Automated precision alignment of optical components for hydroxide catalysis bonding

Robertson, D. I. , Fitzsimons, E. D., Killow, C. J., Perreur-Lloyd, M. and Ward, H. (2018) Automated precision alignment of optical components for hydroxide catalysis bonding. Optics Express, 26(22), pp. 28323-28334. (doi:10.1364/OE.26.028323)

[img]
Preview
Text
171403.pdf - Published Version

19MB

Abstract

We describe an interferometric system that can measure the alignment and separation of a polished face of a optical component and an adjacent polished surface. Accuracies achieved are ∼ 1μrad for the relative angles in two orthogonal directions and ∼ 30μm in separation. We describe the use of this readout system to automate the process of hydroxide catalysis bonding of a fused-silica component to a fused-silica baseplate. The complete alignment and bonding sequence was typically achieved in a timescale of a few minutes, followed by an initial cure of 10 minutes. A series of bonds were performed using two fluids - a simple sodium hydroxide solution and a sodium hydroxide solution with some sodium silicate solution added. In each case we achieved final bonded component angular alignment within 10 μrad and position in the critical direction within 4 μm of the planned targets. The small movements of the component during the initial bonding and curing phases were monitored. The bonds made using the sodium silicate mixture achieved their final bonded alignment over a period of ∼ 15 hours. Bonds using the simple sodium hydroxide solution achieved their final alignment in a much shorter time of a few minutes. The automated system promises to speed the manufacture of precision-aligned assemblies using hydroxide catalysis bonding by more than an order of magnitude over the more manual approach used to build the optical interferometer at the heart of the recent ESA LISA Pathfinder technology demonstrator mission. This novel approach will be key to the time-efficient and low-risk manufacture of the complex optical systems needed for the forthcoming ESA spaceborne gravitational waves observatory mission, provisionally named LISA.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Perreur-Lloyd, Mr Michael and Fitzsimons, Dr Ewan and Killow, Dr Christian and Ward, Professor Henry and Robertson, Dr David
Authors: Robertson, D. I., Fitzsimons, E. D., Killow, C. J., Perreur-Lloyd, M., and Ward, H.
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Optics Express
Publisher:Optical Society of America
ISSN:1094-4087
ISSN (Online):1094-4087
Published Online:16 October 2018
Copyright Holders:Copyright © 2018 The Optical Society
First Published:First published in Optics Express 26(22): 28323-28334
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record