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Abstract

Exactly solving multi-objective integer programming (MOIP) problems is often a very time consuming process,
especially for large and complex problems. Parallel computing has the potential to significantly reduce the time
taken to solve such problems, but only if suitable algorithms are used. The first of our new algorithms follows a
simple technique that demonstrates impressive performance for its design. We then go on to introduce new theory
for developing more efficient parallel algorithms. The theory utilises elements of the symmetric group to apply
a permutation to the objective functions to assign different workloads, and applies to algorithms that order the
objective functions lexicographically. As a result, information and updated bounds can be shared in real time,
creating a synergy between threads. We design and implement two algorithms that take advantage of such theory.
To properly analyse the running time of our three algorithms, we compare them against two existing algorithms
from the literature, and against using multiple threads within our chosen IP solver, CPLEX. This survey of six
different parallel algorithms, the first of its kind, demonstrates the advantages of parallel computing. Across all
problem types tested, our new algorithms are on par with existing algorithms on smaller cases and massively
outperform the competition on larger cases. These new algorithms, and freely available implementations, allows
the investigation of complex MOIP problems with four or more objectives.

1 Introduction

1.1 Background

In multi-objective integer programming (MOIP), one must consider a range of objective functions with the goal of
finding all non-dominated objective vectors, sometimes called the Pareto set. A decision maker can use such a set to
compare the various trade-offs that can be made between the objective functions.

The Pareto set can be calculated exactly, or approximated. Approximation techniques include heuristics (or meta-
heuristics), swarming (such as those of [15, 24]) and evolutionary (see [3, 23]) algorithms. However, this paper will
only consider algorithms which calculate the exact Pareto set, with no omissions or inaccuracies. For an introduction
to multi-objective optimisation in general, see [6], and for a very recent and thorough look at exact MOIP algorithms,
focusing on branch and bound algorithms, see [21].

This paper looks at parallel multi-objective exact integer optimisation algorithms. Parallel evolutionary algorithms
that find approximate solutions have received significant study in the literature, such as in [25, 16], but results on exact
parallel algorithms for multi-objective problems are not as widespread. [10] introduce PPM, an algorithm which splits
the feasible solution space through a three-stage process. They first find what they call “well-distributed solutions”,
and then use these solutions to partition the feasible solution space into regions which can be searched in parallel.
[5] then extend this work to create K-PPM, which solves problems with more than two objectives. Being one of the
only published algorithms specifically described as a parallel MOIP algorithm, we use it as one of our comparison
algorithms.

More recently, [7] demonstrates parallel improvements through problem-specific information, using specifics of their
problems to break down the set of feasible solutions into equitable parts. We work with generic optimisation problems,
and as such the algorithms of Guo et. al. cannot solve the problems we test against.

Another method of achieving parallelisation is to iteratively find solutions, and use these solutions to split the
objective space into smaller parts. Each of these smaller parts can then often be independently searched, as mentioned
but not implemented in [2]. This idea, of breaking down the objective space, can also be seen in algorithms that
are not necessarily described as parallel, such as in [11, 1, 8, 9, 4]. We implement V-SPLIT from [4] as our second
comparison algorithm, as they prove that it reaches the theoretical best-case in terms of integer problems solved, and
they show that it is one of the two faster algorithms in the literature, the second being AIRA by [13] which we will
also parallelise. V-SPLIT is only a 3-objective algorithm, unlike all other algorithms discussed, so timing results for
V-SPLIT are only available on 3-objectives.
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1.2 Our contribution

We present three new algorithms. The first of these calculates the range of values that one of the objective functions
may take, and divides this range equally amongst all threads. Unlike existing algorithms, this partitioning takes place
before any searching for solutions. Timing results show that running time does improve as more threads are used, and
that the performance is at least on par with other algorithms in the literature.

We propose a new parallelisation technique for MOIP algorithms. Threads are given a unique approach to the
problem (as determined by an element of the symmetric group Sn). This approach, but limited to the biobjective
case where the theory is trivial and there is no synergy, is used in [20] where it just equally partitions the objective
space. We present results which allow the real-time sharing of bounds to all other threads. Even though each thread
is solving the same problem, this sharing creates a synergy between the threads. As one thread reduces the required
computation for a second thread, the second thread will in turn reduce the required running time for the first thread.
This synergy can allow significant performance improvements from parallelisation, especially in problems where the
number of objectives is large. This theory is given as a theoretical background in Section 3 so that it may be used
and extended in other parallel algorithms.

We design, implement and test two algorithms based on this theory. These algorithms are compared to the other
state-of-the-art algorithms. The results show that the new algorithms perform on par on smaller problems, and
outperform the existing algorithms on larger problems. This validates the synergy evident in the theory: we give
experimental results that show that the algorithms perform better than existing algorithms across all problems when
the thread count is equal to the number of objectives. Even when thread counts are increased beyond this level, we still
see our new algorithms scaling well and outperforming the other existing algorithms on all larger problem instances,
and performing at a similar level for the smaller problem instances.

We offer our implementations of these algorithm for further use. This opens up many new opportunities to solve
new problems in optimisation not only where more variables or more objective functions need to be considered, but
also in more time-critical scenarios.

1.3 Paper layout

The rest of this paper is organised as follows. Section 2 gives a background and details the notation we use to describe
the symmetric group, symmetries and lexicographically constrained MOIP problems. In Section 3 we give the theory
that demonstrates the sharing of results between still-running threads. Section 3.2 describes our new algorithm, and
Section 4 discusses some implementation details. The results of our testing are presented and discussed in Section 4.4.
Finally we conclude in Section 5.

2 Background

2.1 Permutations

We will use permutations to denote different hierarchical orderings of objectives in lexicographic restrictions of MOIPs.
We will use Sn to denote the symmetric group on the n elements {1, 2, . . . , n}. Given a permutation s ∈ Sn, let s(i)
be the image of i under s. For example, let s = (3, 2, 4, 1) ∈ S4. Then s(1) = 3, s(2) = 2, s(3) = 4 and s(4) = 1.

2.2 Multi objective optimisation

A MOIP is defined as

min f1(x), . . . , fn(x)

s.t. Ax ≤ C

x ∈ Z
c

where the matrices A and C are appropriately sized. For a given feasible solution x, we call the associated vector
(f1(x), f2(x), . . . , fn(x)) the objective vector of x. Where the feasible solution x may not be relevant, we may refer to
such a vector as simply an objective vector of the MOIP problem. Note that there is no guarantee that an objective
vector need be optimal, it is simply a vector in the objective space that corresponds to some feasible value of x.

Definition 1. A vector (z1, z2, . . . , zn) is said to dominate vector (y1, y2, . . . , yn) if

1. zk ≤ yk for all k ∈ {1, . . . , n}, and

2. zk < yk for at least one k ∈ {1, . . . , n}.

The non-dominated objective vectors for a MOIP problem are then exactly the objective vectors which are not
dominated. There might be more than one efficient solution in the solution space corresponding to a non-dominated
objective vector but we are only concerned with identifying one of those efficient solutions for our purposes.
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For conciseness, we assume each objective function is to be minimised, and for more details on multi-objective
optimisation we guide the reader to [6].

The algorithm of [13] repeatedly solves ordered, constrained versions of a given MOIP. These consider some of the
objectives in a specific order, and also apply upper bounds on the values of some of the objective functions (hence
constrained). We will write OIPn

s (k, (as(k+1), . . . , as(n))) to refer to such a problem, where

• s denotes the order in which the objectives are considered;

• n is the number of objectives in total;

• k is the number of objectives which have no upper bound; and

• for i ∈ {k+1, . . . , n}, as(i) is an upper bound on the value of fs(i)(x) (i.e. add fs(i)(x) ≤ as(i) as a constraint to
the problem).

That is, given a MOIP with objective functions f1, . . . , fn, we define the OIPn
s (k, (as(k+1), . . . , as(n))) as follows:

min 1st fs(1)(x), . . . , fs(k)(x)

min 2nd fs(k+1)(x)

min 3rd fs(k+2)(x)

...

min last fs(n)(x)

s.t. Ax ≤ C

fs(k+1)(x) ≤ as(k+1)

fs(k+2)(x) ≤ as(k+2)

...

fs(n)(x) ≤ as(n)

x ∈ Z
c

In these problems, the first k objective functions (from fs(1) to fs(k)) are considered in the usual manner for MOIP
problems (i.e. objective vectors which are not dominated in these first k objectives). Conditional on that, the problem
then minimises fs(k+1), then fs(k+2) and so-on. It is routine to verify that the set of non-dominated objective vectors
to this OIP are a subset of the non-dominated objective vectors for the corresponding MOIP.

Note that [13] only consider the objectives in their natural order (i.e. under the identity permutation). Considering
different permutations allows us to synergise between parallel threads.

We now give some properties of the set of non-dominated objective vectors for an ordered, constrained lexicographic
restriction of a MOIP.

Remark 1. Let f1, . . . , fn be n linear objective functions for a MOIP with feasible solution space X, let s ∈ Sn and let
Y be the set of non-dominated objective vectors for the associated constrained ordered problem OIPn

s (k, (as(k+1), . . . , as(n))).
Then for any y ∈ Y

1. for any i with k < i ≤ n, fs(i)(y) ≤ as(i),

2. for any y′ ∈ Y with y′ 6= y, there exists a j ≤ k s.t. fs(j)(y) < fs(j)(y
′), and

3. for any x ∈ X with fs(i)(x) = fs(i)(y) for i ≤ k, there exists a j ≤ n such that for all j′ < j, fs(j′)(y) = fs(j′)(x)
and fs(j)(y) < fs(j)(x).

In the above, 1. indicates that all non-dominated objective vectors must meet the given bounds. 2. shows that any
non-dominated objective vector cannot be dominated by another in all of the first k objectives. Lastly, 3. says that if
two objective vectors agree in their first k objectives, the final n − k objectives are considered in the order given by
the permutation s.

Technically, these constrained lexicographic problems may more accurately be described as a partially constrained,
partially lexicographic problems, but this wording gets cumbersome and is skipped in favour of simply constrained
lexicographic.

We now give Lemma 4.1 from [12]. We will later give a restatement of this Lemma (see Theorem 1) which (a)
takes into consideration different permutations of the objective functions (the original lemma assumes the objective
functions are already ordered); and (b) states the implications more explicitly so that the correctness of our algorithm
is easier to confirm.

Lemma 1 (Lemma 4.1 from [12]). If a solution to a k objective problem attains the upper bound on one of these
objectives, say fi, then it is also optimal on the k − 1-objective problem where fi is no longer considered.
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3 Bound sharing

This section details our contributions, including both the theory behind our new algorithms as well as our new parallel
algorithms. In these new algorithms, we assign different ordered variants of the input MOIP problem to different
threads by means of a permutation s ∈ Sn. As each thread progresses, it finds non-dominated objective vectors, but
also tracks the region of the objective space which it has completely searched. A thread will share information about
such searched regions with other threads, reducing the search space for these other threads.

This section is broken into two subsections: first we give the theory required to prove correctness and later we give
the actual algorithm.

3.1 Theoretical results

Lemma 2. If x is a non-dominated objective vector for OIPn
s (k − 1, (as(k), . . . , as(n))), then x is a non-dominated

objective vector for OIPn
s (k, (as(k+1), . . . , as(n))).

This result follows trivially from Remark 1.
Before the next theorem, we define notation for showing that two permutations agree in their “final” positions.

Definition 2 (s =a s′). Given two elements s, s′ ∈ Sn, if s(i) = s′(i) for all (n− a) < i ≤ n, we say that s =a s′.

For example, if s = (4, 1, 2, 3) and s′ = (1, 4, 2, 3) then s =2 s′ as both permutations end with “2, 3)”.
We now give a slight variant of Lemma 4.1 from [12] to allow for different permutations of the objective functions.

Theorem 1. Let s, s′ be elements of Sn with s =n−k s′, let Y be the set of non-dominated objective vectors for
OIPn

s (k − 1, (as(k), . . . , as(n))), let â = max{fs(k)(y)|y ∈ Y }, and let Y ′ be the set of non-dominated objective vectors
for OIPn

s′ (k, (as(k+1), . . . , as(n))). Then for any y′ ∈ Y ′, either

1. y′ ∈ Y , or

2. fs(k)(y
′) > as(k), or

3. fs(k)(y
′) < â.

Proof. This holds trivially if either y′ ∈ Y or fs(k)(y
′) > as(k) so assume y′ 6∈ Y and fs(k)(y

′) ≤ as(k). Then as
y′ is dominated in Y , let y ∈ Y be an element that dominates y′ in Y . Let i be the smallest integer such that
fs(i)(y

′) < fs(i)(y). There must be such an i as otherwise y would also dominate y′ in Y ′. We will take cases on i.
If i > k then y and y′ obtain equal values for the first k objectives. However, the last n−k objectives are considered

in lexicographic order, as determined by s. As y and y′ are both feasible for OIPn
s′ (k, (as(k+1), . . . , as(n))), there must

be some j such that for j′ < j, fs(j′)(y
′) = fs(j′)(y), and fs(j)(y

′) < fs(j)(y). However, both y and y′ are also feasible
for OIPn

s (k − 1, (as(k), . . . , as(n))), and s =n−k s′. Then by the same argument we must find an i such that for i′ < i,
fs(i′)(y) = fs(i′)(y), and fs(i)(y) < fs(i)(y

′). This is clearly a contradiction.
If i < k, then clearly y cannot dominate y′ in Y , leading to a contradiction.
Lastly, if i = k then fs(k)(y

′) < fs(k)(y) ≤ â.

Both problems in this theorem do have identical bounds for their final n − k places; this is not a typographical
mistake. This identity between bounds is exactly why threads can share data, and forms the basis of our algorithm.

To make it easier to discuss the sharing of data between threads, we introduce terminology for the region of the
objective space which a thread has already searched.

Definition 3. Given a problem P = OIPn
s (k, (as(k+1), . . . , as(n))), we will say that a thread t has found all non-

dominated objective vectors above P if, for all j > k, t has determined all non-dominated objective vectors x to
OIPn

s (j, (as(j+1), . . . , as(n))) which also satisfy fs(j)(x) > as(j).

Specifying that a given region of the objective space may be avoided (as all non-dominated objective vectors within
it are known) is not always practical. In comparison, upper bounds may at times be trivially added, as they can simply
supersede the upper bound obtained whilst directly solving a constrained lexicographic problem. However, these upper
bounds cannot always be shared. The following explains exactly when threads are able to share these updated bounds
to other threads. We first present a simplified version of Theorem 2 to help introduce the reader to our approach.

Lemma 3. Let w represent a thread which

1. is currently solving P = OIPn
s (n− 1, (as(n))), and

2. has found all solutions above P .

Then all solutions to the original IP with fs(n)(x
′) ≥ as(n) are known.
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This lemma is also given in [20], and the proof of this lemma follows trivially from Definition 3. The lemma says
that if a thread is solving OIPn

s (n− 1, (as(n))), and has found all solutions above this problem, then any other thread
can also ignore any solution x for which fs(n)(x) > as(n). Other threads will be using other permutations, so the bound
on fs(n) may not be the “last” bound for other threads. This sharing of bounds across many objective functions can
create a synergy between threads, where one thread can supply a bound to other threads, which in turn means that
those threads also find new bounds faster and these new bounds can be shared back to the original thread.

As mentioned, the above lemma is actually a simplified version of our result, and only shares the bounds on the
“last” objective function. Theorem 2 is a more general result, describing exactly when bounds on any objective
functions may be shared between threads. The theorem states that if two threads agree, in both permutations and
bounds, in their last j positions, then the bound that a given thread has on objective n − j i.e., the objective just
“before” the last j can be shared to the other thread, and vice-versa. Lemma 3 allows the bound on the last objective
to be shared globally i.e., all threads can use the bound. In comparison Theorem 2 describes the sharing of bounds
on any objective, but does place restrictions on which other threads can use this bound.

Theorem 2 specifies that bounds can be shared if two threads agree on their permutations in their last j positions
(e.g. s =j s

′).
We now give two examples of the usage of this sharing, before giving the theorem and proof below.

Example 1. Let s1 = (5, 1, 4, 2, 3) and s2 = (1, 4, 5, 2, 3), and let P1 = OIP 5
s1
(2, (13, 15, 18)) and let P2 = OIP 5

s2
(2, (8, 15, 14)).

Note that (5, 1, 4, 2, 3) =2 (1, 4, 5, 2, 3). That is, s1 and s2 have the same elements in the final two positions of each
permutation. Since P1 and P2 do not have the same bounds on fs1(5), we have to take j = 0 in Theorem 2. This
means that the bound on fs2(5) from P2 can be shared to P1. The end result is that thread running P1 can immediately
set the bound on fs1(5) to 14, so the new version of P1 to be solved is P ′

1 = OIPn
s1
(2, (13, 15, 14)).

This example can be followed on to the next example.

Example 2. Take s1 = (5, 1, 4, 2, 3) and s2 = (1, 4, 5, 2, 3) again, and let P1 = OIP 5
s1
(2, (13, 15, 14)) and let P2 =

OIP 5
s2
(2, (8, 15, 14)). Again, s1 =2 s2. Now P1 and P2 agree on bounds as(4) and as(5), so we take j = 2 in Theorem 2.

That means that the bound on objective fs1(3) from P ′
1 can be given to the thread solving P2, and the bound on objective

fs2(3) from P2 can be shared to the thread solving P1. More specifically, as s2(3) = 5, the thread solving P ′
1 can use

f5(x) ≤ 8 as an upper bound for any new solutions, and as s1(3) = 4, the thread solving P2 can use f4(x) ≤ 13 as an
upper bound on for any new solutions.

These upper bounds apply even though P ′
1 would otherwise not have any bound on f5, and that if such a bound

makes the problem infeasible then there are no new solutions to P ′
1 which have not been found by P2.

We now give the exact theorem and proof.

Theorem 2. Let t represent a thread which

1. is currently solving P = OIPn
s (k − 1, (as(k), . . . , as(n))), and

2. has found all solutions above P .

For any other thread t′ which is currently solving P ′ = OIPn
s′ (k

′, (as′(k′+1), . . . , as′(n))), and for any integer j ≥ 0 such
that all the following hold

1. j < n− k,

2. j < n− k′,

3. s =n−j s
′, and

4. as(n−i) = a′
s′(n−i) for 0 ≤ i < j,

all solutions x′ to P ′ with fs′(n−j)(x
′) ≥ as(n−j) are known.

Proof. Let x′ be a solution to P ′. Then by Lemma 2 x′ is also a solution toOIPn
s′ (n−j, (a′

s′(n−j+1), . . . , a
′
s′(n))). However

by the conditions in this theorem, this problem is identical to OIPn
s (n− j, (as(n−j+1), . . . , as(n))), and by the definition

of all solutions above P , t has found all solutions to OIPn
s (n− j, (as(n−j+1), . . . , as(n))) with fs′(n−j)(x

′) ≥ as(n−j).

We can recover Lemma 3 from this theorem by letting j = 0.

3.2 New algorithms

3.2.1 Efficient Parallel Projection (EPP)

The objective space for a MOIP can be envisioned as a k-dimensional vector space, where each dimension represents
one objective function. The Efficient Projection Partitioning (EPP) algorithm projects the whole solution space down
to one dimension. Given an objective vector x = (x1, . . . , xn), the projection is achieved through the n-th projection
map projn(x) = xn. That is, the objective space is partitioned by only considering the values attained by one objective
function. First we need the following lemma.
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Lemma 4. For n > 1, an non-dominated objective vector to a MOIP with objective functions f1, . . . , fn that achieves
a maximum value on fn is also a non-dominated objective vector for the MOIP on the same feasible solution space but
restricted to the objective functions f1, . . . , fn−1.

This is a well known lemma; for recent proofs see e.g. Lemma 4.1 in [12] or Theorem 2 in [5]. EPP first calculates
all solutions on the first n − 1 objective functions recursively, with the solution when n = 1 being trivial. The set of
non-dominated objective vectors on n−1 objectives, along with the above Lemma, is used to determine the maximum
value on the n-th objective; the minimum is found by simple integer programming. This gives a range of values which
fn can take, which is divided up equally amongst all threads.

Algorithm 1: The Efficient Projection Partitioning (EPP) algorithm.

Data: The MOIP IPn on n objective functions, and an integer T representing number of threads to use.
Result: The set of non-dominated objective vectors.
if n = 1 then

Solve the single-objective problem and return the solution
else

Let X be the feasible solution space for this problem. Let IPn−1 be this same problem restricted to the first
n− 1 objective functions. Calculate the solutions Y to IPn−1 using Algorithm 1
Let U = max{fn(y)|y ∈ Y }
Let L = min{fn(y)|y ∈ X}

Let step = U−L
t

for t ∈ {0, . . . , t− 1} do
Let l = L+ t× step

Let u = l+ step

Start a MOIP solver in a new thread to find all solutions y satisfying l < fk(y) ≤ u.

Return the union of the results from all threads started

3.2.2 CLUSTER and SPREAD

We next introduce the two algorithms CLUSTER and SPREAD, which apply our permutation parallelisation technique
to the algorithm of [13]. First, Algorithm 2 is the algorithm which will initialise and launch all sub-problems. The
initialisation process lets each thread determine which other threads it might be sending information to, and from
which threads it might be receiving information. Each parallel thread will be running Algorithm 3, where new solutions
will be found and new bounds will be calculated and shared.

In Algorithm 2, the method for selecting permutations is not specified. We devise two ways of selecting permu-
tations, which in turn create the two algorithms which we call CLUSTER and SPREAD. CLUSTER assigns permu-
tations to maximise i where s =i s

′ for all selected s and s′. For instance, we could assign (1, 2, 3, 4, 5), (2, 1, 3, 4, 5),
(1, 3, 2, 4, 5), (3, 1, 2, 4, 5), (2, 3, 1, 4, 5) and (3, 2, 1, 4, 5) to six threads solving a 5-objective problem. In other words,
all of these have 4 and 5 as their final two elements, and thus can share updates on their third objectives. These six
threads would be sharing updated bounds on deeper levels of the recursion, meaning the algorithms will share bounds
more often. This reduces the time between the determination of a new bound, and when threads can use the new
bound, potentially minimising the amount of redundant work completed. As a downside, though, these bounds might
not be shareable with all other threads.

The second option, which we call SPREAD, assigns permutations to minimise i where s =i s
′ for all selected s

and s′. For instance, this could mean assigning (1, 2, 3, 4, 5), (2, 3, 4, 5, 1), (3, 4, 5, 1, 2), (4, 5, 1, 2, 3), (5, 1, 2, 3, 4) and
(2, 3, 4, 1, 5) to six threads solving a 5-objective problem. All five objectives occur as a “fifth” objective in some thread,
so every thread will be able to update bounds on every objective. The sharing of these bounds would mainly happen at
the higher level of recursion, i.e. not as often, but the bounds will be shared to more threads. We discuss in Section 4.4
how different selection methods can impact the running time of the algorithm.

In Theorem 1, we define â to be the maximum value of fs(k)(y) for any solution y. To allow each thread to
apply Theorem 1 we must therefore share not only updated bounds, but the maximum value of fs(k) that is attained.
Theorem 1 then trivially verifies correctness of this algorithm.

4 Implementation details

The implementation of this new algorithm is based on AIRA as used in [20]. The availability of the source code
sped up the implementation process. The implementation is in C++11, and uses the shared memory and threading
features of the Standard Template Library to handle all thread creation and data sharing. The code is published
on Github (see [19]), and test cases are also provided (see [17, 18]) for others to utilise. Our implementations,
including the comparison algorithms from the following section, were verified by comparing results between the various
implementations against the known results taken from [13].
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Algorithm 2: Our new parallel algorithm. This particular algorithm will set up each thread with an appropri-
ately selected permutation s. The actual work is done in Algorithm 3 which is called from this algorithm.

Data: The problem IPn, and t representing the number of threads to use
Result: ND: The set of non-dominated objective vectors
begin

Let L be a list of thread details, to be used to tell threads where they are sharing information
for i ∈ {1, . . . , t} do

Create a thread w

Select a permutation s ∈ Sn

Create the problem Pt = OIPn
s (n, ())

Store the details of this thread in L

for Each element l in L do
Launch Algorithm 3 with the corresponding problem Pt = OIPn

s (n, ()) taken from l, as well as a copy of
L

Wait for all threads to complete
Let ND =

⋃

t{ solutions to Pt}

Algorithm 3: This algorithm calculates actual solutions to the problem at hand.

Data: The problem OIPn
s (k, (as(k+1), . . . , as(n))), and the details of all other threads solving the same original

problem IPn

Result: NDk, the set of non-dominated objective vectors
begin

Set NDk = ∅.
if a relaxation of this problem is already solved and each solution to said relaxation satisfies the current
bounds then

Let NDk be this set of solutions
else

if k = 1 then
Solve the single-objective problem.
if the problem is feasible, with solution x then

Set NDk = {x}

else
Let as(k) = ∞
From OIPn

s (k, (as(k+1), . . . , as(n))), create P = OIPn
s (k − 1, (as(k), as(k+1), . . . , as(n))).

Solve P using this algorithm
while P is feasible do

Let Y be the solutions to P , as determined by this algorithm
Let NDk = NDk ∪ Y

Let as(k) = max
{

as(k),max{fk(x)|x ∈ Y }
}

for Each thread w with corresponding permutation s′ do
Use Theorem 2 to update the bounds on P

if s =n−k s′ and w has found a higher value for as(k) then
Update as(k)

Update P with the new value of as(k)
Solve P using this algorithm
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4.1 Comparison algorithms

We compare the running time of both variants of our algorithm against the following algorithms. AIRA by [13] is a
state of the art MOIP solver, which uses CPLEX as an single-objective IP solver internally. In recent results, such
as [4], AIRA was shown to be one of two algorithms to outperform all others, with the second being V-SPLIT which
we discuss below. One very simple method of parallelising AIRA, or indeed most MOIP algorithms, is to allow the
IP solver to utilise more threads. This technique was also seen in [2], and we call such an improvement CPLEX. We
do not expect that CPLEX will be competitive in this setting, as CPLEX would not understand the whole MOIP
problem. Instead, these numbers display the significant improvements that can be achieved by designing algorithms
to suit parallelisation.

The second comparison algorithm is K-PPM, as described in [5]. This one of the only recent general MOIP
algorithms that is specifically described as being parallel. K-PPM utilises a 3-step process to create a number of
sub-problems. The first phase calculates the ideal and nadir points of the given problem by recursively solving smaller
problems. This does have a cost, one that the authors of K-PPM discussed in [5]. We chose to implement K-PPM
exactly as they described it, so as to not complicate the results. These ideal and nadir points are used in the second
phase to calculate some well-distributed solutions, which in turn are used to partition the solution space. This
partitioning of the solution space creates a number of sub-problems. Each of these can be solved in parallel by either
a generic serial MOIP solver, or potentially a specialised solver. We chose to use AIRA as the generic MOIP solver
for K-PPM, as it is a modern and open source generic MOIP solver, and being very similar to Algorithm 2 this will
reduce any differences caused by the MOIP solver chosen and will instead allow us to highlight the differences due to
our new parallelisation technique.

The final comparison algorithm is V-SPLIT, as described in [4]. V-SPLIT follows a common approach in MOIP
algorithms, where new non-dominated objective vectors are found and then used to reduce and/or partition the
objective space. Other recent algorithms that take such an approach can be found in [1, 2, 8, 9]. V-SPLIT, as given
in [4], is only suitable for 3-objective problems. However we still use V-SPLIT as the only recent comparison between
sequential exact MOIP algorithms ([4]) showed that V-SPLIT and AIRA are the two leading competitors in the field.
Two variants of V-SPLIT were presented in [4], using either a weighted Tchebycheff or an ǫ-constraint method to find
individual solutions. While the ǫ-constraint method was faster, the authors of [4] also point out that this method does
not allow the arbitrary selection of the next sub-space to be searched. As a parallel implementation of V-SPLIT would
require the simultaneous searching of multiple sub-spaces, we implement a parallel version of the weighted Tchebycheff
V-SPLIT algorithm. Note that V-SPLIT is specifically designed for 3-objective problems, and as such we can only
test it on 3-objective problems.

4.2 Instance generation

Easily accessible sets of MOIP instances suitable for benchmarking are rare in the literature. The most commonly
referenced “modern” set appears to be from [9], however the website mentioned in their paper no longer provides the
actual instances. Even when these can be found, they were initially used over 10 years ago, and in our experimentation
we find that some instances are trivial to solve simply because computer hardware and IP solvers have improved.

We therefore generate our own set of benchmark instances, using similar techniques to those of [9] (for knapsack
problems), [22] (for assignment problems), and [14] (for traveling salesman problems). A knapsack instance is generated
by randomly assigned an integer weight (uniformly at random in the range {60, . . . , 100}) to each of n items. The
upper bound on the total weight of the selected items is set to be half of the total weight of all items. Each objective
function is chosen in a similar manner, with the coefficients for each item drawn uniformly at random from the range
{[60, . . . , 100}. Assignment problems are generated in the manner of [22], with objective function coefficients drawn
uniformly at random from {0, . . . , 20}. We also generate instances of the traveling salesman problem as per [14]. We
place cities on a 1000×1000 plane by assigning integer coordinates to cities, and round the Euclidean distance between
any two cities to an integer value.

For each type of problem and each size parameter, we generate five instances. All of these test instances, in-
cluding some which we could not solve, are provided for further research ([17, 18]) and the generator is available at
https://github.com/WPettersson/ProblemGenerator. Specifics on these instances can be seen in Tables 1 and 2.
Note that the 3-objective and 4-objective problems were generated independently.

4.3 Execution environment

We ran our implementation on the Raijin, a supercomputer run by the National Computing Infrastructure in Australia,
which utilises Intel Xeon E5–2670 CPUs running at 2.60GHz. Our code was compiled with GCC 4.9.0, and we used
CPLEX 12.7.0 as our single objective IP solver, and settings for CPLEX were left at their default, except to limit
the number of threads which CPLEX could internally spawn, and also enable deterministic parallelism in such cases
where CPLEX would spawn multiple threads. We ran each algorithm over the 3-objective and 4-objective problems
described in Section 4.2 (for 2-objective problems, our new algorithms reduce to the much simpler case with no synergy
as given in [20], which also includes experimental results). The aim of this computational study is to compare the
scalability of our new parallel algorithms to existing parallel algorithms from the literature. We tested each algorithm
with 3 and 6 threads for 3-objective problems, and 4, 8, and 12 threads for 4-objective problems. For the 3-objective
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Problem Integer variables Binary variables Constraints Objectives Non-dominated solutions

AP10 0 100 20 3 207
AP15 0 225 30 3 512
AP20 0 400 40 3 1515
AP25 0 625 50 3 3333
AP30 0 900 60 3 6900
AP40 0 1600 80 3 13403
KP50 0 50 1 3 426
KP75 0 75 1 3 1166
KP100 0 100 1 3 1483
KP125 0 125 1 3 3058
KP150 0 150 1 3 4069
KP200 0 200 1 3 13058
TSP10 10 90 110 3 250
TSP12 12 132 156 3 384
TSP15 15 210 240 3 1202
TSP20 20 380 420 3 3237
TSP30 30 870 930 3 11651

Table 1: Statistics on the randomly generated 3-objective problems

Problem Integer variables Binary variables Constraints Objectives Non-dominated solutions

AP05 0 25 10 4 23
AP08 0 64 16 4 269
AP10 0 100 20 4 679
AP11 0 121 22 4 2672
AP12 0 144 24 4 1665
AP15 0 225 30 4 15535
AP20 0 400 40 4 28274
KP20 0 20 1 4 43
KP40 0 40 1 4 632
KP60 0 60 1 4 2756
KP80 0 80 1 4 3733
TSP06 6 30 42 4 50
TSP08 8 56 72 4 253
TSP10 10 90 110 4 683
TSP12 12 132 156 4 3036
TSP15 15 210 240 4 8489

Table 2: Statistics on the randomly generated 4-objective problems
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AIRA CPLEX K-PPM EPP V-SPLIT SPREAD CLUSTER
Threads 1 3 6 3 6 3 6 3 6 3 3 6

AP10 18.61 11.09 11.01 15.66 9.53 9.39 6.37 9.24 4.56 7.92 8.00 4.93
AP15 100 61.82 58.74 72.56 48.28 47.94 29.52 45.06 22.21 42.78 43.40 24.76
AP20 405 272 251 290 204 202 122 183 90.51 176 181 93.15
AP25 1085 755 681 792 566 535 315 524 260 468 479 233
AP30 2706 2743 1713 1818 1399 1396 801 1463 713 1185 1189 582
AP40 7051 6330 4624 4998 4056 4016 2183 4879 2445 3104 3148 1530
KP50 38.62 38.64 38.90 34.98 21.69 21.78 13.62 14.23 6.99 17.37 17.98 11.31
KP75 237 186 179 222 148 137 76.44 123 59.49 104 104 62.80
KP100 667 491 461 572 454 412 259 472 219 309 309 177
KP125 2063 1255 1102 1644 1189 1151 727 1488 727 866 869 524
KP150 3338 4223 1883 2524 2284 1816 1099 3452 1585 1467 1503 802
KP200 18643 9118 8331 13176 11087 9946 6897 11408 5790 8120 8273 3788
TSP10 37.34 33.54 24.05 36.26 21.96 21.38 12.17 15.01 7.53 15.84 15.68 12.30
TSP12 68.00 59.52 44.21 60.69 34.46 36.41 20.59 28.23 14.56 29.30 29.02 22.18
TSP15 443 365 294 313 173 233 137 199 102 187 181 138
TSP20 2201 1663 1418 1399 931 1203 691 1677 818 896 864 670
TSP30 18067 11700 10044 10310 6713 8567 5060 34551 17225 7284 6990 5036

Table 3: Running times of each algorithm and various thread counts on a number of assignment, knapsack and
traveling salesman problems with three objectives. As CLUSTER and SPREAD are identical when using 6 threads,
we only list the running times under the column CLUSTER.

problems, SPREAD and CLUSTER with 6 threads are equivalent, as there are only 6 permutations in S3. We also ran
the non-parallel AIRA on all of these problems to see whether the parallel algorithms actually improved the running
time. We have excluded the running times for problems which were solved very quickly (under one second) as well
as problems which did not complete in the given time limits (48 hours) across all algorithms. These harder instances
are provided in [17, 18] to challenge further research in this area. Additionally, we do not include running times for
CPLEX on 12 threads as it had already showed minimal improvement moving to 8 threads.

4.4 Discussion

For our 3-objective tests (respectively 4-objective tests), we show the average running time across all 5 instances for
each size parameter in Table 3 (respectively Table 5) while Table 4 (respectively Table 6) shows the average number
of solutions to each problem, as well as the average number of single-objective IPs solved by each algorithm. The
AP, KP or TSP in the name of each test refers to the problem type (either assignment problem, knapsack problem or
traveling salesman problem) and the number refers to the respective number of objects in each problem (total number
of agents for assignment problems, number of objects for knapsack problems and number of cities for the traveling
salesman problems). First we note that as |S3| = 6, the algorithms SPREAD and CLUSTER are identical when using
six threads, so we omit the column for SPREAD on six threads as it is identical to the column for CLUSTER on six
threads. Secondly we point out that K-PPM always solves the same number of IPs independently of the number of
threads used.

Looking at the running times, we see that CPLEX does gain some, but not much, improvement with parallelisation.
In particular, going from one to three (or four) threads does seem slightly useful, but stepping beyond this is less
effective, especially for the smaller problems. This is consistent with expectation for this approach.

K-PPM does improve as more threads are introduced, performing better than CPLEX. However, it is in turn
beaten by the remaining four algorithms. K-PPM solves more single-objective IPs than all other algorithms, which
may explain why it does not perform as well.

V-SPLIT finds all solutions whilst solving the fewest number of IPs. We note that V-SPLIT does solve slightly
more IPs when using 6 threads as compared to 3, which would seem to be at odds with the theory in [4], however as we
implemented a parallel version of V-SPLIT some of the theoretical results will no longer hold for our implementation.

For smaller problems, we see that V-SPLIT marginally outperforms EPP. In [4] the largest problem solved was a
knapsack problem with 50 objects, equivalent to our smallest knapsack problem. Our timing results do then correlate
with those from [4]. However as the problems get bigger, EPP performs better than VSPLIT. It is surprising that
EPP should be competitive, as initially EPP seems like a very basic parallel algorithm, and EPP does solve at times
significantly more IPs than V-SPLIT. This may be explained by the new constraints added by V-SPLIT to search
only a specified region. V-SPLIT must add three lower bounds and three upper bounds for each region, while EPP is
only required to add one lower bound and one upper bound.

Both CLUSTER and SPREAD display performance improvements as more threads are utilised, and for the larger
problems solved both outperform all other algorithms. On 3-objective problems, and with three threads, both CLUS-
TER and SPREAD appear to perform similarily. This is not too surprising, as there are only 6 possible permutations
to choose from, so the difference is not as evident. Clearly as |S3| = 6 SPREAD and CLUSTER are identical on 6
threads and so only one column is shown.
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Solutions AIRA K-PPM EPP V-SPLIT SPREAD CLUSTER
Threads |ND| 1 3/6 3 6 3 6 3 3 6

AP10 207 1021 2190 1153 1241 657 666 1444 1444 1662
AP15 512 2434 4782 2652 2841 1601 1626 3459 3465 3951
AP20 1515 7017 12900 7282 7552 4741 4834 9730 9727 10479
AP25 3333 14914 24565 15365 15736 10417 10676 19685 19721 19506
AP30 6900 29487 47653 29933 30362 21462 21826 40487 40526 38475
AP40 13403 52350 80497 52921 53495 41562 42245 74334 74423 72396
KP50 426 2352 5285 2526 2670 893 955 3474 3464 3693
KP75 1166 6252 14240 6490 6724 2321 2432 8296 8278 9687
KP100 1483 7749 15197 8068 8314 3149 3046 10698 10719 11886
KP125 3058 15289 27340 15742 16164 5933 6081 22983 22928 22521
KP150 4069 20786 39899 21515 22049 6894 7325 31819 31931 30387
KP200 13058 67857 118222 68933 70035 18142 19199 93682 93902 88758
TSP10 250 1448 3648 1601 1744 794 818 2033 2028 2636
TSP12 384 2200 5184 2388 2565 1226 1257 3138 3136 4071
TSP15 1202 7090 14268 7403 7691 3814 3932 9722 9730 12489
TSP20 3237 19093 33644 19755 20382 10198 10489 25201 25214 33282
TSP30 11651 68502 119519 69639 70711 35952 36802 92422 92402 115955

Table 4: The number of non-dominated solutions for each problem, and the number of single-objective IPs solved by
each type of algorithm for each problem. Note that K-PPM always solves the same number of IPs, using more threads
means that more are solved simultaneously. SPREAD and CLUSTER are the same on 6 threads (as |S3| = 6), so the
statistics for SPREAD on 6 threads are not shown.

AIRA CPLEX K-PPM EPP CLUSTER SPREAD
Threads 1 4 8 4 8 12 4 8 12 4 8 12 4 8 12
AP05 0.98 0.94 0.97 4.35 2.38 1.74 0.59 0.43 0.39 0.97 0.64 0.67 0.46 0.46 0.43
AP08 67.66 37.72 36.60 121 61.52 45.35 31.72 22.12 16.11 48.80 28.64 26.82 24.27 22.45 17.54
AP10 532 242 230 732 328 241 240 125 97.55 322 182 153 185 147 109
AP11 1095 513 476 1411 642 471 539 279 201 636 353 285 397 285 212
AP12 1284 621 571 1567 732 533 634 325 246 744 415 340 450 332 251
AP15 7018 3742 3061 7149 3655 2757 3718 1779 1287 3661 1983 1560 2572 1726 1239
AP20 51505 31234 22761 29137 17060 14499 24788 12834 9126 18392 11638 8841 16980 11285 7595
KP20 3.56 2.96 2.99 12.69 6.54 4.81 2.38 1.61 1.39 3.85 2.59 2.71 2.00 1.95 1.61
KP40 177 169 153 275 148 111 116 63.24 56.16 147 90.76 84.68 73.85 63.06 51.63
KP60 2529 2223 2242 2329 1205 1046 1564 776 600 1564 861 689 840 651 487
KP80 17265 6774 8429 15095 8326 6617 10082 7251 4089 10413 5791 4528 5710 4332 3200
TSP06 5.04 4.65 403.59 18.66 10.00 7.18 3.04 2.27 1.94 2.25 2.48 2.17 2.15 2.47 2.16
TSP08 74.89 59.05 2478.3 160.70 88.01 63.91 40.33 27.97 24.29 30.03 32.43 27.79 29.81 32.53 27.87
TSP10 426 343 5341 692 388 313 219 129 94.87 159 167 145 159 168 140
TSP12 6555 5180 20530 5032 3437 3331 4678 2753 2091 1693 1711 1305 1689 1714 1265
TSP15 56759 47991 54186 24803 13670 11183 57546 28546 21367 9134 7812 6165 8960 7821 6077

Table 5: Running times of each algorithm and various thread counts on a number of assignment, knapsack and
traveling salesman problems with four objectives.

Solutions AIRA K-PPM EPP SPREAD CLUSTER
Threads |ND| 1 4/8/12 4 8 12 4 8 12 4 8 12
AP05 23 299 7668 468 627 847 808 939 1359 520 1006 1256
AP08 269 3957 36917 5715 6931 8563 11157 13972 18886 7176 12845 14292
AP10 679 9756 72036 12164 14228 16293 24562 29538 38643 15662 26046 30105
AP11 2672 37950 220255 42253 45976 49841 79755 91593 112093 56873 83973 96842
AP12 1665 21616 106153 26760 30055 35150 55763 63829 79325 35141 55965 62788
AP15 15535 203178 754893 215648 227056 236495 362804 391911 455529 298430 399947 427234
AP20 28274 335840 771710 356185 375345 393145 959667 664263 777579 487597 641618 678781
KP20 43 577 7706 1057 1468 1921 1854 2483 3697 1156 2314 2681
KP40 632 10210 62758 11948 13584 14947 28079 31834 42649 16576 27895 33640
KP60 2756 39004 200124 46324 51762 57568 96652 110956 139901 62906 100714 112003
KP80 3733 52946 291961 63730 72539 81240 134036 164911 203856 83007 121448 154670
TSP06 50 758 11408 1176 1520 1846 1427 2713 3275 1416 2708 3293
TSP08 253 4927 44179 6598 8103 9497 8198 15337 17822 8212 15339 17787
TSP10 683 14249 96713 16619 18660 20739 22263 41123 48686 22259 41202 48502
TSP12 3036 65657 318298 72249 78245 83711 96426 181954 205593 96405 181940 205976
TSP15 8489 190897 877615 209635 226972 243309 269413 466893 548163 269360 466879 547828

Table 6: The number of non-dominated solutions for each problem, and the number of single-objective IPs solved by
each type of algorithm for each problem. Note that K-PPM always solves the same number of IPs, using more threads
means that more are solved simultaneously.
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The difference between CLUSTER and SPREAD becomes more evident on 4-objective problems, where we only
choose 4 (or 8 or 12) of the possible 24 permutations. On a significant proportion of our test cases we see that
SPREAD beats EPP, but EPP beats CLUSTER. An analysis of the running of CLUSTER and SPREAD gives one
possible explanation for the difference in running times between the two. When solving a biobjective problem (such as
OIP (2, (a3, . . . , an)), variants of which get solved repeatedly), the algorithms often only find one or two new solutions
i.e., solutions which aren’t found via a relaxation. However, if two threads are attempting to solve a biobjective problem
from two different permutations, there is only ever a performance increase if they can solve for different solutions, which
requires at least 3 new solutions in each biobjective problem. This was very rare in our randomly-generated problems.
It is definitely plausible that there exist problems where each new biobjective problem has numerous solutions, and in
these cases we believe that the CLUSTER algorithm may perform better, but we are not aware of any research into
finding such problems.

5 Conclusion

We demonstrate a new paradigm for approaching parallelisation in multi-objective optimisation problems. By utilising
different permutations of objective functions, our new theory presents many different directions from which a MOIP
problem can be solved. This allows parallel algorithms to start searching almost immediately for solutions to the
problem, rather than spending time trying to find an equitable split of the search space. The threads are also able to
communicate in real time, and this communication creates a synergy where each thread can reduce the running time
of all other threads, which in turn can speed up the first thread.

We give the first comparative look at the running time of exact MOIP algorithms in parallel settings. This shows
that even some seemingly sequential algorithms such as V-SPLIT can benefit from parallelisation. We also introduce
three of our own new parallel algorithms, along with implementations. All three new algorithms perform competitively
on the smaller test cases, and on larger test cases we significantly outperform existing results. This may prompt more
study into larger and more complex MOIP problems, problems which until now may have been impractical to solve.

Two of our new algorithms utilise the synergistic theory we present. One of these, SPREAD, significantly outper-
forms all other algorithms on the larger test cases, including the other synergistic algorithm CLUSTER. The difference
between SPREAD and CLUSTER is how permutations are chosen. It may be useful to further study how this choice
may affect the running time of our algorithms, especially as it relates to specific MOIP problems. The extension of
EPP to projections to two or more dimensions may also prove useful in scenarios where many threads are available.

The publication of our implementations as well as our algorithms allows the easier comparison of the running time
of exact MOIP algorithms, and will hopefully spur further research and development in this field.
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A Examples

The first two examples are detailed walk throughs of solving constrained lexicographic problems where the permutation
is the identity permutation.

Example 3 (Calculating OIP 3
(1,2,3)(2, (52))). Consider the following set of objective vectors

f1 f2 f3
(50 24 44)
(46 41 41)
(37 46 37)
(37 44 42)
(32 39 54).

The value (52) in the definition of the problem says that we are only interested in objective vectors which satisfy
f3 ≤ 52. This immediately rules out (32, 39, 54), and we no longer use this objective vector for any domination tests,
leaving us with the following.

f1 f2 f3
(50 24 44)
(46 41 41)
(37 46 37)
(37 44 42)

Next, the 2 indicates that we want to discard any objective vector which is dominated in its first two objective values
by some other objective vector which we have not discarded. This is represented in the table by the columns to the
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left of the vertical line. We see that (37, 46, 37) is dominated over the first two objectives by (37, 44, 42). Even though
37 < 42, we discard (37, 46, 37) as we only consider the first two objectives. All remaining objective vectors are not
dominated in their first two objective values, so we are done and the non-dominated objective vectors for LIPn(2, (52)
are {(50, 24, 44), (46, 41, 41), (37, 44, 42)}.

Example 4 (Calculating OIP 3
(1,2,3)(1, (48, 43))). Again we are working from

f1 f2 f3
(50 24 44)
(46 41 41)
(37 46 37)
(37 44 42)
(32 39 54).

We can immediately discard (50, 24, 44) and (32, 39, 54) from the given upper bounds (48, 43), leaving

f1 f2 f3
(46 41 41)
(37 46 37)
(37 44 42).

We next consider dominance in the first objective only, letting us discard (46, 41, 41). This leaves us with

f1 f2 f3
(37 46 37)
(37 44 42).

These are equal in their first objective, so neither dominates the other. We then consider the final two objective
functions in lexicographic order. That is, we consider f2 before f3 and so-on. As 44 < 46, we discard (37, 46, 37) and
the set of non-dominated objective vectors for OIP 3

(1,2,3)(1, (48, 43)) is {(37, 44, 42)}.

We now show how different permutations s affect the ordered variants, ordered lexicographic problems.

Example 5 (Calculating OIP 3
(2,1,3)(1, (48, 43))). We work from the same initial objective vectors set as the earlier

examples.
f1 f2 f3
(50 24 44)
(46 41 41)
(37 46 37)
(37 44 42)
(32 39 54).

To aid our understanding of how the permutation effects the problem, however, we rearrange the columns according to
s to give

f2 f1 f3
(24 50 44)
(41 46 41)
(46 37 37)
(44 37 42)
(39 32 54).

We now demonstrate which of these correspond to solutions of OIP 3
(2,1,3)(1, (48, 43)). First, we discard objective vectors

that break the given bounds. As s(2) = 1, we discard objective vectors with f1 > 48. The 48 refers to an upper bound
on f1 due to the permutation s. This causes us to discard (50, 24, 44) (which appears as (24, 50, 44) in the above table
as we re-ordered the columns). Also, as s(3) = 3, we discard objective vectors with f3 > 52. That is, we once again
discard (32, 39, 54).

f2 f1 f3
(41 46 41)
(46 37 37)
(44 37 42)

We now consider dominance on objective f2. We use f2 as s(1) = 2, and see that (46, 41, 41) is the unique solution to
attain a minimum on f2. Our set of non-dominated objective vectors is {(46, 41, 41)}.
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Example 6 (Calculating OIP 3
(1,3,2)(1, (51, 50))). We work from the same initial objective vectors, and again permute

the columns according to s.
f1 f3 f2
(50 44 24)
(46 41 41)
(37 37 46)
(37 42 44)
(32 54 39)

As s(2) = 3, we discard objective vectors that don’t satisfy f3 < 51, that is (32, 39, 54). And as s(3) = 2, we discard
objective vectors that don’t satisfy f2 < 50, but all objective vectors satisfy this bound. Next we consider dominance
across objective s(1) = 1.

f1 f3 f2
(50 44 24)
(46 41 41)
(37 37 46)
(37 42 44)

Once again we are left with (37, 46, 36) and (37, 44, 42), which are equal in their first objective.

f1 f3 f2
(37 37 46)
(37 42 44)

However, we now consider the remaining two objectives in the order prescribed by s. As s(2) = 3, we consider
values of f3 next and as 36 < 42, we discard (37, 44, 42). Therefore the set of non-dominated objective vectors for
OIP 3

(1,3,2)(1, (51, 50)) is {(37, 46, 36)}.
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