
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

This is the peer reviewed version of the following article, Baquero, P., Dawson, A. and Helgason, G. V. (2019) Autophagy and mitochondrial metabolism: insights into the role and therapeutic potential in chronic myeloid leukaemia. *FEBS Journal, 286*(7), pp. 1271-1283, which has been published in final form at http://dx.doi.org/10.1111/febs.14659. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/169326/

Deposited on: 4 October 2018
Autophagy and Mitochondrial Metabolism: Insights into their Role and Therapeutic Potential in Chronic Myeloid Leukaemia

Pablo Baquero¹, Amy Dawson¹, and G. Vignir Helgason¹,²

¹Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, G61 1QH, UK; ²Paul O’Gorman Leukemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.

Address correspondence to: G. Vignir Helgason, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, G61 1QH, UK
Vignir.Helgason@Glasgow.ac.uk
Tel: +44 (0) 141 330 7245

Article type: State-of-the-Art Review

Keywords
Chronic myeloid leukaemia; autophagy; metabolism; mitochondria; oxidative phosphorylation; therapeutics

Abbreviations
TKI, tyrosine kinase inhibitors; CML, chronic myeloid leukaemia; LSC, leukaemic stem cell; CP, chronic phase; ATG, autophagy genes; OXPHOS, oxidative phosphorylation

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/febs.14659
This article is protected by copyright. All rights reserved.
Abstract

Despite the development of selective BCR-ABL-targeting tyrosine kinase inhibitors (TKIs) transforming the management of chronic myeloid leukaemia (CML), therapy-resistant leukaemic stem cells (LSCs) persist after TKI treatment and present an obstacle to a CML cure. Recently, we and others have made significant contributions to the field by unravelling survival dependencies in LSCs to work towards the goal of eradicating LSCs in CML patients. In this review, we describe these findings focusing on autophagy and mitochondrial metabolism, which have recently been uncovered as two essential processes for LSCs quiescence and survival, respectively. In addition, we discuss the therapeutic potential of autophagy and mitochondrial metabolism inhibition as a strategy to eliminate CML cells in patients where the resistance to TKI is driven by BCR-ABL-independent mechanism(s).

Introduction

Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disease that arises following transformation of a haematopoietic stem cell (HSC) by the chimeric oncogene BCR-ABL. BCR-ABL expression results from a reciprocal translocation between chromosome 9 and 22 leading to the generation of the abnormal Philadelphia chromosome [1]. In turn, the expression and translation of BCR-ABL gives rise to a constitutively active non-receptor tyrosine kinase, which is the main driver of the chronic phase (CP) of the disease [2]. The majority of newly diagnosed CML patients are in CP, which if not treated, can progress to accelerated phase followed by a blast crisis over a 5-year time frame [3]. The development of selective BCR-ABL tyrosine kinase inhibitors (TKIs), represented by the first generation TKI imatinib and subsequent second and third generation TKIs (i.e. dasatinib, nilotinib, bosutinib, ponatinib), have significantly improved the life expectancy of CP CML patients, making CML a clinically manageable disorder in the majority (50-70%) of patients [4, 5]. TKIs are
highly effective in eliminating dividing cells, yet they fail to eradicate the most primitive, quiescent CML leukaemic stem cells (hereafter referred as LSCs). This may ultimately promote acquired TKI resistance and drive relapse or disease progression [6]. It has been estimated that more than 80% of CML patients that respond to TKI maintain minimal residual disease (MRD) due to the presence of therapy-resistant LSCs [7]. Even in patients in deep molecular response, where BCR-ABL expression is undetectable by quantitative PCR, the existence of LSCs capable of reinitiating the disease has been demonstrated, highlighting the relevance of targeting LSCs in order to achieve cure [8]. Furthermore, around 25% of all CML patients are refractory to all available TKIs, mainly due to TKI intolerance or resistance [9]. In this context, resistance to TKI treatment can be classified in BCR-ABL-dependent or BCR-ABL-independent resistance; depending on the mechanism the cells obtain to overcome the effects of the drugs. Whereas BCR-ABL-dependent resistance is caused by mutations that affect the binding of the TKI to the kinase pocket of BCR-ABL, BCR-ABL-independent mechanisms are less well understood. The understanding of these mechanisms, together with development of approaches for LSCs elimination, is currently a major challenge for researchers working on CML [10].

In recent years, autophagy and mitochondrial metabolism have emerged as two crucial processes that cancer cells can use to promote resistance to anti-cancer therapy in several settings, including haematological tumours [11-14]. Furthermore, recent studies have uncovered that inhibition of either of these processes in combination with TKIs is an effective strategy to eliminate therapy-resistant LSCs. Here, we discuss the role of autophagy and mitochondrial metabolism in the regulation of LSCs and their utility as therapeutic targets in CML.
Role and regulation of autophagy in cancer

Cellular homeostasis involves strict regulation of coordinated mechanisms in order to sustain cell health. Autophagy is one of these mechanisms and plays an important role in the recycling of intracellular components [15]. The best characterized variant of autophagy, macroautophagy (hereafter referred as autophagy), involves the formation of the autophagosome, a double membrane structure that engulfs the cargo and delivers it into the lysosomes for degradation. One important step in the initiation of autophagy is the activation of ULK1, a serine/threonine-protein kinase that forms a complex with ATG13 and FIP200 and drives autophagosomes formation [16]. Under nutrient replete conditions, mTORC1 phosphorylates ULK1 and ATG13, inhibiting autophagy initiation [17]. Upon starvation, ULK1 is dephosphorylated followed by auto-phosphorylation and phosphorylation of ATG13 and FIP200, leading to a rapid induction of autophagy [18]. Furthermore, autophagy can be enhanced as well by an energetic stress response mediated by the AMP-activated protein kinase (AMPK). AMPK is activated in response to a drop in the intracellular levels of ATP and stimulates autophagy by inhibiting mTORC1, and also by phosphorylating ULK1, as well as class III phosphatidylinositol-3-kinase (PI(3)K/Vps34) and Beclin 1 (BECN1) [19, 20]. The complex VPS34-BECN1-ATG14-p150 promotes elongation of forming autophagosomes following synthesis of phosphatidylinositol 3-phosphate. Furthermore, autophagosome completion is mediated by two ATG7-dependent ubiquitin-like conjugation systems: i) the ATG12/ATG5/ATG16 and ii) the conjugation of phosphatidylethanolamine to the microtubule-associated protein 1 light chain 3 beta, also known as LC3B [21]. Finally, the outer membrane of the autophagosome fuses with the lysosomal membrane to form the autolysosome, where the degradation of the autophagic body, together with its cytoplasmic content occurs [18].
Although autophagy has long been considered a nonselective catabolic process, more recently it was shown to selectively degrade potentially harmful intracellular material. For instance, autophagy can eliminate protein aggregates and damaged mitochondria by two processes known as aggrephagy and mitophagy respectively [22, 23]. These mechanisms can prevent the development of a pro-tumourigenic environment characterized by an accumulation of reactive oxygen species (ROS), DNA damage and genomic instability [24, 25]. In line with these effects, conditional deletion of the autophagy-related (ATG) genes Atg5 or Atg7 in murine models promotes tumour initiation in different tissues such as liver and pancreas [25-27]. Conversely, several studies demonstrate that autophagy deficiency prevents tumour progression towards a malignant phenotype, indicating that cancer cells can take advantage of autophagy to develop into a more aggressive tumour [28, 29]. Indeed, the oncogenes H-ras^{V12}, K-ras^{V12} and B-raf^{V600} have been shown to upregulate autophagy, providing cancer cells with higher levels of basal autophagy than their normal counterparts [29-31]. These results support the concept of a dual role of autophagy in cancer, depending on the type or stage of the disease.

Although mTORC1 is constitutively activated in > 70% of all cancers [32], it has been reported that mTOR activation and high basal autophagy levels can coexist in the same tumour. A possible mechanism involved in this apparent paradox relies on the phosphatase PP2A, capable of dephosphorylating ULK1, hence activating autophagy bypassing mTOR-mediated inhibition of ULK1 [33]. In addition, mTORC1 regulates autophagy at a transcriptional level by phosphorylating and inactivating the family of MiT/TFE transcription factors [34]. These proteins promote the expression of ATG genes [35, 36]. Interestingly, tumour cells can also bypass mTOR-mediated negative regulation on MiT/TFE proteins activating autophagy and lysosome gene expression [37]. This way, cancer cells can benefit
from both the biosynthetic effects mediated by mTORC1 and the metabolic changes associated with autophagy-dependent catabolic processes. These data, together with the fact that mutations in ATGs are rare in human cancer [38], indicate that a functional process of autophagy is required for cancer progression and support the use of autophagy inhibitors as a therapeutic approach for cancer treatment. However, as previously discussed, autophagy appears to have a temporal or context-dependent role in different cancers. For example, Rosenfeldt et al. showed that in mice bearing oncogenic Kras and lacking p53, autophagy deficiency does not block tumour progression but, in contrast, accelerates tumour growth [27]. These results highlight the importance of studying the role of autophagy in different genetic contexts and robust pre-clinical models before perusing with autophagy inhibition as a therapeutic intervention.

Role and regulation of autophagy in CML and LSCs

In CML, the role BCR-ABL plays in the regulation of autophagy is controversial. It has been shown that autophagy is induced in both CML cell lines and LSCs following in vitro treatment with imatinib, suggesting that BCR-ABL is a negative regulator of autophagy [12, 39]. However, other studies demonstrate that expression of this oncogene promotes autophagosomes formation and that autophagy is essential for BCR-ABL-dependent leukemogenesis [40, 41]. In agreement with the latter, CML cell lines that express high levels of BCR-ABL (e.g. K562, KCL22) have a very active autophagy flux, suggesting the existence of mechanisms involved in bypassing the negative effects on autophagy mediated by BCR-ABL-dependent mTOR activation. Since BCR-ABL+ cells exhibit higher levels of ROS than normal cells [42], one possibility is that elevated oxidative stress enhances autophagy, directly, or indirectly through AMPK activation, similarly to previous studies performed with other models [43] (Figure 1). Interestingly, AMPK is active at basal levels in
LSCs in acute myeloid leukaemia (AML) [44], and its activation leads to autophagy induction in normal HSCs [45]. Future studies will need to assess whether this important metabolic sensor is constitutively active and regulates autophagy in CML LSCs as well.

Rothe and colleagues reported that haematopoietic stem/progenitor cells (CD34+ cells) from CML patients express higher levels of key ATG genes compared with CD34+ cells from healthy donors [46]. Intriguingly, we have preliminary in vitro data suggesting the TKI treatment induces expression of ATG genes in CD34+ cells, although interrogation of the expression of ATG genes in CD34+ cells from CML patients, before and after 7 days of imatinib treatment, indicated no significant changes in the expression signature of ATG genes [47]. These data suggest that BCR-ABL may regulate autophagy at a transcriptional level in CML progenitor cells; however, since autophagy is a very dynamic process, which can be rapidly regulated by environmental conditions, further experiments measuring the expression of ATG genes following TKI treatment at different time points are required to support this conclusion. In this regard, in vivo models have recently been generated to measure autophagy flux, using mice expressing the autophagy marker LC3 tagged with GFP. Using this system, our data demonstrates increased autophagy flux in the stem/progenitor cells of BCR-ABL harbouring mice compared to their wild type counterparts; with the former showing increased sensitivity to autophagy inhibitors [48]. Further utilisation of this system will provide a suitable model to study the regulation of autophagy in CML LSCs at both, transcriptional and post-translational levels.

In CML, the expression of ATG genes has been shown to be upregulated in more primitive populations compared to more mature cells [46]. In line with this, our results obtained from leukaemic mice expressing GFP-LC3 revealed that LSCs have higher autophagy levels
compared to more differentiated cells. Similarly, Warr et al. have shown that normal HSCs are poised to rapidly use autophagy as an adaptive stress response and that this pro-autophagic program is driven by the transcription factor Forkhead box protein O3 (FOXO3A) [49]. In CML, BCR-ABL activates AKT which in turn phosphorylates FOXO3A promoting its cytoplasmic retention and inactivation. TKI treatment downregulates AKT signalling localizing FOXO3A to the nucleus leading to cell cycle arrest [50]. Nevertheless, in a fraction of LSCs, FOXO3A is in the nucleus even in the absence of TKIs due to the negative regulation of AKT by TGFβ [51]. Therefore, another possible mechanism to explain the higher autophagy levels in LSCs compared to normal cells would be the activation of FOXO3A mediated by TGFβ, which might bypass the TKI-dependent effects on autophagy mediated by BCR-ABL/PIK3/AKT/mTORC1 signalling (Figure 1).

Mice lacking FOXO3A show abnormally high ROS levels, impaired leukaemia initiating capacity and myeloproliferation [51, 52]. Similarly, recent results from in vivo studies indicate that potent lysosomal inhibition drives LSCs out of quiescence leading to an expansion of myeloid progenitors [48]. In addition, these results are in line with previous studies in normal HSCs, showing that autophagy deficiency increases oxidative stress and rapidly reduces the stem cell pool [53-55]. For future studies, it would be informative to investigate whether FOXO3A promotes LSCs maintenance through autophagy and whether the exit of quiescence induced by autophagy inhibition is due to an accumulation of ROS in LSCs. Interestingly, recent work from Thorburn et al. shows that autophagy can regulate apoptosis by degrading cytoplasmic FOXO3A [56]. Therefore, these results regarding the link between autophagy, FOXO3A and the maintenance of LSCs warrant further investigation.
Interplay between autophagy and oxidative stress in LSCs

Our recent work, using an isotope-assisted metabolomics-based approach, has uncovered an increase in mitochondrial oxidative metabolism in LSCs compared to their normal counterparts. These results were linked to an increase in mitochondria content and membrane potential indicating that LSCs are respiring at a higher level than HSCs [57]. In line with these results, Giustacchini *et al.* recently reported that LSCs displayed a significant enrichment for genes associated with oxidative phosphorylation (OXPHOS) and fatty acid metabolism when compared with normal HSCs [58]. Interestingly, since mitochondria are a major source of ROS [59], these results support a model in which the elevated levels of ROS in LSCs compared to normal HSCs [42] might derive from an increase in mitochondrial respiration. As afore mentioned, autophagy has been shown to be upregulated when levels of ROS are high [60]; thus, it is possible that elevated levels of autophagy in LSCs are due to an increment in ROS that in turn derives from an increased mitochondrial respiration. Finally, high levels of autophagy might be preventing differentiation of LSCs by maintaining the levels of ROS below a certain threshold (Figure 2). Importantly, AMPK deletion leads to an increase in ROS levels and depletion of AML LSCs [44]. Hence, AMPK might be another critical antioxidant factor to sustain the LSC pool. In a similar way to these results described in AML LSCs, AMPK could be exerting its antioxidant effects in CML LSCs by generating the reducing agent NADPH through upregulation of the pentose phosphate pathway, following increased glucose uptake [44]. In addition, mitochondrial ROS have been shown to be required for AMPK activation, which triggers a PGC-1α-dependent antioxidant response [43]. Therefore, we can speculate that in LSCs, AMPK activity might be as well enhanced by an increased in ROS levels and, in turn, AMPK can halt the oxidative stress by both, an autophagy dependent mechanism and/or a transcriptional regulation of antioxidant genes (Figure 2).
One important question that arises from the proposed model would be whether autophagy is regulating the levels of ROS in LSCs by degrading mitochondria via mitophagy. In line with this, de Almeida et al. demonstrated that HSCs have higher mitochondrial mass and lower mitochondrial turnover than mature haematopoietic cells; a contradiction to previously established literature [61]. These results suggest that the elevated levels of autophagy reported in HSCs compared to their more differentiated counterparts [49] are not indicative of mitophagy upregulation. Given that the higher mitochondrial content and activity in LSCs compared to HSCs is critical for their survival [57], it is unlikely that the increase of ROS generated by mitochondrial respiration in LSCs is counteracted by mitophagy alone. Since several studies have previously demonstrated the role of autophagy as a ROS scavenger in HSCs and in CML cells [55, 62], this suggests a model in which autophagy regulates oxidative stress mainly by other mechanisms than mitochondrial degradation. Such potential mechanisms include, autophagy modulating the internal supply of amino acids such as glutamine [63], which is the main source of the antioxidant glutathione (GSH), and regulating the redox balance by degrading kelch-like ECH-associated protein 1 (KEAP1). Under homeostatic conditions, KEAP1 mediates the ubiquitination of the nuclear factor erythroid 2-related factor 2 (NRF2) leading to its inactivation by proteasomal degradation. Following oxidative stress, KEAP1 is sequestered by the autophagy cargo receptor SQSTM1/p62 leading to the inhibition of the degradation of NRF2 and to its activation. This way, NRF2 can translocate to the nucleus and upregulate the expression of antioxidant-defence genes, such as glutathione peroxidase, superoxide dismutase and thioredoxin [60]. Interestingly, the KEAP1-NRF2 system can also regulate oxidative stress by affecting mitochondrial dynamics, as active NRF2 has been shown to induce mitophagy through PINK1 (PTEN-induced kinase 1) transcriptional upregulation [64]. Upon mitochondrial damage, PINK1 is accumulated on the mitochondrial surface and recruits PARKIN to ubiquitinate several mitochondrial
proteins. Next, these ubiquitinated proteins interact with LC3, coupling the autophagy machinery with the damaged or unwanted mitochondria due to be degraded [65]. Furthermore, NRF2 also induces mitochondrial biogenesis *in vivo* [66], and cells from KEAP1-knockout mice or treated with KEAP1 inhibitors display an increase in oxidative metabolism and ATP levels [67-69], indicating that the NRF2-KEAP1 system is vital to maintain the integrity of mitochondria, both at a catabolic and an anabolic level. If NRF2 proves to be upregulated in LSCs, this could potentially be the reason of the higher mitochondrial content and respiration in LSCs compared to their normal counterparts. Interestingly, two studies have recently uncovered different mechanisms for mitophagy in AML LSCs and HSCs [70, 71], suggesting that this process might be regulated in a context-dependent manner. Although future studies will help elucidating these puzzling mechanisms in different cell types, it is now clear that CML and AML LSCs share a common dependency on OXPHOS, which may be a therapeutically exploitable vulnerability.

Targeting therapy-resistant CML cells with second-generation autophagy inhibitors

It has been previously shown that in CML, TKI treatment enhances autophagy that promotes survival and TKI-resistance in LSCs [12]. This study led to the development of the randomized Phase II clinical trial CHOICES (ClinicalTrials.gov Identifier: NCT01227135) where the efficacy of imatinib versus imatinib plus 800mg/day HCQ was evaluated. However, results from this trial, and others recently conducted in other types of cancers, suggest that it is unlikely that consistent autophagy inhibition is achieved following HCQ treatment, even with the maximum tolerated dose given to patients [72-75]. These results highlight the need to develop and investigate more potent and/or selective autophagy inhibitors using robust pre-clinical models. In recent investigations, second-generation autophagy inhibitors such as Lys05, appear to be promising clinical alternatives to HCQ [76].
These compounds accumulate within and deacidify the lysosome (lysosomotropism), resulting in impaired autophagy flux. Lys05 is a dimeric analogue of HCQ, which has shown 3 to 10-fold more potent effects than HCQ in cancer cell lines. Our recent data show that Lys05 achieves autophagy inhibition in LSCs and effectively sensitize them to TKIs in vitro and in vivo [48]. Importantly, combination of TKI with HCQ did not add any effects to TKI as a single treatment on LSCs survival. More strikingly, the combination of Lys05 and nilotinib showed more selectivity for BCR-ABL+ cells than for wild type cells suggesting the existence of a potential therapeutic window.

Importantly, in vivo treatment of leukemic mice with Lys05 results in a reduction of LSCs followed by an increase in progenitor cells [48]. From a clinical perspective, these results highlight the importance of combining lysosomotropic agents with TKIs. In this context, while the lysosomal inhibitor is promoting the exit of quiescence in LSCs leading to a more differentiated status, the TKI prevents an accelerated myeloproliferation by exerting its pro-apoptotic effects in progenitor and mature leukemic cells (Figure 3).

One of the major concerns about the clinical use of HCQ and its derivatives is the high risk of retinopathy due to a long-term exposure to the drug [77]. Given that this adverse effect has been directly associated with high doses and long duration of the treatment, the use of more potent autophagy inhibitors might help achieve the desired effects with lower doses and in a shorter time period, potentially mitigating such side effects. Furthermore, we and our collaborators have observed that mice treated with high doses of Lys05 developed Paneth cell dysfunction characterized by intestinal obstruction [76]. Interestingly, this toxicity recapitulates the intestinal phenotype of mice and humans with genetic defects in Atg16L1 [78] providing an additional evidence that Lys05 targets autophagy in vivo. Such side effects
must be considered against the potential benefit to patients when considering the introduction of second-generation autophagy inhibitors into the clinical setting.

A relevant clinical question is whether more selective autophagy inhibitors than HCQ and Lys05 could provide an effective therapeutic strategy to eliminate LSCs. PIK-III is a recently developed autophagy inhibitor, which inhibits the kinase activity of VPS34 leading to a defective autophagosomes formation [79]. Results using PIK-III demonstrate that *in vitro* treatment of CML CD34+ cells with this compound reduces the number of cells with capacity to engraft and leads to an almost complete elimination of engrafted primitive Philadelphia positive cells when combined with TKI. Although the chemical properties of PIK-III are not suitable for *in vivo* studies, new derivatives have already been developed with oral bioavailability and remain to be tested in CML models [80].

As previously mentioned, around 25% of CML patients develop mechanisms of resistance to TKI that are independent on BCR-ABL activity, many of which remain poorly understood. Of note, combined mTOR and autophagy inhibition has shown to be effective in targeting TKI-resistant CML cells [81]. Interestingly, Rebecca *et al.* recently identified palmitoyl-protein thioesterase 1 (PPT1), as a molecular target for dimeric quinacrine, which are more potent analogues of HCQ and Lys05 [82]. Strikingly, inhibition of PPT1 has a dual effect; inactivates mTORC1 by disrupting its lysosomal localization and de-acidifies the lysosomes, which leads to a block in the autophagic flux. Since inhibition of mTOR with single agents induces cytoprotective autophagy and has largely failed as an efficient therapy for cancer, targeting PPT1 with dimeric quinacrine may offer a new and effective way to overcome BCR-ABL independent resistance in CML patients.
Targeting therapy-resistant CML cells with inhibitors of oxidative phosphorylation

Cancer cells reprogram their metabolic pathways to adapt to their high energy demands and sustain their uncontrolled proliferation [83]. Thus, identifying metabolic differences between normal and transformed cells provides an attractive opportunity to selectively target cancer cells. As previously discussed, LSCs display a higher mitochondrial respiration and have a greater expression of OXPHOS-related genes compared with normal HSCs [57, 58]. We have recently exploited this OXPHOS dependent metabolic vulnerability in LSCs by inhibiting mitochondrial metabolism using the antibiotic tigecycline [57]. Of clinical relevance, the combination of tigecycline and imatinib was able to eradicate LSCs and prevent disease relapse in pre-clinical patient-derived xenograft (PDX) model. Importantly, a minimal effect was found in normal HSCs following in vivo treatment indicating the existence of a therapeutic window. These results, together with the fact that tigecycline has already been approved by the FDA, point to the combination of tigecycline and imatinib as a suitable clinical approach to eliminate disease persistence in CML patients. However, results from an already conducted phase I clinical trial with tigecycline in AML patients were discouraging [84], as no significant clinical response was observed in any of the patients at the end of the trial. Tigecycline treatment did not affect the expression of mitochondrial-encoded proteins in 24 out of 27 patients, indicating that the concentration achieved in AML patients was not sufficient to be effective and hit its target. Accordingly, the steady-state levels of tigecycline reported were around 1µM, a concentration that has minimum effect on mitochondrial metabolism in vitro [85]. The development of a more stable formulation [86] to sustain an effective plasma concentration support further investigations with tigecycline in the near future. Of note, the outcome of a study using tigecycline in combination with TKI and in a different population of patients might be different to the previously mentioned clinical trial, as tigecycline was used as a single agent in highly refractory AML patients.
Importantly, both CML blast crisis cells and AML stem cells exhibit increased fatty acid oxidation and high OXPHOS gene signature that provides resistance to chemotherapy [11, 87]. Since both of these diseases have a “high mutator” phenotype and are highly resistant to standard therapies, the reliance on oxidative metabolism provides a rational to test OXPHOS inhibitors as a strategy for targeting leukaemic cells with alternative resistant mechanisms, including BCR-ABL-independent mechanisms. Moreover, these studies open up new opportunities to test other OXPHOS inhibitors that could be useful in targeting therapy-resistant CML cells such as VLX600 [88], Gamitrinib [89] and Etomoxir [90].

Future questions and concluding remarks

Inhibiting autophagy or mitochondrial metabolism in combination with TKI treatment represents potential clinical strategies to eliminate therapy-resistant LSCs in CML patients with MRD. Therefore, understanding the role of these two processes in LSCs and in normal HSCs is essential to develop effective and safe therapeutic approaches.

Although it has been shown that autophagy functions as a protective mechanism for cancer cells following therapy, it is important to consider that many of these studies were performed *in vitro* and the effect on autophagy was often measured after short time points. In LSCs, autophagy levels are upregulated compared to more mature cells suggesting that basal autophagy is a critical regulator of LSCs maintenance. Such evidence provides a rationale to test novel autophagy inhibitors in both pre-clinical and clinical settings in an attempt to eliminate LSCs. Of note, in our *in vivo* studies we observed a reduction in LSCs following BCR-ABL and autophagy inhibition compared to TKI as a single agent. As mice were treated for three weeks, these results suggest that the eradication of LSCs might be progressive and not due to a rapid cytoprotective response mediated by BCR-ABL inhibition. Whether more
selective autophagy inhibitors would achieve more potent effects than Lys05 in relation to inducing \textit{in vivo} differentiation of LSCs is a question that remains to be fully answered. In addition, it is very likely that, inside the bone marrow, other survival mechanisms might be protecting LSCs from therapeutic insults. LSCs reside within an adapted niche that renders them resistant to therapy [91]. Interestingly, autophagy is currently emerging as an important process for the interaction between cancer cells and the stroma [92, 93]. The role autophagy plays in mesenchymal cells in the leukemic niche would be an important factor to consider in the context of future studies that aim to elucidate the mechanisms underlying LSCs maintenance. In this regard, the anti-tumour effects of systemic loss of autophagy is greater than specific autophagy loss in tumour cells, suggesting that both host autophagy and cell-autonomous autophagy contribute to tumour growth [94].

Importantly, an alternative process of autophagy can occur independently of the hierarchical activity of \textit{ATG} proteins; named non-canonical autophagy [95]. This indicates that therapeutic strategies targeting canonical autophagy proteins might be bypassed by non-canonical mechanisms. As both forms of autophagy rely on the lysosomes for the degradation of cytoplasmic material, the use of lysosomotropic agents such as Lys05 or dimeric quinacrine could be the best choice as an autophagy targeting approach, despite their broad effect.

In addition, the metabolic effects on LSCs following TKI treatment would be particularly interesting to address in future studies. Although studies have provided some indications about this regulation, all of these experiments were performed \textit{in vitro}, and further investigations should take advantage of the state-of-the-art Scl-tTa–BCR-ABL model [96] to compare the metabolic differences between stem cells isolated from long-term TKI-treated
and untreated mice. Likewise, the contribution of the bone marrow microenvironment to the aberrant metabolism of LSCs remains an avenue for further investigations. Such questions can be addressed using relevant co-culture and 3D in vitro culture systems; however, directly measuring aberrant metabolism in vivo as a result of an altered microenvironment remains technically challenging. Interestingly, recent studies showed that LSCs can uptake mitochondria from stromal cells by endocytosis, leading to an increase in chemotherapy resistance [97]. Given that BCR-ABL\(^+\) cells can alter neighbouring BCR-ABL\(^-\) hematopoietic progenitor cells [98], studying whether leukaemic cells are modulating the metabolism of BCR-ABL\(^-\) cells through mitochondria transfer represents another attractive area for further investigation.

In conclusion, recent pre-clinical CML studies are paving the way to use second-generation autophagy inhibitors and OXPHOS inhibitors in CML clinical trials. However, our understanding of the role and connection of autophagy and mitochondrial metabolism in the regulation of LSCs is in its infancy. Future pre-clinical and clinical studies will provide further information about the therapeutic value of targeting autophagy and mitochondrial metabolism in CML.

Acknowledgments: We thank Dr K. Rattigan for proofreading the article. This work was supported by Kay Kendall Leukemia Fund (KKL1069); Leuka; the Howat Foundation, Lady Tata Memorial Trust and Friends of Paul O'Gorman Leukaemia Research Centre. G.V.H. is a KKLF Intermediate Research Fellow, Leadership Fellow and John Goldman Fellow.
Bibliography

This article is protected by copyright. All rights reserved.

Figure 1: Potential Mechanisms Regulating Autophagy in LSCs. BCR-ABL driven canonical signalling results in the activation of AKT and mTOR complex 1 (mTORC1). mTORC1 activation phosphorylates ULK1 leading to the inhibition of autophagy. Additional mechanisms are in place to allow autophagy activation in the presence of activated mTORC1. High levels of reactive oxygen species (ROS) driven by BCR-ABL potentially results in an oxidative stress mediated activation of autophagy. ROS can enhance autophagy directly or indirectly through AMPK activation. Further, TGFβ signalling blocks AKT inactivation of FOXO3A, leading to their re-localization from the cytoplasm (inactive) to the nucleus (active). Nuclear FOXO3A allows transcription of autophagy genes and a resultant activation of the autophagy process.
Figure 2: Interplay between autophagy, mitochondrial metabolism and ROS in HSCs and LSCs. Higher levels of reactive oxygen species (ROS) in leukemic stem cells (LSC), compared with normal haematopoietic stem cells (HSC), might derive from increased mitochondrial metabolism in LSCs. Autophagy can be up-regulated by an increase in ROS, maintaining oxidative stress below a certain level, in order to prevent ROS-induced differentiation. Additionally, AMPK can be activated by ROS, resulting in a cycle where AMPK might be modulating ROS levels directly, and/or indirectly through autophagy induction.
Figure 3: Targeting LSCs with 2nd generation autophagy inhibitors. Chronic myeloid leukemia stem cells (LSCs) have high levels of autophagy compared to normal haematopoietic stem cells. The use of second-generation autophagy inhibitors selectively targets LSCs driving them into differentiation, potentially by increasing oxidative stress. Tyrosine kinase inhibitors (TKI) target the more differentiated, proliferating cell population. Therefore, using second-generation autophagy inhibitors to drive cells towards a more differentiated phenotype should allow these cells to be targeted by TKI.