
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/170404/

Deposited on: 03 October 2018
Association of thyroid hormone therapy with quality of life and thyroid-related symptoms in patients with subclinical hypothyroidism: a systematic review and meta-analysis

Martin Feller, MD MSc¹,²,³, Marieke Snel, MD PhD³, Elisavet Moutzouri, MD PhD¹,², Douglas C Bauer, MD⁴, Maria de Montmollin, MD¹,², Drahomir Aujesky, MD MSc¹, Ian Ford, PhD⁵, Jacobijn Gussekloo, MD PhD³,⁶, Patricia M Kearney, MD PhD MPH⁷, Simon Mooijaart MD PhD¹,⁸, Terry Quinn, MD⁹, David Stott, MD⁹, Rudi Westendorp, MD PhD¹⁰, Nicolas Rodondi, MD MAS¹,², Olaf M Dekkers MD, MA, MSc, PhD³,¹¹,¹²

Authors affiliations:
¹Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; ²Institute of Primary Health Care (BIHAM), University of Bern, Switzerland; ³Department of Endocrinology / General Internal Medicine, Leiden University Center, The Netherlands; ⁴Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, California, USA; ⁵Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, UK; ⁶Department of Public Health and Primary Care, Leiden University Center, The Netherlands; ⁷School of Public Health, University College Cork, Ireland; ⁸Institute for Evidence-based Medicine in Old Age, Leiden University Center, The Netherlands; ⁹Institute of Cardiovascular Medicine, University of Glasgow, UK; ¹⁰Department of Public Health and Center for Healthy Aging, University of Copenhagen, Denmark; ¹¹Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands; ¹²Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark

Corresponding author:
Martin Feller, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Phone number: +41 31 632 77 47; Email: Martin.Feller@insel.ch

Date of revision: August 29, 2018

Manuscript word count: 2,929
Key Points

- Among patients with subclinical hypothyroidism, is the use of thyroid hormone therapy associated with improvements in general quality of life or thyroid-related symptoms?
- In this meta-analysis of 21 randomized clinical trials including 2,192 participants with subclinical hypothyroidism, thyroid hormone therapy was not significantly associated with improvements in general quality of life (standardized mean difference [SMD], -0.11) or thyroid-related symptoms (SMD, 0.01).
- These findings do not support the routine use of thyroid hormone therapy in adults with subclinical hypothyroidism.

Abstract

Importance: The benefit of thyroid hormone therapy for subclinical hypothyroidism is uncertain. New evidence from recent large randomized clinical trials (RCT) warrants an update of previous meta-analyses.

Objective: To conduct a meta-analysis of the association of thyroid hormone therapy with quality of life and thyroid related symptoms in adults with subclinical hypothyroidism.

Study Selection: RCTs that compared thyroid hormone therapy to placebo/no therapy in non-pregnant adults with subclinical hypothyroidism were eligible. Two reviewers independently evaluated eligibility based on titles and abstracts of all retrieved studies. Studies not excluded in this first step were independently assessed for inclusion after full-text evaluation by two reviewers.

Data Extraction and Synthesis: Two independent reviewers extracted data, assessed risk of bias (Cochrane risk of bias tool), and evaluated the quality of evidence (GRADE tool). For synthesis, differences in clinical scores were transformed (e.g., quality of life) into standardized mean differences (SMD, positive values indicate benefit of thyroid hormone therapy; 0.2, 0.5 and 0.8 correspond to small, moderate and large effects). Random-effects models for meta-analyses were applied.

Main Outcomes and Measures: General quality of life and thyroid-related symptoms after a minimum follow-up of three months.
Results: Overall, 21 of 3,088 initially identified publications met the inclusion criteria with 2,192 adults randomized. After treatment (range 3 to 18 months), thyroid hormone therapy was associated with lowering the mean TSH value into the normal reference range, compared with placebo (range 0.5 to 3.7mU/l vs 4.6 to 14.7mU/l), but was not associated with benefit regarding general quality of life (n=796, SMD -0.11, 95%CI -0.25 to 0.03, I²=66.7%) and thyroid-related symptoms (n=858, SMD 0.01, 95%CI -0.12 to 0.14, I²=0.0%). Overall, risk of bias was low and the quality of evidence assessed with the GRADE tool was judged moderate to high.

Conclusion and Relevance: Among non-pregnant adults with subclinical hypothyroidism, the use of thyroid hormone therapy was not associated with improvements in general quality of life or thyroid-related symptoms. These findings do not support the routine use of thyroid hormone therapy in adults with subclinical hypothyroidism.

Registration: The study protocol was registered on PROSPERO (CRD42017055536).
Introduction

Subclinical hypothyroidism, defined as elevated Thyroid-stimulating hormone (TSH) in combination with a normal free thyroxine (fT4), is common. According to the NHANES III report, an estimated 13 million people have subclinical hypothyroidism in the United States. The prevalence is higher in women and in older people. Subclinical hypothyroidism is often treated with thyroid hormones, particularly when it co-occurs with symptoms potentially attributable to hypothyroidism such as tiredness, constipation, and unexplained weight gain.

Relatively limited evidence exists from randomized clinical trials (RCTs) to guide therapy of subclinical hypothyroidism. Systematic reviews have been inconclusive and clinical practice guidelines have varied regarding recommendations for managing subclinical hypothyroidism. Two large randomized trials of levothyroxine therapy in patients with subclinical hypothyroidism were recently completed. This meta-analysis and systematic review incorporates recent trials and evaluated whether thyroid hormone therapy was associated with improved symptoms and other benefits in non-pregnant adults with subclinical hypothyroidism.

Methods

We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement and published the protocol of this systematic review on PROSPERO (CRD42017055536).

Eligibility criteria, literature search and study selection

We considered randomized trials that included non-pregnant adults with subclinical hypothyroidism. Subclinical hypothyroidism was defined as TSH above the reference range in combination with an fT4 within the reference range (according to center-specific reference ranges). The intervention had to consist of thyroid hormone therapy (either triiodothyronine (T3), thyroxine (T4) or a combination of both) for at least one month, with a minimum follow-up of three months. The control group had to receive either placebo or no therapy. In order to be included, studies had to report quantitative data for at least one of the study’s primary or secondary outcomes: general quality of life, thyroid-related quality of life/hypothyroid symptoms, depressive symptoms, fatigue/tiredness, cognitive function, pain, muscle strength, blood pressure, body-mass index, cardiovascular events (myocardial infarction, stroke, revascularization), mortality; or side effects (hyperthyroidism due to overdosing). Data had to be reported with effect estimates and measures of precision (standard deviations or standard errors).

The primary outcomes were general quality of life and thyroid-related quality of life/hypothyroid
symptoms, whereas depressive symptoms, fatigue/tiredness, cognitive function, pain, muscle strength, blood pressure, body-mass index, cardiovascular events (myocardial infarction, stroke, revascularization), mortality and side effects (hyperthyroidism due to overdosing) were secondary outcomes. Studies that only included patients with subclinical hypothyroidism in combination with another specific condition (e.g. patients with diabetic nephropathy and subclinical hypothyroidism) were excluded, because this type of study population is not representative of most patients with subclinical hypothyroidism. We excluded studies that exclusively enrolled pregnant women and/or women who wanted to become pregnant. Pseudorandomization (pre-post comparisons for example) did not qualify for inclusion.

We searched MEDLINE, EMBASE, Web of Science, COCHRANE Library, CENTRAL, Emcare and Academic Search Premier from inception until July 4, 2018 in cooperation with a trained librarian. Search terms were adapted according to the syntax of each specific database, and no language restrictions were applied. We searched trial registries (clinicaltrials.gov) for upcoming (and not yet published) trials on this research topic and asked authors for the status of the trial if not published yet. We screened references of key articles for additional potentially relevant articles. Details of the search strategy are presented in the Appendix.

Two researchers (MS, MDM) evaluated eligibility independently, based on titles and abstracts of all studies retrieved in the electronic search. Studies not excluded in this first step were independently assessed for inclusion after full-text evaluation by two reviewers (MF, MS). We manually screened bibliographies of the included studies as well as guidelines and major reviews for additional studies. Discrepancies were resolved by consensus among the study team.

Data extraction and risk of bias assessment

A standard data extraction form was used, adapted from a template suggested by Cochrane (see Appendix). Two researchers (MS, EM) independently extracted bibliographic details, funding source, eligibility criteria, information about the study population and setting, study design, risk of bias, intervention/control intervention, results, and independently evaluated the quality of evidence (GRADE tool). In case a study reported more than one outcome measure for a specific outcome domain (e.g. more than one cognition test to assess cognitive function), we chose the most relevant measure, based on how broad a domain was assessed and international usage (by consensus among the study team). As an example, Parle and colleagues reported five different cognition tests. We analyzed results from the Mini-Mental State Examination (MMSE) because it is used worldwide and because it
is a broader assessment of cognitive function than alternative tests, such as the Trail Making Test. When a study mentioned an outcome of interest without providing estimates, we contacted the author for the data (e.g., the study reported no difference in body-mass index between the intervention and the control group without providing data on mean differences and standard deviations). If studies reported results for an outcome at multiple time points during the intervention (e.g., body mass index at 6 and 12 months), only the most recent measurement was used in statistical analyses. Data were extracted in duplicate by two independent reviewers (MS, EM), and differences were resolved by consensus.

Statistical analyses

Study results were presented separately for each outcome, with estimates as reported in the original publication and transformed into standardized mean differences (SMD) when different scales were used for the same outcome domain. We coded SMDs such that positive values indicated benefit of thyroid hormone therapy, with 0.2, 0.5, and 0.8 corresponding to small, moderate, and large effects. In contrast, for body-mass index and blood pressure, negative values indicated benefit of thyroid hormone therapy. For estimations of treatment effects, we used mean values and their standard deviations at end of treatment in both groups, assuming balanced baseline values due to the randomised designs.

For outcomes where studies reported treatment effects at different time points, we only included the estimate at the most recent follow-up time point, thereby avoiding counting a study twice in a formal meta-analysis. Overall results were calculated using random effects models, unless less than five studies were included for a meta-analysis, as in this case the between-study variance cannot be estimated reliably and a fixed effect analysis was performed. For better clinical interpretation, overall SMDs were also back-transformed to one original scale according to a method proposed by the Cochrane Collaboration, for general quality of life, thyroid-related quality of life/hypothyroid symptoms, depressive symptoms, cognitive function and muscle strength. Heterogeneity was assessed visually with forest plots and quantified with I^2 (0-40%, 40-75% and >75% for "low", "moderate" and "high", respectively). If substantial heterogeneity existed and a sufficient number of publications was available (n=10), we aimed to explore potential sources of heterogeneity in protocol pre-specified subgroup analyses (e.g., restricting the analysis to high-quality studies). In addition, a post-hoc sensitivity analysis was performed with the aim to evaluate heterogeneity after excluding studies showing statistically significant benefit of placebo treatment. In case of a sufficient number of
publications (n=10), publication bias would be assessed via funnel plots (visually), and more formally with the Egger test.18 Statistical significance was tested 2-sided, and P-values of <0.05 were judged statistically significant. All analyses were conducted with Stata, release 14.

Results

The systematic literature search retrieved 3,086 studies, and two additional studies were retrieved after searching references of key articles. After removing duplicates (1,438), two reviewers (MS, MDM) independently screened 1,650 unique articles for potential eligibility based on title and abstract. Forty-nine potentially eligible studies were evaluated in full-text independently by two reviewers (MF, MS).

Among these, 25 studies did not meet the inclusion criteria. In addition, three studies would have met the inclusion criteria but did not present the data in a manner to be included in the meta-analysis.19–21 For two of these articles, the authors indicated that data were not available anymore.19,20 One author could not be reached (eTable 1 for excluded studies).21 Finally, 21 studies met the inclusion criteria (Flow chart depicted in eFigure 1). Among the 21 studies, a total of 2,192 adults were randomized (Table 1 for included studies). The study size ranged from 20 to 737 participants; the mean age ranged from 32 to 74 years, the proportion of women ranged from 46% to 100%, and baseline mean TSH ranged from 4.4 to 12.8mU/l. Two studies (99 participants) had a mean baseline TSH >10mU/l.22,23 Seven studies provided information about hypothyroid symptoms at baseline and in these studies the burden of symptoms was mild to moderate (Table 1).12,22–27 In the thyroid hormone therapy groups, mean TSH at the end of follow-up ranged between 0.5 and 3.7mU/l (eTable 2), indicating that treatment was associated with normalization of TSH levels. In contrast, mean TSH in the placebo/no intervention groups remained elevated at the end of follow-up, ranging from 4.6 to 14.7mU/l (eTable 2). The duration of the intervention (thyroid hormone therapy or placebo/no therapy) ranged from between 3 and 18 months. Three studies compared thyroid hormone therapy to no intervention and the other studies compared thyroid hormone therapy to placebo.11,28,29 Two studies were supported by industry (Table 1).22,30

Thyroid hormone therapy was not associated with benefit for either of the two primary outcomes: Four studies including 796 participants evaluated general quality of life (SMD -0.11, 95%CI -0.25 to 0.03, I2 66.7%; Figure 1).12,26,27,31 It is estimated that on the EQ-5D scale (range -0.59 to 1.00, higher scores indicate better quality of life), this SMD would represent a difference of 0.02 (95%CI -0.01 to 0.05) in
favor of placebo. Four studies including 858 participants evaluated thyroid-related quality of life/hypothyroid symptoms (SMD 0.01, 95%CI -0.12 to 0.14, I² 0.0%; Figure 1). It is estimated that on the ThyPRO Hypothyroid Symptoms Score (range 0 to 100, higher scores indicate more hypothyroid symptoms), this SMD would represent a difference of 0.18 (95%CI -2.10 to 2.45) in favor of levothyroxine. Similarly, thyroid hormone therapy was not associated with benefit regarding the secondary outcomes: depressive symptoms (four studies, 278 participants, SMD -0.10, 95%CI -0.34 to 0.13, I² 0.0%; Figure 1), on the Hospital Anxiety and Depression Scale (range 0 to 21, higher scores indicate worse depressive symptoms), this SMD would represent a difference of 0.28 (95%CI -0.36 to 0.95) in favor of placebo; cognitive function (four studies, 859 participants, SMD 0.09, 95%CI -0.05 to 0.22, I² 14.7%; Figure 2), on the Letter-digit coding test scale (range 0 or higher (no upper limit), higher scores indicate better cognitive function), this SMD would represent a difference of 1.01 (95%CI -0.56 to 2.46) in favor of levothyroxine; muscle strength (two studies, 695 participants, SMD 0.1, 95%CI -0.1 to 0.2, I² 0.0%; eTable 4), in handgrip strength (in kg), this SMD would represent a difference of 1.12 (95%CI -1.12 to 2.24) in favor of levothyroxine; systolic blood pressure (eight studies, 1,372 participants, -0.7mmHg, 95%CI -2.6 to 1.2, I² 0.0%; Figure 3), or body-mass index (15 studies, 1,633 participants, 0.2kg/m², 95%CI -0.4 to 0.8, I² 45.5%; Figure 4). Only the TRUST trial (the largest included study, with 737 participants randomized) evaluated fatigue/tiredness, cardiovascular events, mortality, and side effects. No beneficial or harmful association between thyroid hormone therapy and these outcomes was reported (Figure 1 & eTable 2 & 4). No study included pain as an outcome. Detailed results were summarized in eTable 2 & 4. Subgroup analyses were not performed, because the number of studies for a single outcome was too small and/or there was low to moderate heterogeneity such that no exploration was indicated. As the meta-analyses for general quality of life and body-mass index showed moderate heterogeneity (I²=66.7% and I²=45.5%, respectively), post-hoc sensitivity analyses were performed, excluding studies showing statistically significant benefit of placebo. Results remained similar, but heterogeneity was lower (general quality of life SMD -0.08, 95%CI -0.22 to 0.06, I² 34.7%; body-mass index -0.2kg/m², 95%CI -0.6 to 0.2, I² 1.6%). Further, we did not formally assess publication bias. Based on the negative results, there was no indication that positive studies were published while negative studies remained unpublished.

The overall quality of the 21 included studies was good with only nine out of 126 items judged to be at high risk of bias (eTable 3); two trials had low risk of bias for all criteria, including the largest and
most recent one, and only one trial, the second largest and second most recent, had a high risk of bias in three out of six domains. Accordingly, the quality of evidence assessed with the GRADE tool was high regarding the main outcomes general quality of life and thyroid-related symptoms, as well as regarding muscle strength, blood pressure and body-mass index (eTable 4). The quality of evidence was moderate for depressive symptoms, fatigue/tiredness, cognitive function and side effects, whereas it was low for cardiovascular events and mortality (eTable 4).

Discussion

In this systematic review and meta-analysis of RCTs in non-pregnant adults with subclinical hypothyroidism, thyroid hormone therapy was not associated with benefit regarding general quality of life, thyroid-related symptoms, depressive symptoms, fatigue/tiredness, cognitive function, muscle strength, blood pressure and body-mass index.

Compared to prior systematic reviews and meta-analyses, published between 2007 and 2015, this meta-analysis included two recent randomized trials, which were the largest trials published to date on this topic. Overall, the quality of evidence reported here was moderate to high. Quality of evidence was high regarding the primary outcomes of this review (general quality of life and thyroid-related symptoms). Results of this review consistently demonstrated no association of thyroid replacement therapy with improved outcomes, including a relatively large number of diverse outcomes. Most outcomes, except cardiovascular events and mortality, had narrow confidence intervals. In addition, this meta-analysis focused on patient-centered outcomes such as quality of life and fatigue, which are the most common symptoms that prompt therapy in general practice.

Although current guidelines are, at first sight, cautious with treatment recommendations, more than 90% of persons with subclinical hypothyroidism and a TSH <10mU/l would actually qualify for treatment. However, results of this meta-analysis are not consistent with these guideline recommendations. In addition to absence of an association of thyroid hormone therapy with improved outcomes, thyroid hormone therapy is associated with side effects when overtreatment occurs.

Limitations

This study has several limitations. First, the RCTs included in this meta-analysis used different questionnaires and/or tests for a given outcome in combination with different treatment durations (e.g. four different cognitive tests in the four studies examining cognitive function, with treatment durations...
ranging from three to 18 months). However, little heterogeneity across the study results was observed, except for general quality of life and body-mass index. For these outcomes, heterogeneity resulted from three studies that showed a statistically significant benefit of placebo.23,27,30 After excluding these studies in post-hoc sensitivity analyses, thyroid hormone therapy remained unassociated with benefit for general quality of life and body-mass index, but heterogeneity was lower. Therefore, it seems unlikely that this meta-analysis misses a potential beneficial association between thyroid hormone therapy and any outcome analyzed due to inappropriate pooling of overly heterogeneous studies.

Second, only one RCT reported on major adverse cardiovascular events. Therefore, definitive evidence is lacking regarding the association of therapy for subclinical hypothyroidism with reduced cardiovascular event rates.12 Third, RCTs that reported results only qualitatively were excluded from analyses. Fourth, mean TSH values at baseline were $<7.0\text{mU/l}$ in 11 out of 21 included RCTs, and only two RCTs examined participants with a mean baseline TSH $>10\text{mU/l}$.22,23 Therefore, the current findings may not be generalizable to people with subclinical hypothyroidism and a TSH $>10\text{mU/l}$. Fifth, the highest mean age in the included studies was 74 years.12,16 Therefore, these results may not be generalizable to people older than 80 years. Sixth, only seven of 21 trials (33\%) reported hypothyroid symptoms at baseline, and the burden of symptoms was mild to moderate in these trials. The other 14 trials did not describe symptoms at baseline. It is possible that the subgroup of people with subclinical hypothyroidism and a high burden of symptoms would still benefit from treatment. Seventh, patients with subclinical hypothyroidism and “severe” symptoms of hypothyroidism may be underrepresented in clinical trials because they may be treated immediately with levothyroxine and are not included in clinical trials.44 Therefore, results reported here may not be generalizable to patients with subclinical hypothyroidism who have severe symptoms. Eighth, two RCTs ($n=831$) included participants with a mean age >65 years.12,16 Their mean TSH level at baseline was between 6.0 and 7.0mU/l. Given the possibility that the upper TSH reference limit may increase with age,45 the two studies may have included older individuals with mildly elevated TSH levels who do not represent subclinical hypothyroidism, although current international guidelines do not use different TSH levels according to age to define subclinical hypothyroidism.6,10,46 However, this phenomenon may have biased the results towards the null. Ninth, it is possible that thyroid hormone therapy is associated with benefit regarding outcomes that were not examined in this meta-analysis (e.g. carotid intima media thickness, various lipid fractions, etc.). Tenth, it is possible that treatment of subclinical hypothyroidism may be beneficial in study populations not included in these analyses (e.g. patients with subclinical hypothyroidism and...
Eleventh, the largest RCT to date contributed substantially to the results of this meta-analysis because of the large sample size relative to the other trials (737 of 2,192 participants (33.6%). However, the mean age of participants in the largest trial was 74 years, while the mean age of participants in the studies included here ranged from 32 to 74 years.

Conclusions
Among non-pregnant adults with subclinical hypothyroidism, the use of thyroid hormone therapy was not associated with improvements in general quality of life or thyroid-related symptoms. These findings do not support the routine use of thyroid hormone therapy in adults with subclinical hypothyroidism.

Acknowledgments
We thank Dr Fahime Ghanbari, MD, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland, for translating an article written in Persian. We thank Jan W. Schoones, MA, the librarian responsible for the literature search, Leiden University Medical Center, Leiden, The Neterlands. We also thank Dr Salman Razvi, MD, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, who provided us with data on body-mass index such that we could include his results in the meta-analysis. None of the persons mentioned in the Acknowledgments received compensation, and all gave written permission to be named in this section.

This article was presented orally in part at the European Congress of Endocrinology in Barcelona, Spain, May 19–22, 2018, and at the annual meeting of the Swiss Society of General Internal Medicine in Basel, Switzerland, May 30 – June 1, 2018.

Funding source: The Swiss National Science Foundation funded this study (SNSF 320030_172676 to Prof Rodondi). The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Conflict of interest: None of the authors has a conflict of interest regarding this manuscript.

Author Contributions: Drs Feller and Dekkers had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Feller and Dekkers had final responsibility for the decision to submit for publication.
Study concept and design: Feller, Bauer, Rodondi, Dekkers

Acquisition, analysis, or interpretation of data: Feller, Snel, Moutzouri, de Montmollin, Bauer, Ford, Gussekloo, Kearney, Mooijaart, Quinn, Aujesky, Stott, Westendorp, Rodondi, Dekkers

Drafting of the manuscript: Feller, Dekkers

Critical revision of the manuscript for important intellectual content: Feller, Snel, Moutzouri, de Montmollin, Bauer, Ford, Gussekloo, Kearney, Mooijaart, Quinn, Aujesky, Stott, Westendorp, Rodondi, Dekkers

Statistical analysis: Snel, Dekkers

Obtained funding: Rodondi

Study supervision: Feller, Rodondi, Dekkers

Table 1: Characteristics of 21 included randomized clinical trials on thyroid hormone therapy for subclinical hypothyroidism in adults

<table>
<thead>
<tr>
<th>Author, y</th>
<th>Country</th>
<th>Funding source</th>
<th>Definition of SCH</th>
<th>n</th>
<th>Mean age in years (SD)</th>
<th>n women (%)</th>
<th>Intervention</th>
<th>Control</th>
<th>Planned follow-up duration [in months]</th>
<th>Outcomea</th>
<th>Hypothyroid symptoms at baseline [Intervention vs Control (SD)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stott,12 2017</td>
<td>Netherlands, Switzerland, UK, Ireland</td>
<td>Non-industry</td>
<td>TSH 4.6-19.99mU/l on 2 occasions & normal fT4</td>
<td>737</td>
<td>74 (6.3)</td>
<td>396 (54%)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>At least 12(c)</td>
<td>- ThyPRO questionnaire48</td>
<td>- EQ-5D score49</td>
</tr>
<tr>
<td>Zhao,11 2016</td>
<td>China</td>
<td>Non-industry</td>
<td>TSH 4.2 – 10.0mU/l, normal fT4 on 2 occasions</td>
<td>369</td>
<td>55 (7.6)</td>
<td>270 (73%)</td>
<td>Levothyroxine</td>
<td>No intervention</td>
<td>15</td>
<td>- Blood pressure</td>
<td>- BMI</td>
</tr>
<tr>
<td>Najafi,24 2015</td>
<td>Iran</td>
<td>Non-industry</td>
<td>TSH >4.5mU/l, normal fT4, positive TPO-Ab</td>
<td>60</td>
<td>34 (10.0)</td>
<td>51 (85%)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>3</td>
<td>- BDI51</td>
<td>Mean number of hypothyroid symptoms per participant (range 0 to 12): 4.8 (±nr) vs 5.1 (±nr)</td>
</tr>
<tr>
<td>Ersoy,29 2012</td>
<td>Turkey</td>
<td>Not declared</td>
<td>TSH 5.0 – 10.0mU/l, normal fT4</td>
<td>60</td>
<td>46 (13.1)</td>
<td>58 (97%)</td>
<td>Levothyroxine</td>
<td>No intervention</td>
<td>6</td>
<td>- Blood pressure</td>
<td>- BMI</td>
</tr>
<tr>
<td>Aghili,25 2012</td>
<td>Iran</td>
<td>Non-industry</td>
<td>TSH >4.5mU/l, normal fT4, positive TPO-Ab</td>
<td>60</td>
<td>34 (10.8)</td>
<td>51 (85%)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>3</td>
<td>- Cognitive function (Wechsler memory scale52)</td>
<td>Mean number of hypothyroid symptoms per participant (range 0 to 7): 3.2 (±nr) vs 3.7 (±nr)</td>
</tr>
<tr>
<td>Reuters,31 2012</td>
<td>Brazil</td>
<td>Not declared</td>
<td>TSH >4.0mU/l, normal fT4 on 2 occasions</td>
<td>71</td>
<td>50 (10.9)</td>
<td>62 (87%)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>6</td>
<td>- Zulewski score53</td>
<td>Zulewski score nr (only change from baseline reported)</td>
</tr>
<tr>
<td>Cabral,26 2011</td>
<td>Brazil</td>
<td>Not declared</td>
<td>TSH >4mU/l + normal fT4 on 2 occasions</td>
<td>32</td>
<td>46 (9.0)</td>
<td>32 (100%)</td>
<td>Levothyroxine</td>
<td>No intervention</td>
<td>12</td>
<td>- BMI(c)</td>
<td>nr</td>
</tr>
<tr>
<td>Parle,16 2010</td>
<td>UK</td>
<td>Non-industry</td>
<td>TSH >5.5mU/l + normal fT4</td>
<td>94</td>
<td>74 (5.8)</td>
<td>57 (61%)</td>
<td>Thyroxine</td>
<td>Placebo</td>
<td>12</td>
<td>- HADS55</td>
<td>nr</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Industry</td>
<td>Hypothyroid Symptoms</td>
<td>Cognitive function</td>
<td>Blood pressure</td>
<td>BMI</td>
<td>Thyroid function</td>
<td>Baseline</td>
<td>Treatment</td>
<td>Placebo</td>
<td>Other Measures</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Nagasaki, 2009</td>
<td>Japan</td>
<td>Non-industry</td>
<td>Increased TSH, normal fT3/4</td>
<td>MMSE, MEAMS, SCOLP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95 (100%)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>5</td>
</tr>
<tr>
<td>Teixeira, 2008</td>
<td>Brazil</td>
<td>Industry supported</td>
<td>TSH >4mU/l + fT4 normal on ≥2 occasions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60 (10.5)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
<tr>
<td>Razvi, 2007</td>
<td>UK</td>
<td>Non-industry</td>
<td>TSH >4mU/l + normal fT4 on ≥2 occasions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100 (12.6)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>3</td>
</tr>
<tr>
<td>Jorde, 2006</td>
<td>Norway</td>
<td>Non-industry</td>
<td>TSH 3.5-10mU/l</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>69 (11.9)</td>
<td>Thyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
<tr>
<td>Iqbal, 2006</td>
<td>Norway</td>
<td>Non-industry</td>
<td>TSH 3.5-10mU/l on 2 occasions, fT3/4 normal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>64 (12.2)</td>
<td>Thyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
<tr>
<td>Caraccio, 2005</td>
<td>Italy</td>
<td>Non-industry</td>
<td>TSH >3.6mU/l, normal fT3/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23 (9.6)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>6</td>
</tr>
<tr>
<td>Yazici, 2004</td>
<td>Turkey</td>
<td>Not declared</td>
<td>Increased TSH, normal fT3/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45 (7.9)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
<tr>
<td>Monzani, 2004</td>
<td>Italy</td>
<td>Not declared</td>
<td>TSH >3.6mU/l</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45 (11.0)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>6</td>
</tr>
<tr>
<td>Kong, 2002</td>
<td>UK</td>
<td>Not declared</td>
<td>TSH 5-10mU/l, fT4 normal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40 (15.2)</td>
<td>Thyroxine</td>
<td>Placebo</td>
<td>6</td>
</tr>
<tr>
<td>Caraccio, 2002</td>
<td>Italy</td>
<td>Non-industry</td>
<td>TSH >3.6mU/l on 2 occasions, positive TPO-Ab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>49 (9.1)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>6</td>
</tr>
<tr>
<td>Monzani, 2001</td>
<td>Italy</td>
<td>Not declared</td>
<td>TSH >3.6mU/l for >1 year, normal fT4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 (12.1)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>6</td>
</tr>
<tr>
<td>Meier, 2001</td>
<td>Switzerland</td>
<td>Non-industry & industry supported</td>
<td>TSH >5mU/l on 2 consecutive blood tests, fT4 normal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>66 (10.6)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
<tr>
<td>Cooper, 1984</td>
<td>USA</td>
<td>Non-industry</td>
<td>Increased TSH, normal fT3/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33 (10.1)</td>
<td>Levothyroxine</td>
<td>Placebo</td>
<td>12</td>
</tr>
</tbody>
</table>
per participant (range 0 to 6): 2.1 (±nr) vs 2.4 (±nr)

Abbreviations: **y**, Year; **SCH**, Subclinical hypothyroidism; **n**, Number of participants; **SD**, Standard deviation; **ThyPRO**, Thyroid-related quality-of-life patient-reported outcome measure (hypothyroid symptoms (4 items, range 0 to 100, higher scores indicate more hypothyroid symptoms) and tiredness score (7 items)); **EQ-5D**, Euro quality of life 5 dimensions questionnaire; **Letter-digit coding test** (assesses executive cognitive function); **BMI**, Body-mass index; **nr**, not reported; **BDI**, Becks Depression Inventory; **TPO-Ab**, Thyroid peroxidase antibody; **SF-36**, Short Form (36) Health Survey; **HADS**, Hospital anxiety and depression scale; **MMSE**, Mini mental state examination; **MEAMS**, Middlesex elderly assessment of mental state; **SCOLP**, Speed and capacity of language processing test; **ThyDQoL**, 18-item underactive thyroid-dependent quality of life; **GHQ-30**, General health questionnaire 30 items; **Billewicz score** (range -47 to 67, higher scores indicates worse hypothyroid symptoms).

a Only relevant outcomes for this systematic review are listed, i.e. outcomes that were included in the study protocol and published on PROSPERO

b The letter digit coding test was available after 18 months of levothyroxine/placebo intervention, the other outcomes after 12 months.

c Data obtained through direct communication with author

d This work was supported by the Swiss Research Foundation and an unconditional research grants from Henning Berlin, Sandoz Research, and Roche Research Foundations
Titles and legends for figures

Figure 1 title: Forest plots of randomized clinical trials on levothyroxine therapy in subclinical hypothyroidism, showing quality of life and mood-related outcomes

Figure 1 legend: Mean values of the quality of life / mood-related outcome scales per study group are shown in appendix eTable 2. Fixed effect meta-analysis of standardized mean differences; weights are from a fixed effect analysis. All effect sizes are standardized. As a rule of thumb for the interpretation, a standardized mean difference of 0.2, 0.5 and 0.8 correspond to small, moderate and large clinical effects, respectively. For references to the range of the original scales see Table 1.

Figure 1 footnote: There is a difference between the number of participants randomized, and the number of participants with available outcome data in the studies of Kong, Jorde, Reuters, Stott, and Meier (see Table 1 & eTable 2). Of note, the study by Razvi et al is a cross-over study, it included 100 participants.

Figure 2 title: Forest plot of randomized clinical trials on levothyroxine therapy in subclinical hypothyroidism, showing outcomes on cognitive function

Figure 2 legend: Mean values of the cognition scale per study group are shown in appendix eTable 2. Fixed effect meta-analysis of standardized mean differences; weights are from a fixed effect analysis; dashed line represents the overall mean effect. All effect sizes are standardized. As a rule of thumb for the interpretation, a standardized mean difference of 0.2, 0.5 and 0.8 correspond to small, moderate and large clinical effects, respectively. For references to the range of the original scales see Table 1.

Figure 2 footnote: There is a difference between the number of participants randomized, and the number of participants with available outcome data in the studies of Jorde and Stott (see Table 1 & eTable 2).

Figure 3 title: Forest plots of randomized clinical trials on levothyroxine therapy in subclinical hypothyroidism, showing outcomes on systolic blood pressure

Figure 3 legend: Fixed effect meta-analysis of differences in blood pressure (mmHg); weights are from a fixed effect analysis; dashed line represents the overall mean effect.
Figure 3 footnote: There is a difference between the number of participants randomized, and the number of participants with available outcome data in the study of Stott12 (see Table 1 & eTable 2). Of note, the study by Razvi et al is a cross-over study, it included 100 participants.32

Figure 4 title: Forest plots of randomized clinical trials on levothyroxine therapy in subclinical hypothyroidism, showing outcomes on body-mass index

Figure 4 legend: Random effects meta-analysis of differences in BMI (kg/m2); weights are from a random effects analysis; dashed line represents the overall mean effect.

Figure 4 footnote: There is a difference between the number of participants randomized, and the number of participants with available outcome data in the studies of Kong,27 Teixeira,30 and Stott12 (see Table 1 & eTable 2). Of note, the study by Razvi et al is a cross-over study, it included 100 participants.32