under the stabilizer of that axis in Dy.

Conjecture 5.2. 7 (Q) is a nested union of Dg-invariant convex triangular prisms
with totally geodesic faces.

This would imply that the convex hull of any compact set in 7 (O) is compact.

Back to the proof of Theorem[I.5] We claim that there is an isometric embedding
T (O) & T(X,) where Z, is the closed surface of genus 2. To see this, it suffices to
give an admissible orbifold covering £, — (. There are at least two distinct such
coverings. First quotient 2, by the hyper-elliptic involution to obtain a sphere with 6
marked points, then quotient the sphere by an orientation-reversing involution fixing
the 6 marked points to obtain the hexagon. Another orbifold covering is obtained
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log(ws — 2)

log(zy — 1) -4 -4 log(z1)

FIGURE 17. A plot of the 3 copies of 7 () and the copy of 7 (A)
inside 7 (O).

as follows. First double O across 3 non-adjacent sides to get a pair of pants, then
double the pair of pants across its boundary to obtain a genus 2 surface. Reversing
this process gives an orbifold covering £, — O. Finally, it is well-known that there
is a covering map £, — X, for every g > 2, so that 7(Z,) embeds isometrically

into T(Zg) for every g > 2 (see Figure .
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FIGURE 18. Orbifold coverings £, — O and X, — X, for g > 2.
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