Light with a twist in its tail

Padgett, M. and Allen, L. (2000) Light with a twist in its tail. Contemporary Physics, 41(5), 275 -285. (doi: 10.1080/001075100750012777)

Full text not currently available from Enlighten.

Publisher's URL:


Polarized light is a phenomenon familiar to anyone with a pair of polaroid sunglasses. Optical components that change the nature of the polarization from linear to circular are common in any undergraduate laboratory. Probably only physicists know that circularly polarized light carries with it an angular momentum that results from the spin of individual photons. Few physicists realize, however, that a light beam can also carry orbital angular momentum associated not with photon spin but with helical wavefronts. Beams of this type have been studied only over the last decade. In many instances orbital angular momentum behaves in a similar way to spin. But this is not always so: orbital angular momentum has its own distinctive properties and its own distinctive optical components. This article outlines the general behaviour of such beams, how they can be used to rotate microscopic particles, how they interact with nonlinear materials; the role they play in atom-light interactions and how the rotation of such beams results in a measurable frequency shift.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Padgett, Professor Miles
Authors: Padgett, M., and Allen, L.
Subjects:Q Science > QC Physics
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Contemporary Physics

University Staff: Request a correction | Enlighten Editors: Update this record