

Meeks, K. and Rastegari, B. (2018) Stable Marriage with Groups of Similar

Agents. In: WINE 2018: The 14th Conference on Web and Internet

Economics, Oxford, United Kingdom, 15-17 Dec 2018, pp. 312-326. ISBN

9783030046118 (doi:10.1007/978-3-030-04612-5_21).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/171021/

Deposited on: 09 October 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/978-3-030-04612-5_21
http://eprints.gla.ac.uk/171021/
http://eprints.gla.ac.uk/

Stable Marriage with Groups of Similar Agents

Kitty Meeks1 and Baharak Rastegari2

1 School of Computing Science, University of Glasgow, Glasgow, UK
kitty.meeks@glasgow.ac.uk

2 Electronics and Computer Science, University of Southampton, Southampton, UK
b.rastegari@soton.ac.uk

Abstract. Many important stable matching problems are known to be
NP-hard, even when strong restrictions are placed on the input. In this
paper we seek to identify structural properties of instances of stable
matching problems which will allow us to design efficient algorithms us-
ing elementary techniques. We focus on the setting in which all agents
involved in some matching problem can be partitioned into k different
types, where the type of an agent determines his or her preferences, and
agents have preferences over types (which may be refined by more de-
tailed preferences within a single type). This situation would arise in
practice if agents form preferences solely based on some small collection
of agents’ attributes. We also consider a generalisation in which each
agent may consider some small collection of other agents to be excep-
tional, and rank these in a way that is not consistent with their types; this
could happen in practice if agents have prior contact with a small num-
ber of candidates. We show that (for the case without exceptions), the
well-known NP-hard matching problem Max SMTI (that of finding the
maximum cardinality stable matching in an instance of stable marriage
with ties and incomplete lists) belongs to the parameterised complexity
class FPT when parameterised by the number of different types of agents
needed to describe the instance. This tractability result can be extended
to the setting in which each agent promotes at most one “exceptional”
candidate to the top of his/her list (when preferences within types are
not refined), but the problem remains NP-hard if preference lists can
contain two or more exceptions and the exceptional candidates can be
placed anywhere in the preference lists.

1 Introduction

Matching problems occur in various applications and scenarios such as the as-
signment of children to schools, college students to dorm rooms, junior doctors
to hospitals, and so on. In all the aforementioned, and similar, problems, it is
understood that the participants (which we will refer to as agents) have pref-
erences over other agents, or subsets of agents. The majority of the literature
assumes that these preferences are ordinal, and that is the assumption we make
in this work as well. Moreover, it is widely accepted that a “good” and “reason-
able” solution to a matching problem must be stable, where stability is defined

2 Meeks and Rastegari

according to the context of the problem at hand. Intuitively speaking, a stable
solution guarantees that no subset of agents find it in their best interest to leave
the prescribed solution and seek an assignment amongst themselves. Unfortu-
nately, many interesting and important stable matching problems are known to
be NP-hard even for highly restricted cases.

In this paper we focus on the Stable Marriage problem (SM), which is perhaps
the most widely studied matching problem. In an instance of SM we have two
disjoint sets of agents, men and women, each having a strict preference ordering
over the individuals of the opposite sex (candidates). A solution to this problem is
a matching, that is a mapping from men to women where each man is matched
to at most one woman and vice versa. Each agent prefers being matched to
remaining unmatched. A matching is stable if there are no two agents a and b
who prefer each other to their assigned partners. If such a pair exists, we say
that (a, b) is a blocking pair. Stable Marriage with Incomplete lists (SMI) is a
generalisation of SM where agents are permitted to declare some candidates
unacceptable. In their seminal work, Gale and Shapley [11] showed that every
instance of SMI admits a stable matching that can be found in polynomial time
by their proposed algorithm (GS). A simple extension of GS can be used to
identify stable matchings in domains where agents are additionally allowed to
express indifference between two or more candidates (Stable Marriage with Ties
and Incomplete lists (SMTI)). However, it is known that (in contrast with SMI)
an instance of SMTI might admit stable matchings of different sizes, and GS does
not necessarily find the largest. In many practical applications, it is important
to match as many agents as possible, but finding a matching which achieves
this is much more computationally challenging: Max SMTI, the problem of
determining a maximum cardinality stable matching (i.e., a stable matching
with the largest size amongst all stable matchings) in an instance of SMTI, is
known to be NP-hard [3,14,16,20], even when the input is heavily restricted.

Most hardness results in the study of stable matching problems are based on
the premise that agents may have arbitrary preference lists. In practice, however,
agents’ preferences are likely to be more structured and correlated. In this work,
we consider a setting where agents can be grouped into k different “types”, where
the type of an agent determines (most of) the agent’s preferences, and also how
s/he is compared against other agents. If we allow each agent to have a different
type, this setup does not place any restrictions on the instance. However, we
are interested in the setting where the number of types required to describe an
instance is much smaller than the total number of agents: such a situation would
arise in practice if agents derive their preferences by considering some small col-
lection of attributes of other agents (where each of these attributes has a small
number of possible values). As an example, consider the hospitals-residents job
market in which junior doctors or residents are to be assigned to hospital posts.
It is highly plausible that agents in this market base their preferences on small
collection of candidates’ attributes. E.g. hospitals might rank applicants based on
their exam grade, interview score, etc, and junior doctors might rank the hospi-
tals based on the programs they offer, their reputation, their geographic location,

Stable Marriage with Groups of Similar Agents 3

etc. Similar observations have been made in the literature (see [2,4]) regarding
stable marriage market and stable roommate market respectively, where agents
form preferences based on candidates’ attributes such as attractiveness, intelli-
gence, wealth, etc. In this setting, we obtain our set of types by first partitioning
agents by their profile of attributes, then further partitioning each set by the
preference list over other profiles of attributes. Note that the number of possible
preference lists depends only on the number of possible attribute profiles.

The notion of types is also useful if we are interested in a relaxation of
stability, where agents are only willing to form a private arrangement with a
partner who is distinctly superior to their current partner with respect to an
important characteristic. It is reasonable to assume that in practice a certain
amount of effort is required by both agents in a blocking pair to make a private
arrangement outside the matching, and so agents are unlikely to make this effort
for a very small improvement in their utility. Suppose that an agent is only willing
to make the effort to form a private arrangement if it results in a significantly
better partner, specifically one which has a significantly better value for the most
important attribute. In this case we only need to consider attributes which are
the most important for at least one agent, and moreover we might reasonably
consider only a small number of categories of values for these attributes.

The simplest model is to assume that the agents of the same type are com-
pletely indistinguishable. That is, they have the same preference lists, and every
other agent that finds their type acceptable is indifferent between them. Equiv-
alently, we can say that each type has a preference ordering over types of the
candidates, which need not be complete or strict. We also consider two gener-
alisations of this basic model. In the first generalisation, agents no longer have
to be indifferent between agents of the same type: they can refine their prefer-
ence lists arbitrarily (so that agents of the same type still occur consecutively),
so long as the preference lists for agents of the same type are identical. In the
second generalisation, we instead enrich the basic model by allowing each agent
to consider some small number of other agents “exceptional”: such agents can
appear anywhere in the preference list, regardless of their type. This situation
with exceptions might arise in practice if, for example, an agent knows some of
the candidates directly or through a third-party connection and, based on this
additional information, ranks them disregarding their type, e.g. at the top or
bottom of his/her preference list.

Our contribution. We consider the parameterised complexity of Max SMTI
in all three settings. In the basic model and the extension which allows con-
sistently refined preference lists, we show that the problem is in FPT parame-
terised by the number of types. In both settings the problem further becomes
polynomial-time solvable if all preferences over types are strict. When exceptions
are allowed in the preference lists, we demonstrate that the problem is once again
in FPT, parameterised by the number of types, if each agent considers at most
one agent exceptional, whom s/he promotes to the top of his/her preference list.
On the other hand, if two arbitrarily placed exceptions are allowed, Max SMTI
remains NP-hard, even if the number of types is bounded by a constant.

4 Meeks and Rastegari

Due to shortage of space we have omitted or shortened the proofs. We refer
the reader to the full version of the paper [18].

1.1 Definitions

Let N denote a set of n agents, which is composed of two disjoint sets. We use
the term candidates to refer to the agents on the opposite side of the market to
that of an agent under consideration. Each agent finds a subset of candidates
acceptable and ranks them in order of preference. Preference orderings need
not be strict, so it is possible for an agent to be indifferent between two or
more candidates. We write b �a c to denote that agent a prefers candidate b to
candidate c, and b 'a c to denote that a is indifferent between b and c. We write
b �a c to denote that a either prefers b to c or is indifferent between them. The
indifference relation 'a implies an equivalence relation on acceptable candidates
for a; each equivalence class under 'a is referred to as a tie.

In an instance of SMTI, a matching M is a pairing of men and women such
that no one is paired with an unacceptable partner, each man is paired with at
most one woman, and each woman is paired with at most one man. We write
(a, b) ∈ M to say that a and b are matched in M . We use M(a) to denote the
agent matched to a in M . We write M(a) = ∅ if agent a is unmatched in M .
We assume that every agent prefers being matched to an acceptable candidate
to remaining unmatched. Given an instance of SMTI, a matching M is (weakly)
stable if there is no pair (a, b) /∈ M where a prefers b to his current partner in
M , i.e., b �a M(a), and vice versa. For further background and terminology on
stable matchings we refer the reader to [15].

We are concerned with the parameterised complexity of computational prob-
lems that are intractable in the classical sense. Parameterised complexity pro-
vides a multivariate framework for the analysis of hard problems: if a problem
is known to be NP-hard, so that we expect the running-time of any algorithm
to depend exponentially on some aspect of the input, we can seek to restrict
this combinatorial explosion to one or more parameters of the problem rather
than the total input size. This has the potential to provide an efficient solution
to the problem if the parameter(s) in question are much smaller than the total
input size. A parameterised problem with total input size n and parameter k is
considered to be tractable if it can be solved by a so-called FPT algorithm, an
algorithm whose running time is bounded by f(k) · nO(1), where f can be any
computable function. Such problems are said to be fixed parameter tractable,
and belong to the complexity class FPT. For further background on the theory
of parameterised complexity, we refer the reader to [7,8,10].

1.2 Related Work

The NP-hardness of Max SMTI has been shown for a variety of restricted
settings, for example: (1) even if each man’s list is strictly ordered, and each
woman’s list is either strictly ordered or is a tie of length 2 [16], (2) even
if each mans preference list is derived from a strictly-ordered master list of

Stable Marriage with Groups of Similar Agents 5

women, and each woman’s preference list is derived from a master list of men
that contains only one tie [14], and (3) even if the SMTI instance has sym-
metric preferences; that is, for any acceptable (man, woman) pair (mi, wj),
rank(mi, wj) = rank(wj ,mi) [20], where rank(a, b) is defined to be one plus
the number of candidates that a prefers to b.

There are a limited number of works addressing fixed-parameter tractability
in stable matching problems. Marx and Schlotter [17] gave the first parame-
terised complexity results on Max SMTI. They showed that the problem is in
FPT when parameterised by the total length of the ties, but is W[1]-hard when
parameterised by the number of ties in the instance, even if all the men have
strictly ordered preference lists. Very recently, three different works have studied
hard stable matching problems from the perspective of parameterised complex-
ity. Mnich and Schlotter [19] obtained results on the parameterised complexity of
finding a stable matching which matches a given set of distinguished agents and
has as few blocking pairs as possible. Gupta et al. [13] showed that several hard
stable matching problems, including Max SMTI, are W[1]-hard when parame-
terised by the treewidth of the graph obtained by adding an edge between each
pair of agents that find each other mutually acceptable. Gupta et al. [12] studied
above guarantee parameterisations of the problem of finding a stable matching
that balances between the dissatisfaction of men and women, with parameters
that capture the degree of dissatisfaction.

Settings in which agents are partitioned into different types, or derive their
preferences based on a set of attributes assigned to each candidate, have been
considered for the problems of sampling and counting stable matchings in in-
stances of SM or SR (Stable Roommate problem); see, e.g., [2,4,5]. Echenique
et al. [9] studied the problem of characterising matchings that are rationalisable
as stable matchings when agents’ preferences are unobserved. They focused on
a restricted setting that translates into assigning each agent a type based on
several attributes, and assuming that agents of the same type are identical and
have identical preferences. They remarked that empirical studies on marriage
typically make such an assumption [6]. Bounded agent types have been consid-
ered by Aziz and de Keijzer [1] and Shrot et al. [22] to derive polynomial-time
results for the coalition structure generation problem, an important issue in co-
operative games when the goal is to partition the participants into exhaustive
and disjoint coalitions in order to maximise the social welfare.

2 Our basic model: agents of the same type are
indistinguishable

In this section we begin with a formal definition of the simplest model we con-
sider, in which agents’ preferences can be derived directly from the preferences
of types over types of candidates. We then identify a necessary and sufficient
condition, in terms of the type of the least desirable partner assigned to any
agent of each type, for a matching to be stable in this model. We use this to
show that, if there are k types, we can solve Max SMTI by solving kO(k) · log n

6 Meeks and Rastegari

instances of Max Flow on directed networks with O(k) vertices and maximum
edge capacity O(n). This implies that Max SMTI, parameterised by k, belongs
to FPT.

2.1 Definition of typed instances

Assume that there are k types available for agents. Let [k] denote the set
{1, 2, . . . , k}. Let Ni denote the set of agents that are of type i. Thus we have
that the set of agents N =

⋃
i∈[k] Ni. Each type i has a preference ordering

over types of the candidates, which need not be complete or strict. We assume,
without loss of generality, that |Ni| > 0 for all i ∈ [k], and that each type finds
at least one other type acceptable. We write j �i ` if agents of type i strictly
prefer agents of type j to agents of type `. We write j 'i ` to denote that agents
of type i are indifferent between agents of types j and `, and j �i ` if agents of
type i prefer agents of type j to those of type ` or are indifferent between the
two. We assume that given every two agents x and y of the same type:

1. x and y have identical preference lists , and
2. all other agents are indifferent between x and y.

These requirements imply that any agent either finds all agents of a given
type acceptable (and is indifferent between them) or finds none of them accept-
able. We say that an instance of a stable matching problem satisfying these
requirements is typed, and refer to the standard problems with input of this
form as Typed Max SMTI etc. Note that Typed Max SMTI remains NP-
hard when k is considered to be part of the input: we can always create a typed
instance by assigning each agent its own type.

A typed instance I of SMTI is given as input by specifying the number
of types k and, for each type i, the set Ni of agents of type i as well as the
preference ordering �i over types of the candidates. Observe that, if we are only
given the preference list for each agent as input, it is straightforward to compute,
in polynomial time, the coarsest partition of the agents into types that satisfies
the definition of a typed instance (see [18]). Having found such a partition, the
preference lists over types can also be constructed efficiently.

Example 1. Assume we have 4 types for the agents, all men are of type 1 and
types 2, 3 and 4 correspond to women. Let the preference ordering of type 1 over
types of women be as follows, where the preference list is ordered from left to
right in decreasing order of preference, and the types in round brackets are tied:
(2 3) 4. Assume that there are 7 women and w1 and w2 are of type 2, w3 and w4

are of type 3, and w5, w6 and w7 are of type 4. Therefore, the preference lists of
all men under the typed model are as follows: (w1 w2 w3 w4) (w5 w6 w7).

2.2 An FPT algorithm for Typed Max SMTI

Let I be a typed instance of SMTI, and let M be a matching in I. We may assume
without loss of generality that every agent is matched, by creating sufficiently

Stable Marriage with Groups of Similar Agents 7

many dummy agents of type k + 1 which are inserted at the end of each man’s
and woman’s (possibly incomplete) preference list. We define worstM (i) to be
the type of the least desirable agent with which any agent of type i is matched in
M , breaking ties arbitrarily (e.g. lexicographically). Note that worstM (i) would
be a dummy type if an agent of type i is unmatched (i.e. matched to a dummy
agent) in M . Let type(a) denote the type of a given agent a.

The key observation is that, in order to determine whether or not M is stable,
it suffices to examine the values of worstM (i) for each i ∈ [k].

Lemma 1. Let I be a typed instance of SMTI. Then a matching M in I is
stable if and only if there is no pair (i, j) ∈ [k](2) such that j �i worstM (i) and
i �j worstM (j).

We say that a matching M realises a given function worst : [k]→ [k+1] if, for
each i ∈ [k], the least desirable partner any agent of type i has in M is of type no
worse than worst(i). We say that a function worst : [k]→ [k+1] is I-stable for an
instance I of SMTI if there is no pair (i, j) ∈ [k](2) such that j �i worst(i) and
i �j worst(j). Given any I-stable function worst, we write max(worst) for the
maximum cardinality of any matching in I that realises worst. Using Lemma
1, it is straightforward to check that, given a typed instance I of SMTI, the
cardinality of a solution to Max SMTI can be found by taking the largest value
of max(worst) over all I-stable functions worst.

Corollary 1. Let I be a typed instance of SMTI. Then the cardinality of the
largest stable matching in I is equal to max{max(worst) : worst is I-stable}.

We next show that, given an arbitrary I-stable function worst, we can com-
pute max(worst) in time polynomial in k and log n. We do this by solving
O(log n) instances of Max Flow on a directed network.

Lemma 2. Let I be a typed instance of SMTI, and fix an I-stable function
worst. We can compute max(worst) in time O(k3 log2 n).

Proof (Proof sketch.). The proof is structured as follows. Suppose that in to-
tal there are n1 women and n2 men, so we have that n = n1 + n2. Note that
max(worst) is at most min{n1, n2}, which in turn is at most bn/2c. There-
fore, using a binary search strategy, we can determine the maximum size of a
matching realising worst by solving O(log n) instances of the decision problem
“Is max(worst) at least c?”, where c ∈ {1, . . . ,min{n1, n2}}. We show that we
can determine whether max(worst) ≥ c by solving Max Flow on a directed
network D with O(k) vertices, in which the maximum capacity of any edge is
O(n) (see Figure 1); we can construct D from I in time O(k2 log n). Max Flow
can be solved on D in time O(k3 log n), using an algorithm due to Orlin [21],
where the log n factor is required to carry out arithmetic operations on integers
of size O(n). Therefore, we conclude that we can compute max(worst) in time
O(k3 log2 n). ut

It then follows that Typed Max SMTI is in FPT parameterised by the
number k of different types in the instance.

8 Meeks and Rastegari

v1

vi

vk1

dw

s

vk1+1

vj

vk

dm

t

|N1|

|Ni|

|Nk1
|

n2-c

|Nk1+1|

|Nj|

|Nk|

n1-c

min(n1,n2) - c

min(|Ni|,|Nj|)

|Ni| |Nj|

Present iff j i worst(i)
and i j worst(j)

Present iff worst(i) = k + 1 Present iff worst(j) = k + 1

Fig. 1. Network D, constructed from an instance of SMTI in the proof of Lemma 2.
Types 1, . . . , k1 are types of women and types k1 + 1, . . . , k are types of man. Each
vertex vi corresponds to type i and both vertices dw and dm correspond to the dummy
type. In total there are n1 women and n2 men. We have max(worst) ≥ c if and only if
the maximum flow in D is equal to n1 + n2 − c.

Corollary 2. Typed Max SMTI can be solved in time kO(k) · log2 n+O(n). If
we are only interested in computing the size of the maximum cardinality match-
ing, and not the matching itself, this can be done in time kO(k) · log2 n.

3 Agents of the same type refine their preferences in the
same way

In this section, we generalise the model from Section 2 by allowing agents to re-
fine their preferences over candidates within a particular type, so long as agents
of the same type still have identical preference lists. Our key result is that refining
preferences in this way can never change the size of the largest stable match-
ing, compared with the corresponding typed instance. We also use the tools we
develop to deal with this generalisation to show that Max SMTI becomes poly-
nomially solvable if preferences over types are strict, both in this setting and
under the basic model.

3.1 Definition of consistently-refined-typed instances

Consider a generalisation of typed instances in which agents are no longer nec-
essarily indifferent between two agents of the same type, however agents of the
same type occur consecutively in preference lists. This means that for any two
agents x and y of the same type i:

1. x and y have identical preference lists,
2. no agent of a different type appears between x and y in any preference list,

and

Stable Marriage with Groups of Similar Agents 9

3. if a tie in a preference list contains agents of two or more types, then that
tie is in fact a union of types.

The third criterion allows us to define in a consistent way what it means for
agents of type i to strictly prefer type j to type ` or to be indifferent between
them. We will say that agents of type i prefer type j to type ` if and only if given
every pair of agents x of type j and y of type ` all agents in Ni prefer x to y.
On the other hand, if type i is indifferent between types j and ` it means that,
in the preference list for each agent x of type i, all agents in Nj ∪N` belong to
a single tie.

If an instance of a stable matching problem satisfies these slightly weaker
requirements, we say that the instance is consistently-refined-typed, and refer
to the standard problems with input of this form as Consistently-Refined-
Typed Max SMTI etc.

A consistently-refined-typed instance I of SMTI is given as an input by spec-
ifying the number of types k and, for each type i, the set Ni of agents of type i
as well as the preference ordering �i over agents. Note that for typed instances
�i specified preferences over types, whereas here the preferences are over agents.
However, we can compute preferences over types from preferences over agents
in time O(kn). Note that if we are only given the preference list for each agent
as input (i.e., no information about types is given), it is straightforward to com-
pute, in polynomial time, the coarsest partition of the agents into types that
satisfies the definition of consistently-refined-typed instance (see [18]).

Example 2. Assume we have 4 types for the agents, all men are of type 1 and
types 2, 3, and 4 correspond to women. Assume also that we have 3 men m1,
m2 and m3, and 7 women where w1 and w2 are of type 2, w3 and w4 are of type
3, and w5, w6 and w7 are of type 4. Let all men have the preference ordering
(w1 w2 w3 w4) w6 (w5 w7), women of types 2 and 3 have the preference ordering
(m1 m2 m3), and women of type 4 have the preference ordering m2 m1. This
setting constitutes a consistently-refined-typed instance. It is easy to compute
the preferences of type 1 agents over the types of women, which is (2 3) 4,
similar to that of Example 1. Allowing men to have the preference ordering
(w1 w2) w3 w4 (w5 w6 w7), while keeping everything else unchanged, also gives
us a consistently-refined-typed instance. In this new instance agents of type 1
have the strict preference ordering 2 3 4 over the types of women.

3.2 An FPT algorithm for Consistently-Refined-Typed Max SMTI

To extend the result for Typed Max SMTI to Consistently-Refined-Typed
Max SMTI, we need the following result.

Lemma 3. Let I be a consistently-refined-typed instance of SMTI and suppose
that M is a matching in I such that there is no pair (i, j) ∈ [k](2) where j �i

worstM (i) and i �j worstM (j). Then there is a stable matching M ′ such that,
for every (i, j) ∈ [k](2), both M and M ′ contain the same number of pairs that
consist of one agent of type i and another of type j. Moreover, given M , we can
compute M ′ in time O(kn).

10 Meeks and Rastegari

Let I be a consistently-refined-typed instance of SMTI and let I ′ be a typed
instance of SMTI that is obtained from I by ignoring the refined preferences
within each type (i.e. every agent is indifferent between the candidates of the
same type). It follows from the definition of stability that every matching that is
stable in I is also stable in I ′. Lemma 3 implies that for any stable matching M
in I ′, there exists a stable matching M ′ in I of the same cardinality as M . Thus,
in order to find a maximum cardinality matching in a consistently-refined-typed
instance I of SMTI, it suffices to (1) solve the typed problem (i.e. ignore the
refined preferences within each type) and then (2) use the algorithm provided in
the proof of Lemma 3 (see [18]) to convert the solution to a matching of the same
cardinality that is stable in the instance I. In fact, in (1) it is enough to only
compute the maximum flow f (and not the matching M); the flow f , that can be
computed in time kO(k) · log2 n, provides sufficient information for the algorithm
described in the proof of Lemma 3 to construct M ′ in time O(kn). Deriving a
typed instance from a consistently-refined-typed instance can be done easily in
time O(kn). It thus follows that Consistently-Refined-Typed Max SMTI
is in FPT parameterised by the number k of different types in the instance.

Theorem 1. Consistently-Refined-Typed Max SMTI can be solved in
time kO(k) · log2 n +O(kn).

3.3 Strict preferences over types

Elsewhere in the paper, we assume that agents can be indifferent between agents
of two or more types. It turns out that Max SMTI becomes easier if we restrict
the set of possible instances by assuming that agents have strict preferences over
types. We prove this by breaking ties arbitrarily in a consistent way for each
type, to obtain an instance I ′ of the polynomially-solvable problem SMI, and
then using Lemma 3 to argue that the cardinality of the largest stable matching
in I ′ is the same as that in our original instance. This argument is based on a
private communication with David Manlove.

Theorem 2. When preferences over types are strict, Typed Max SMTI and
Consistently-Refined-Typed Max SMTI are polynomial-time solvable. Fur-
thermore, all stable matchings are of the same size.

4 Exceptions in preference lists

We have argued for the existence of typed instances, where k � n, based on
the premise that agents’ preferences are formed based on a small collection of
candidates’ attributes. In practice, it seems likely that an agent might have ac-
cess to additional information about some small subset of the candidates, either
through personal acquaintance or some third-party connection; we say that an
agent considers such candidates to be exceptional. This additional information
may alter the agent’s opinion of candidates relative to that derived from the

Stable Marriage with Groups of Similar Agents 11

attributes alone, and so affect where these candidates are placed in his/her pref-
erence ordering. In this section we consider a generalisation of typed instances in
which each agent may find some small collection of other agents to be exceptional
and ranks them without regard to their types. Note that if only a small number
of the agents in our instance consider one or more candidates to be exceptional,
we can capture this information in a typed instance: each agent with exceptions
in their preference list can be assigned their own type.

We say that an instance I of a stable matching problem is a (c,Any)-exception-
typed instance, for a given constant c, if I is a typed instance in which each agent
finds at most c number of the candidates exceptional and may rank them any-
where in his/her preference list. Two special cases are (c,Top)-exception-typed
and (c,Bottom)-exception-typed instances where the exceptions are promoted to
the top, or demoted to the bottom, of the preference lists, respectively. We re-
fer to the standard problems with input of this form as (c,Any)-Exception
Typed Max SMTI etc.

In this section we show that (1,Top)-Exception Typed Max SMTI be-
longs to FPT, but that (2,Any)-Exception Typed Max SMTI remains NP-
hard even when there are only a constant number of types. The computa-
tional complexity of (1,Any)-Exception Typed Max SMTI and (2,Top)-
Exception Typed Max SMTI remain open.

We begin with the case of (1,Top)-Exception Typed Max SMTI. For
each agent a let ex(a) denote the exceptional candidate from a’s point of view;
ex(a) = ∅ if a does not find any candidate exceptional. Formally, we say that I
is a (1,Top)-exception-typed instance of SMTI if, given every two agents x and
y of the same type:

1. x and y have identical preference lists when restricted to N \ {ex(x), ex(y)},
and

2. all other agents who do not find either x or y exceptional are indifferent
between x and y.

Without loss of generality we can assume that there is no pair of agents who
each consider the other to be exceptional in a (1,Top)-exception-typed instance
of SMTI. If there are such pairs, they must be assigned to each other in any
stable matching; so we can remove all such pairs to reduce to an instance that
satisfies this assumption. A (1,Top)-exception-typed instance of SMTI is given
as input by, in addition to the specifications needed for a typed instance (see
Section 2.1), providing for each agent his or her exceptional candidate (if s/he
has one).

Let I be a (1,Top)-exception-typed instance of SMTI, and let M be a match-
ing in I. As in Section 2.2, we may assume without loss of generality that every
agent is matched, by creating sufficiently many dummy agents of type k + 1
which are inserted at the end of each man’s and woman’s (possibly incomplete)
preference list. In order to obtain an analogue of the stability criterion given in
Lemma 1 in this setting, we need some more notation.

Recall that we write j 'i ` if agents of type i are indifferent between types j
and `. It is straightforward to see that 'i defines an equivalence relation on [k]

12 Meeks and Rastegari

for each i. Given j ∈ [k], we write classi(j) for the equivalence class under 'i

which contains j. For each equivalence class J under 'i, we say that the agent
x of type i has subtype i[J] if:

1. some agent y, with type(y) ∈ J , considers x exceptional, and
2. there is no agent z, such that type(z) �i j for j ∈ J , who considers x

exceptional.

Thus subtype(x) = i[J] if the most desirable agents who consider x exceptional
have types from J . If an agent x of type i is not considered exceptional by
any agent, we say that x has subtype i[{k + 1}]. We also introduce a second
dummy type 0, which is inserted at the head of each type’s preference list and
corresponds to exceptional candidates. We write Ni[J] for the set of agents of
subtype i[J]. Observe that the sets Ni[J] can be computed in time O(n): for each
agent x, subtype(x) can be computed in time O(n) with suitable data structures.

We will need a variation on the function worstM , which we call worstexM .
For any non-empty set Ni[J], worstexM (i[J]) is the type of the least desirable
partner received by an agent of subtype i[J] who is not matched with an agent
they find exceptional; if the least desirable partners assigned to agents of subtype
i[J] belong to two or more different types between which agents of type i are
indifferent, we define worstexM (i[J]) to be the lexicographically first such type.
If every agent of subtype i[J] is matched with a partner they find exceptional,
we set worstexM (i[J]) = 0. Therefore worstM (i), as defined in Section 2.2, is the
least desirable type out of {worstexM (i[J]) : Ni[J] 6= ∅}.

We say that a matching M in an instance I of (1,Top)-exception-typed
SMTI realises the function worstex, mapping nonempty subtypes i[J] to val-
ues in {0, 1, . . . , k + 1}, if worstexM (i[J]) �i worstex(i[J]) whenever Ni[J] 6= ∅.
We can now characterise stability in a (1,Top)-exception-typed instance.

Lemma 4. Let I be a (1,Top)-exception-typed instance of SMTI. Then a match-
ing M in I is stable if and only if there is no pair (i, j) ∈ [k](2) such that

1. j �i worstM (i) and i �j worstM (j), or
2. i �j worstexM (j[classj(i)]).

We will say that a function worstex is I-exception-stable for a (1,Top)-exception-
typed instance I of SMTI if there is no pair (i, j) ∈ [k](2) such that either
j �i worst(i) and i �j worst(j) or i �j worstex(j[classj(i)]). Given any I-
exception-stable function worstex, we write max(worstex) for the maximum car-
dinality of any matching in I that realises worstex. We have an analogous result
to Corollary 1 in this setting.

Lemma 5. Let I be a (1,Top)-exception-typed instance of SMTI. Then the car-
dinality of the largest stable matching in I is equal to

max{max(worstex) : worstex is I-exception-stable}.

By solving a collection of instances of Maximum Matching in suitable
undirected graphs, we are able to compute max(worstex) (and generate a stable
matching of this size) in time O(n5/2 log n), for any I-exception-stable function
worstex. Our FPT result now follows.

Stable Marriage with Groups of Similar Agents 13

Theorem 3. (1,Top)-Exception Typed Max SMTI can be solved in time

O
(
kk

2

(k3 + n5/2 log n)
)

.

In contrast with this positive result, we show that only a small relaxation
of the requirements on exceptions results in a problem that is NP-hard, even if
the number of types is bounded by a constant. We show that, if we allow each
agent to declare two candidates exceptional, and these two candidates can appear
anywhere in the agent’s preference list, then Max SMTI remains NP-hard under
sever restrictions. In fact, we give a reduction from the NP-complete problem
Clique to the special case Com SMTI, which involves deciding whether a
given instance of SMTI admits a complete stable matching (i.e., a matching
that matches all agents).

Theorem 4. (2,Any)-Exception Typed COM SMTI is NP-complete, even
if only men have exceptions in their preference lists, preferences over types are
strict, and there are three types each of men and women.

5 Discussion and Future Work

We believe that the same techniques used in this paper can be extended to
prove analogous results in all three settings for the Hospitals-Residents problem
(a many-one generalisation of SMTI) and the Stable Roommates problem (a
non-bipartite generalisation of SMTI). For typed and consistently-refined-typed
instances, a standard cloning argument gives the corresponding results for the
Hospitals-Residents problem immediately.

We note that our FPT results can also be derived using Integer Linear Pro-
gramming (ILP) techniques: for each function worst (or worstex), the correspond-
ing optimisation problem can be encoded as an ILP instance. For the problems
studied here, the ILP approach results in worse running times than the algo-
rithms we have described, but this alternative approach might be helpful in
tackling other stable matching problems involving types.

It would be interesting to investigate what further generalisations of our
model yield FPT algorithms for NP-hard stable matching problems. In particu-
lar, the complexity of (1,Bottom)-Exception-Typed Max SMTI, (1,Any)-
Exception-Typed Max SMTI, and (2,Top)-Exception-Typed Max SMTI
remain open. Moreover, we could consider further restrictions with two or more
exceptions, for example if an exceptional candidate can only be moved to the top
or bottom of its type. Another intriguing question would be to understand how
the complexity of MAX SMTI and other stable matching problems changes
when agents on only one side of the market are associated with types.

Acknowledgements. The first author is supported by a Personal Research Fellow-
ship from the Royal Society of Edinburgh (funded by the Scottish Government).
Both authors are extremely grateful to David Manlove for his insightful com-
ments on a preliminary version of this manuscript.

14 Meeks and Rastegari

References

1. Aziz, H., de Keijzer, B.: Complexity of coalition structure generation. In: Proceed-
ings of the 10th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS’11. pp. 191–198 (2011)

2. Bhatnagar, N., Greenberg, S., Randall, D.: Sampling stable marriages: why spouse-
swapping won’t work. In: Proceedings of the 19th ACM/SIAM Symposium on
Discrete Algorithms, SODA ’08. pp. 1223–1232. ACM-SIAM (2008)

3. Biró, P., Manlove, D., Mittal, S.: Size versus stability in the marriage problem.
Theoretical Computer Science 411, 1828–1841 (2010)

4. Chebolu, P., Goldberg, L.A., Martin, R.: The complexity of approximately counting
stable matchings. Theoretical Computer Science 437, 35–68 (2012)

5. Chebolu, P., Goldberg, L.A., Martin, R.: The complexity of approximately counting
stable roommate assignments. Journal of Computer and System Sciences 78(5),
1579–1605 (2012)

6. Choo, E., Siow, A.: Who marries whom and why. Journal of Political Economy
114(1), 175–201 (2006)

7. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International Pub-
lishing (2015)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer London (2013)

9. Echenique, F., Lee, S., Shum, M., Yenmez, M.B.: The revealed preference theory
of stable and extremal stable matchings. Econometrica 81(1), 153–171 (2013)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
11. Gale, D., Shapley, L.: College admissions and the stability of marriage. American

Mathematical Monthly 69, 9–15 (1962)
12. Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: Balanced stable marriage: How close

is close enough. Tech. Rep. 1707.09545, CoRR, Cornell University Library (2017)
13. Gupta, S., Saurabh, S., Zehavi, M.: On treewidth and stable marriage. Tech. Rep.

1707.05404, CoRR, Cornell University Library (2017)
14. Irving, R., Manlove, D., Scott, S.: The stable marriage problem with master pref-

erence lists. Discrete Applied Mathematics 156(15), 2959–2977 (2008)
15. Manlove, D.: Algorithmics of Matching Under Preferences. World Scientific (2013)
16. Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of

stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)
17. Marx, D., Schlotter, I.: Parameterized complexity and local search approaches for

the stable marriage problem with ties. Algorithmica 58(1), 170–187 (2010)
18. Meeks, K., Rastegari, B.: Solving hard stable matching problems involving groups

of similar agents. Tech. Rep. 1708.04109, CoRR, Cornell University Library (2018)
19. Mnich, M., Schlotter, I.: Stable marriage with covering constraints-a complete com-

putational trichotomy. In: Proceedings of the 10th International Symposium on
Algorithmic Game Theory, SAGT’17. pp. 320–332 (2017)

20. O’Malley, G.: Algorithmic Aspects of Stable Matching Problems. Ph.D. thesis,
University of Glasgow, Department of Computing Science (2007)

21. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the 45th Annual
ACM Symposium on Theory of Computing, STOC ’13. pp. 765–774. ACM (2013)

22. Shrot, T., Aumann, Y., Kraus, S.: On agent types in coalition formation problems.
In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS’10. pp. 757–764 (2010)

	Stable Marriage with Groups of Similar Agents

