A Review of Network Models for Internet of Vehicles

Asiya Khan and Sanjay Sharma
School of Engineering
University of Plymouth, Drake Circus
Plymouth PL4 8AA
e-mail: asiya.khan; sanjay.sharma@plymouth.ac.uk

Cindy Goh1 and Cheng Leong Lim2
1School of Engineering, Glasgow University, Glasgow G12 8LT UK
2NXP Semiconductors, Singapore 138628
e-mail: cindy.goh@glasgow.ac.uk; chengleong.lim@nxp.com

Abstract—Connected vehicles are the building blocks of the emerging Internet of Vehicles (IoV) under the umbrella of Internet of Things (IoT) and more recently, Network of Things (NoT). This paper applies the NoT concept to IoV networks and presents a review of the network models for IoV highlighting the research challenges and solutions.

Keywords- IoV; V2V; V2x; NoT; VANET.

I. INTRODUCTION

Automobiles are currently undergoing a revolution just like mobile phones did ten years ago. Future automobile will be expected to communicate with other cars – vehicle-2-vehicle (V2V), with infrastructure/roadside sensors/pedestrians/cyclists/anything else (V2x). The vision of smart cities includes connected vehicles amongst many other things. It is envisaged that 25 million ‘things’ will be connected by the year 2020. In one year, globally approximately 1.3 million lives are lost and 7.4 million injured in road accidents and 90 billion hours lost due to traffic delays [1]. Therefore to improve road safety and traffic congestion, connected vehicles offer a very promising solution. They also contribute towards the roadmap of fully autonomous driving becoming a reality. The emerging Internet of Vehicles (IoV) is offering the platform to provide real time exchange of information to realize the opportunity of improving road safety and congestion. It has huge applications in autonomous car revolution, intelligent transportation system and smart city.

The key technologies for IoV are presented in [2], guidelines and basic principles of IoV are presented in [3], whereas [4] focuses on the solutions and challenges for connected vehicles. As IoV revolution takes off, the conventional Vehicular Ad hoc Networks (VANETs) are changing into IoV as VANET [5] turns the connected vehicle into a wireless router or mobile node enabling vehicles to connect to each other creating a wireless network between them. An in-depth tutorial on vehicular networking is presented in [6], whereas [7] presents the challenges of integrating connected vehicles to Internet of Things (IoT) and [8] presents a vehicular cloud for IoV applications. There are a number of challenges within the IoV network based on the priority of data exchange messages. For example, priority has to be given to safety critical messages, whereas on-board messages related to infotainment will be lower on that scale. Work presented in [9] proposes an abstract network model for IoV based on individual and swarm activities. Petri-nets have been used recently in vehicular authentication [10], modelling and control of vehicular networks [11] and traffic signal analysis in [12]. Work presented in [13] models vehicular networks using spatio-temporal locality and information-centric networks (ICN) are presented in [14] to model the connected networks. Recently, the concept of Network of Things (NoT) with IoT has been presented in [15]. In this paper, we apply the concept of NoT to the emerging IoV as presented by NIST [15] and review the connected network models presented in literature identifying the challenges and solutions.

The rest of this paper is organized as follows. Section II presents the IoV concept, whereas an overview of the network models is presented in Section III. Section IV presents the research challenges and solutions for network models in IoV. Section V concludes the paper and presents future direction of our work.

II. NoT APPLIED TO IoV

This section presents an overview of IoV, summarizes the wireless channels standards used in V2V and V2x and applies the NoT concept to IoV.

A. IoV Concept

IoV integrates three networks – an inter-vehicle network, an intra-vehicle network and vehicular mobile Internet. Therefore, IoV integrates these three networks and is defined as “a large-scale distributed system for wireless communication and information exchange between V2x according to agreed communication protocols and data standards” [9].

An inter-vehicle network is defined as network communication generated by the vehicle-born computer, control system, on-board sensors, or passengers that is disseminated in the proximity to other vehicles. An intra-vehicle network is a wireless network between sensors inside a vehicle. A review of intra-vehicle networks is presented in [16]. The number of sensors is forecasted to reach 200 per vehicle by 2020 [1]. Electronic Control units (ECUs) are built in the vehicle which communicates to other ECUs and sensors wirelessly. Connected vehicles require Onboard units (OBUs) to broadcast messages through
VANET. Work presented in [17] shows that vehicle density has an impact on VANET network metrics. The OBUs will contain data such as vehicle location, current time, direction, speed, traffic volume remarks, acceleration, deceleration. The communication between two or more OBUs is the V2V communication and that between an OBU and RSU (Roadside Sensor Unit) is V2I. Recently, the Society of Automotive Engineers (SAE) has established communication standards for connected vehicles (SAE J2725) [18] under Dedicated Short Range Communication (DSRC) for V2V and V2x. Table I summarizes the various wireless communication channels with their requirements for typical communication types, e.g. V2V or V2I, etc.

Table I. Summary of Wireless Channel Standards

<table>
<thead>
<tr>
<th>Channel</th>
<th>Frequency band</th>
<th>Bandwidth</th>
<th>Data rate</th>
<th>Range</th>
<th>Communication Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSRC/WAVE</td>
<td>5.9GHz</td>
<td>75MHz in USA, 30MHz in Europe</td>
<td>27 Mbps (max)</td>
<td>1000m</td>
<td>V2V & V2I/R/x</td>
</tr>
<tr>
<td>Zigbee</td>
<td>2.4GHz/868 MHz (Europe)</td>
<td>2 MHz</td>
<td>20kbps-250kbps</td>
<td>10-100m</td>
<td>V2I/V2</td>
</tr>
<tr>
<td>VLC [19]</td>
<td>400 and 800THz</td>
<td>~390THz</td>
<td>10kbps (signals) 500Mbps (LEDs)</td>
<td>1000-2000m</td>
<td>V2I/R</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>2.4/5 GHz</td>
<td>20/40 MHz</td>
<td>54Mbps-600Mbps</td>
<td>35m (indoor), 115m (outdoor)</td>
<td>V2V & V2x</td>
</tr>
<tr>
<td>4G/LTE</td>
<td>700/800/900 MHz in Europe Supported by IMT and ITU</td>
<td>20 MHz</td>
<td>300 Mbps peak downlink rates, 75 Mbps upload rates</td>
<td>Worldwide – limited to cellular coverage zones</td>
<td>V2V & V2x</td>
</tr>
</tbody>
</table>

The sensors in an intra-vehicle communication are stationary so a simple star network topology is sufficient. In this communication type, the wireless protocols that support smaller distance is recommended, e.g. Bluetooth, Zigbee, Radio-Frequency Identification (RFID), etc. A vehicular mobile network is the cloud-based mobile network that sits above both inter-vehicle and intra-vehicle networks. Figure 1 gives an overview of the V2x connectivity using various wireless protocols. The concept behind Figure 1 is that connected vehicles will be able to communicate with each other and with an intelligent transport system (ITS) using different wireless channels such as Wi-Fi, 4G/LTE, etc. and integrated with various sensors. Quality of Service (QoS) in such application will be critical as vehicles come out of one network into the other especially at handover points.

While researchers have presented work on communication protocols, future network models of IoV needs to be compatible with all wireless protocols depending on the communication type e.g. V2V or V2x.

B. NoT applied to IoV

The concept diagram of connected vehicles under IoV is presented in Figure 2, which illustrates V2V and V2x connectivity using various access networks, which is in turn connected to the core network. The data is exchanged between Intelligent Transport Systems (ITS) and the vehicles. We link Figure 2 with NoT as presented by NIST [15].
The NoT [15] defines five primitives as Sensors, Aggregator, Communication Channel, External Utility and Decision Trigger. All vehicles will have sensors connected that will be able to transmit/receive ‘useful’ information. This information is converted by an Aggregator, defined as a mathematical function implemented in software that transforms raw data into some ‘useful’ meaning. Both Sensor and Aggregator are shown as Roadside sensors in Figure 2. This is underpinned by the communication channel e.g. WiFi, 4G, etc. Again, Figure 2 shows the wireless channels such as Wi-Fi/4G etc. between V2V and V2x. The External Utility can be a software/hardware and will execute processes into the overall workflow of NoT. Finally, the Decision Trigger creates the final result needed to satisfy the requirements of NoT. The External Utility and Decision Trigger is combined together and presented within ITS in Figure 2.

<table>
<thead>
<tr>
<th>NIST Primitives</th>
<th>Proposed Primitives</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Sensing Technologies</td>
<td>Wireless and wired, sensors, RFID,</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Communication Channel</td>
<td>DSRC/Wave, Zigbee, Bluetooth, Wi-Fi, 4G/LTE</td>
</tr>
<tr>
<td>Communication Channel</td>
<td>Communication Channel</td>
<td>DSRC/Wave, Zigbee, Bluetooth, Wi-Fi, 4G/LTE</td>
</tr>
<tr>
<td>External utilities</td>
<td>Data Processing</td>
<td>Data created by connected vehicles, and how it is processed</td>
</tr>
<tr>
<td>Decision Trigger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on these NoT primitives [15], we present three primitives. We combine the primitives of Sensor and Aggregator as just Sensing Technologies, Communication Channel and again combine External Utility (eUtility) and Decision Trigger as one and call it Data Processing as shown in Table II. In Table II, feature describes the potential features for each primitive.

III. IOV NETWORK MODELS – AN OVERVIEW

This section presents an overview of the four network models presented in literature.

A. Petri-Net

Petri-nets combine a well-defined mathematical theory with a graphical representation of the dynamic behaviour of systems. Precise modelling and analysis of system behaviour is allowed by the theoretic aspect of Petri nets, whereas, the graphical representation of Petri nets enable visualization of the modelled system state changes [28].

Controller Area Network (CAN) communication bus has been modelled using petri nets in [10] and used for timing analysis. CAN [29] is generally used to transmit control traffic between ECUs within the vehicle (intra-vehicle) and is very popular in the automotive application as a communication bus for event-triggered communication. Petri nets offer huge potential for distributed communication which will be key in V2x communication type. For instance, petri-nets cope smoothly with defining and implementing complicated requests in VANET using tokens and measure, i.e. the limits of vehicle numbers of RSU groups.

Figure 3 shows the structure of a distributed control system which includes 2 vehicles, 6 devices, 10 programs and 12 functions with 10 data sets.

B. Information-Centric Networking

ICN reverses the traditional IP address-centric networking into a content centric one enabling the user to directly retrieve the content using a “name” without referring to the IP address of the node string the content.
This concept sits well with vehicular networks due to poor quality wireless links and the mobility of vehicles, data delivery is challenging. ICN-based VANET concept is presented in [14] where ICN-based VANETs can be applied in areas of application, mobility and security. For example, the VANET data will contain location, time-stamp, etc., so, if the road conditions are sought, ICN can match this better than name-to-IP-address resolution and thus the vehicle does not need to be always connected. The mobility issues in ICN are addressed by the use of named data and therefore, the anycasting and in-network caching properties of ICN allow vehicles to retrieve content from the most convenient storage point. Content-based security is supported by ICN with protection and trust implemented at the packet level rather than at the communication channel.

In Figure 4, a node follows the algorithm, it first looks in its content store (CS) to find a content copy, if a match is not found it looks in the pending interest table (PIT) and eventually in the forwarding information base (FIB). In Figure 4 the Interest/Data exchange refers to a vehicular environment.

D. Cloud, Connection and Clients

Three major network elements of IoV are identified in [30] as cloud, connection and client as shown in Figure 6. The ‘cloud’ infrastructure provides a platform for a range of wireless access technologies. With the magnitude of traffic related information likely to drastically increase, it is ideal to handle the information using cloud computing framework. ‘Connection’, on the other hand, utilises Third Party Network Inter Operator (TPNIO) to reduce direct Service Level Agreement (SLA) between the operators of the networks, enabling seamless roaming without compromising the quality and security of network operators. The ‘client’ element with the help of Wireless Access Technology (WAT) are broadly prioritized and split applications into safety and management oriented and business oriented.

Figure 6. The three network elements of IoV [30]

IV. IOV NETWORK MODELS - RESEARCH CHALLENGES & SOLUTIONS

In Section III, we have presented some of the network models from literature. These models were chosen as they show the new paradigm of ICN and the concept of how the proposed network model can communicate both with ‘people’ and ‘things’. Petri-net was chosen as it gives the flexibility for distributed control. The challenge for any network model in IoV is to be able to exchange information from V2V and V2x, where x can be a roadside sensor, another device or a person. In addition, there may be incompatibility among devices, different qualities and response time for Internet connections and limited access to data processing and storage. There will be additional complexity where some vehicles will be connected while others not.

Future and emerging vehicle applications will consume a huge amount of sensor data in a collaborative manner. Content centric [31] and information-centric networks will play a key role. Vehicles move fast, therefore, in a content-centric networking style, vehicle position, speed and direction from the rest of the vehicles are continuously sent. Whereas, ICN focusses on what instead of where to fulfil primary demands from both content publishers and consumers. Vehicular-cloud and ICN will contribute to the ‘cloud’ to produce advance vehicular services, resource sharing and storing. The proposed architecture for ICN – Named Data Networking (NDN) [32] has been extended to vehicular networks where content is found and not hosts or IP addresses.

ICN seems to be the most favorable network model with distributed control. From literature, we have shown petri-nets [10] used in a number of IoV scenarios. Researchers are leading towards layered architectures [30][33] where network is one of the layers in the IoV architecture. The
The integration of automotive and information technology will be promoted as a result of IoV. The biggest challenge in IoV implementation is the lack of coordination and communication. The push for IoV will generate massive data sets. Their analysis will help in the management of traffic systems and towards an intelligent transportation system. The main interactions are between the vehicle and its environment. Hence separate models can be presented in a layered architecture. Some of the challenges identified are:

- Maintaining an accurate line of sight
- Accounting for vehicles/x that are outside the line of sight
- Position/velocity of the vehicle in order to model the dynamic platoon of vehicles
- Vehicles that are not connected
- Security considerations and protection from theft
- Integration of different wireless protocols e.g. DSRC, IEEE 802.11abgn Wi-Fi, 4G/5G cellular networks, VLC
- Device-to-Device (D2D) communication (defined as direct communication between devices in range proximity without the involvement of a network infrastructure) [34] based on LTE
- Safety vs comfort applications
- Integration with cloud architecture
- Big data analysis in IoV
- QoS guarantee – investigate into SDN techniques based on the combined information from multiple sources rather than individual

V. CONCLUSIONS

This paper presents an overview of the network models for connected vehicles under the umbrella of IoV and applies the concept of NoT to IoV. IoV is emerging and will be integrated with information technology. The ‘big data’ generated as a result of connected vehicles will be useful in shaping the management of vehicles thus improving road safety and traffic congestion. The QoS will be split between safety critical and lower priority applications. For example, comfort subsystems within a vehicle are not safety critical. However, suspension and braking system, traction control, etc., will be prioritized and require QoS. Research in understanding existing network models is a key starting point and will enable us in establishing the modelling direction.

IoV is a building block towards the roadmap to autonomous cars. IoV will revolutionize cars like mobile phones did ten years ago. CAN communication model using petri-nets will be further examined for IoV application given its low bandwidth with high reliability benefits.

We will build on this review and the future work will focus on proposing network models for connected vehicles for IoV.

ACKNOWLEDGMENT

The work reported here is supported in part by the Santander Seed-Corn Research Grant.

REFERENCES

