

Keitel, D. and Ashton, G. (2018) Faster search for long gravitational-wave
transients: GPU implementation of the transient F-statistic. Classical and
Quantum Gravity, 35(20), 205003. (doi:10.1088/1361-6382/aade34)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/168905
/

 Deposited on: 17 September 2018

Enlighten – Research publications by members of the University of
 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1088/1361-6382/aade34
http://dx.doi.org/10.1088/1361-6382/aade34
http://eprints.gla.ac.uk/168905
http://eprints.gla.ac.uk/168905
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Classical and Quantum Gravity

ACCEPTED MANUSCRIPT

Faster search for long gravitational-wave transients: GPU
implementation of the transient F-statistic
To cite this article before publication: David Keitel et al 2018 Class. Quantum Grav. in press https://doi.org/10.1088/1361-6382/aade34

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 130.209.6.40 on 14/09/2018 at 11:59

https://doi.org/10.1088/1361-6382/aade34
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6382/aade34

Faster search for long gravitational-wave transients:
GPU implementation of the transient F-statistic

David Keitel1 and Gregory Ashton2,3

1University of Glasgow, School of Physics and Astronomy, Kelvin Building,
Glasgow G12 8QQ, Scotland, United Kingdom
2 Max Planck Institut für Gravitationsphysik (Albert Einstein Institut), 30161
Hannover, Germany
3 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash
University, VIC 3800, Australia

E-mail: david.keitel@ligo.org

LIGO-P1800031-v6 [draft version: 27 August 2018]

Abstract. The F-statistic is an established method to search for continuous
gravitational waves from spinning neutron stars. Prix et al. [1, (2011)] introduced
a variant for transient, hours–months long, quasi-monochromatic signals. Possible
astrophysical scenarios for such transients include glitching pulsars, newborn
neutron stars and accreting systems. Here we present a new implementation of
the transient F-statistic, using pyCUDA to leverage the power of modern graphics
processing units (GPUs). The obtained speedup allows efficient searches over
much wider parameter spaces, especially when using more realistic transient
signal models including time-varying (e.g. exponentially decaying) amplitudes.
Hence, it can enable comprehensive coverage of glitches in known nearby pulsars,
improve the follow-up of outliers from continuous-wave searches, and might be an
important ingredient for future blind all-sky searches for unknown neutron stars.

1. Introduction

Spinning neutron stars (NSs), when non-axisymmetrically deformed, emit weak but
potentially detectable gravitational waves (GWs) [2]. Many searches [3] with the LIGO
and Virgo detectors [4, 5] focus on continuous wave (CW) signals that are persistent
over a whole observation run, but there are also scenarios for shorter signals from
transiently perturbed NSs. If those signals are slowly evolving in frequency and last on
the time scale of hours to months, analysis methods adapted from CW searches are well
suited to their detection. In [1] (hereafter also referred to as ‘PGM’), the astrophysical
motivation for such transient signals was discussed and a matched-filter search method
proposed. It is based on the established F-statistic, which was introduced in [6, 7]
and used in many CW searches [recently e.g. in 8–10].

Matched-filter searches for weak signals from unknown sources (or those with
imperfectly known parameters) are computationally very expensive since a wide
parameter space needs to be densely covered with templates. Starting from a typical
CW search that covers a certain parameter space in signal frequency, spindown and
sky location but assumes a constant signal amplitude, the addition of new unknown
parameters to describe the transient evolution further increases computational cost.

Page 1 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 2

However, the attractiveness of the transient F-statistic algorithm from [1] is
that it starts from time-discretised quantities already computed for the standard
CW F-statistic and then only needs to take partial sums of these to study the set
of possible transient signals. Still, for long total observation times the evaluation of
these partial sums can easily dominate over the original computational cost, especially
if the templates have a non-trivial amplitude evolution. For example, exponential
amplitude decay might be expected from a transiently excited and then viscously
damped oscillation mode, or for GW emission associated with the observed exponential
relaxation phases after pulsar glitches [11, 12].

The task of multiple partial sums of some input data can obviously benefit from
massive parallelisation. Here we present a straightforward translation of the algorithm
from [1] to run in parallel on the many subprocessors of modern graphics processing
units (GPUs), which are addressed through the general-purpose open-source GPU
computing package pyCUDA [13]. The full data analysis is implemented within the
open-source PyFstat package [14, 15] for F-statistic-based GW searches.‡

In the following, we briefly review the formalism from [1] to define the transient
F-statistic (section 2), then describe its pyCUDA implementation (section 3). We test
the speed and memory requirements (section 4) and compare with the original CPU
implementation from LALSuite [16]. The paper ends with a brief discussion (section 5)
of how the achieved speedup widens the scope of feasible searches for long CW-like
gravitational wave transients. This includes enabling a comprehensive coverage of
glitch events in nearby known pulsars, improving the sensitivity of all-sky CW searches
through following up more outliers with transient analyses, and the potential use as
an ingredient in future blind all-sky searches for unknown disturbed NSs.

2. Formalism

We present a straightforward pyCUDA implementation of the PGM ‘atoms-based’
transient F-statistic algorithm from Appendix A1 of [1]. It is based on a discretised
method to compute the overall (CW) F-statistic, introduced in [17] and described in
detail in [18].

The F-statistic (for transient or continuous signals) is essentially a likelihood-ratio
test for a time series x(t), comparing a signal hypothesis

HtS : x(t) = n(t) + h(t, λ,A, T) (1)

against the alternative hypothesis of pure Gaussian noise,

HG : x(t) = n(t) . (2)

The waveform model h(t, λ,A, T) = $(t, T)h(t, λ,A) for a slowly-evolving signal
separates into a transient window function $(t, T) [first introduced in 1] and the
standard CW waveform h(t, λ,A) [6, 18] The latter depends on a set of phase evolution
parameters λ = {α, δ, f, ḟ , f̈ , . . .} (sky position, frequency, and frequency derivatives
or ‘spindowns’) and on four amplitude parameters A = {h0, cos ι, ψ, φ0}. (h0 is a
dimensionless amplitude, ι and ψ describe the orientation and polarisation of the
source, and φ0 the GW phase at a reference frequency. Also see [1, 6, 18] for details on
how the F-statistic analytically maximises over these parameters.) For the transient
part, we currently consider either rectangular or exponential window functions, with

‡ Latest PyFstat source code and examples also available from:
https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat/.

Page 2 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat/

GPU transient F-statistic 3

parameters T = {t0, τ} where t0 is the start time of a signal and τ is a duration
parameter:

$rect(t, t0, τ) :=

{
1 if t ∈ [t0, t0 + τ]
0 otherwise ,

(3)

$exp(t, t0, τ) :=

{
e−(t−t0)/τ if t ∈ [t0, t0 + 3τ]
0 otherwise .

(4)

The cutoff of $exp at 3τ was introduced in [1] as a speedup optimisation in the
understanding that the signal-to-noise ratio (SNR) after this point will be negligible.

The (transient) F-statistic is then proportional to the log odds between HtS and
HG, after maximising over A (or marginalising, see [1, 19, 20] for details):

eF(x,λ,T) ∝ P (HtS|x, λ, T , I)

P (HG|x, I)
. (5)

It can be written as

F(x, λ, T) =
1

2
x′µ(λ, T)M′µν(λ, T)x′ν(λ, T) , (6)

where the indices µ, ν run over the four amplitude parameters A,M′µν is the antenna
pattern matrix, x′µ are projections of the data onto the model waveforms, and the
prime denotes transient windowing. (See Eqs. (32–36) of [1].)

The standard algorithm used in F-statistic searches for continuous signals splits
a data set starting at T0 and of length Tobs into several Short Fourier Transforms
(SFTs) of length TSFT. [18] describes how to approximate (6) from the per-SFT, per-
detector discretised versions of M′µν and x′µ; in practice we consider the equivalent
set of quantities {aj , bj , Faj , Fbj} as the atoms of our F-statistic computation, where
the j index runs over SFTs.

The aj and bj atoms are summed up to yield the discretised antenna pattern

matrix elements Â, B̂, Ĉ [defined in Eq. (130) of 18] and their determinant

D̂ = Â B̂ − Ĉ2, and together with the summed data-dependent complex quantities
Fa, Fb [Eq.(129) of 18] they yield the F-statistic as:

F(x, λ, T) = D̂−1 (B̂ [<2(Fa) + =2(Fa)] + Â [<2(Fb) + =2(Fb)] (7)

− 2Ĉ [<(Fa)<(Fb) + =(Fa)=(Fb)]) .

(All quantities on the right hand side are understood as depending on λ and T , too.)
For persistent CWs, this is evaluated summing all atoms over the full Tobs. To

search for transient signals, we define a grid in {t0, τ} space indexed by m for the t0
dimension and n for the τ dimension. We indicate the resolutions of this grid as dt0
and dτ ; a natural choice is dt0 = dτ = TSFT though a coarser or even variable sampling
is also possible. Then our goal is to compute, for each λ and a specific window choice
$, the matrix

Fmn(λ) := F(x, λ,$, t0m, τn) , (8)

which we also refer to as the transient F-statistic map. Computing it this way is
convenient because the set of atoms {aj , bj , Faj , Fbj} is only computed once, over the
full Tobs, and this is already done for the CW F-statistic anyway. Subsequently, the
transient Fmn map is obtained by evaluating (7) for partial sums of the atoms.

Page 3 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 4

3. Implementation

The new GPU version of the transient F-statistic is implemented in the framework
of the PyFstat python package [15]. PyFstat has primarily been developed
for the follow-up of CW candidates with Markov-chain Monte Carlo (MCMC)
methods [14]. Through C-to-python wrappers [SWIG, 21, 22], it uses standard
CW search functionality (written in C) from the LALPulsar package of the LIGO
collaboration’s algorithm collection LALSuite [16]. Hence, PyFstat can also be used
as a convenient way to develop modular custom searches for CWs and similar signals,
e.g. for the long-duration transients we consider here.

For the transient F-statistic, the PyFstat-based search application first calls the
standard LALPulsar algorithm ComputeFstat for computing the CW F-statistic over
the whole data set [17, 18]§. This already takes care of reading the data SFTs, the
signal-parameter-dependent translation between detector frames and a common solar
system reference frame (‘barycentring’), and computation of the per-SFT matched-
filter atoms. While for a standard CW search, the atoms would be discarded after
computing the overall F-statistic, the only change for our transient application is that
we ask the ComputeFstat routine to also return these atoms for further processing.

The input data for computing the transient F-statistic map Fmn from (8) consists
then of only the atoms (a set of vectors of NSFT elements each) and the parameters
describing a transient window function and grid in {t0, τ} space. The atoms, given
as 3 real vectors a2(t), b2(t) and a(t) · b(t) and 2 complex vectors Fa(t), Fb(t), are
transferred to the GPU as a 7×NSFT real matrix.

The basic idea of massively-parallelised computation on a GPU is to run a grid
of identical kernels, each processing the subset of data identified by the kernel’s
(multi-)index. We provide two structurally different kernels and grid setups for
rectangular and exponential windows. To account for the general case where
resolutions in t0 or τ different from TSFT might be desirable, or where there are
gaps in the data, we use Nt0 and Nτ for the number of grid points in each dimension,
which need not be equal to each other nor to NSFT.

In the rectangular case, an obvious optimisation was already pointed out in
[1] and is implemented in LALPulsar: For each starting time t0m, one can compute
Fmn for all durations τn by keeping the partial sums of each atom up to each τn′ in
memory and only adding the atoms with index n′ + 1 in the next step. It would thus
be wasteful to run a full Nt0 × Nτ grid of kernels on the GPU, and instead we only
launch Nt0 kernels, each of which internally loops over τ and keeps the partial sums
in local memory.

In the exponential case, no such simple trick is possible, since the contribution
to each partial sum at each timestep includes amplitude-weight factors (see Eq. (4))
depending on the τ currently being evaluated. Hence, we employ a brute-force grid
of Nt0 × Nτ kernels on the GPU, each of which only computes the partial sums for
a single Fmn. This grid structure would also be appropriate for any other generic
window function.

In both cases, the last steps, still done inside the GPU kernel, are to compute the
antenna pattern matrix determinant D̂ and the transient Fmn-statistic from Eq. (7).

§ As of the writing of this paper, documentation is available at:
https://lscsoft.docs.ligo.org/lalsuite/lalpulsar/group___compute_fstat__h.html

Page 4 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

https://lscsoft.docs.ligo.org/lalsuite/lalpulsar/group___compute_fstat__h.html

GPU transient F-statistic 5

4. Tests

In this section, we describe tests of the speedup obtained with the pyCUDA version, its
memory requirements, and its numerical faithfulness to the original implementation.
Here we use shorthands ‘rect’ and ‘exp’ for the window functions.

4.1. Speed

We have tested the speed of the pyCUDA implementation relative to the standard
LALPulsar code on several systems. These all have Intel CPUs: a laptop with a Core
i5-6200U at 2.30 GHz, a workstation with a Xeon X5675 at 3.07 GHz and two LIGO
Caltech cluster nodes with Xeons E5-2630 and E5-2650 at 2.20 GHz each. Note that
the LALPulsar code is compiled with the aggressive ‘-O3’ optimisation level of the
gcc compiler for all tests, but it runs on a single core of each CPU only.‖ The pyCUDA

code was benchmarked on several GPUs from the Nvidia GeForce GTX family (1050,
1060, 1070 and 1080Ti, with 2–11 GB RAM) and on a Nvidia Tesla V100-PCIE (16 GB
RAM), all installed on the same workstation and cluster nodes.

We consider observation times Tobs from 1 hour up to 1 year, with no gaps in the
data. Gaussian noise and a transient signal with τ = 0.5Tobs are simulated through
PyFstat, though the speed of calculating F-statistics does not depend on whether
the data contains a signal. The SFTs are taken at TSFT = 1800 s and Fmn is sampled
at dt0 = dτ = TSFT over a grid of t0 ∈ [T0, Tobs − 2TSFT] and τ ∈ [2TSFT, Tobs]. The
upper limit on t0 and lower limit on τ are set because the low-level implementation
requires at least 2 SFTs per Fmn computation.

Since GPU results for a single-template (fixed λ) analysis might be too pessimistic
because of startup overheads, and in practice speedups are only relevant for searches
over broad λ regions, we time searches over 100 frequency bins; though for simplicity
we assume a fixed sky location and no spindown. Timing results are summarised
in figure 1, as average runtime per λ template. As an additional cross-check, these
results also include some runs at 1000 frequency bins, which yield consistent timings
per template. Note that this is the total runtime of the search (per template), including
the initial LALPulsar computation of the atoms which always runs on the CPU.

For each architecture, exp windows are much slower than rect windows. As
discussed in section 3, for rect windows the number of summation steps can be
truncated, while exp windows correspond to the generic case where every step needs
to be fully executed. Also, each step for a rect window is a simple addition, while for
an exp window evaluation of the actual exp() function at each step adds many more
floating point operations.

Comparing CPUs with GPUs, we find that the pyCUDA version provides speedups
of at least an order of magnitude on GPUs of the Geforce GTX 10x0 family compared
to the original single-core LALPulsar code on contemporaneous CPUs, both for exp
and rect windows. In the exponential case, the Tesla V100 provides another similar
jump in speed over the GTX family, bringing the cost of exp window transient searches
over hundreds of days down to a similar cost as with the standard rect LALPulsar

CPU implementation.

‖ There is no strong incentive to develop a multi-core CPU version, since CW (and transient-CW)
search problems can be trivially parallelised by splitting the parameter space into N sub-regions to
run on N cores, or independent machines.

Page 5 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 6

0 50 100 150 200 250 300 350

Tobs [days]

0

10

20

30

40

50
ru

n
ti

m
e

p
er

te
m

p
la

te
[s

]

exp(CPU) exp(Tesla)exp(GTX)

rect(CPU)

rect(GTX/Tesla)

Figure 1. Timing results for both rectangular and exponential transient
windows, from CPU (LALPulsar) and GPU (pyCUDA) implementations on various
devices. The vertical axis gives the average run time per template λ. (Most test
runs used 100 frequency bins, and a few used 1000 to check the consistency of
averages.) Each solid/dashed line connects results from a specific implementation
on a specific device, averaging over 3 or more runs at fixed Tobs, and background
shading indicates a specific window run on a family of related architectures. The
exp(CPU) and rect(CPU) families collect results from the four different systems
mentioned in Sec. 4.1, while exp(GTX) labels results from different Nvidia Geforce
GXT 10x0 family devices, the single line labelled exp(Tesla) is from a Nvidia
Tesla V100, and the rect(GTX/Tesla) results are plotted together as they are not
significantly different.

We can also more directly compare these measurements to the timing model from
Appendix A3 of [1]. We find that to cover arbitrary combinations of {Tdata, Nt0 , Nτ},
we need to somewhat generalise the model. This is done in detail in our Appendix A
and leads to a timing model with several contributions proportional to the number of
data units NSFT, the number Nt0 × Nτ of grid points and the number of individual
summation steps Nsums. However, for the timings presented in figure 1, we are mostly
in regimes where the dominant scaling for rect windows is with Nt0 ×Nτ and the cost
for exp windows is dominated by the Nsums scaling. Hence, the results are still quite
consistent with the simpler model originally introduced in [1].

After fitting the more general model to the measured timings, the fit coefficients
can be approximately converted to the PGM per-machine ‘timing constants’ cr and
ce for the two window functions. In the original timing model, these are interpreted
directly as the cost to compute the (weighted) sums over atoms at each step, but under
the more general model, each corresponds to a combination of the three contributions.
Results are listed in table 1.

For fairness in these comparisons, we note that the current LALPulsar CPU code
may not be fully optimised. Two algorithmic optimisations are already included in it:
(i) the summation truncation for rect windows discussed above, and (ii) a lookup-table
(LUT) based ‘fast exponential’ function to at least somewhat reduce the cost of the

Page 6 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 7

Table 1. Timing results from figure 1 converted to the timing constants cr, ce
as introduced by [1], approximately corresponding to the cost of each individual
summation step. First the timings are fit with the extended model from Appendix
A (fit errors are < 1%) and, assuming dominant Nt0 ×Nτ scaling for rectangular
windows and Nsums scaling for exponential windows, the coefficients are converted
to cr and ce. Appendix A has additional details and complementary example fits
of the more general timing model to different scaling regimes.
Note that ce < cr for the GPUs does not mean that the overall search for an
exponential window is faster than for a rectangular window, as these constants
are multiplied with different summation counters, see (A.1) and (A.2).

CPU/GPU cr [s] ce [s]

Core2Duo 2.6 GHz 4.2 · 10−8 1.3 · 10−7 from [1]
i5-6200U 6.4 · 10−8 1.1 · 10−7

Xeon X5675 3.5 · 10−8 7.0 · 10−8

Xeon E5-2630 3.4 · 10−8 5.7 · 10−8

Xeon E5-2650 3.6 · 10−8 6.0 · 10−8

GTX-1050 6.1 · 10−9 1.4 · 10−9

GTX-1060 4.8 · 10−9 9.1 · 10−10

GTX-1070 4.2 · 10−9 7.3 · 10−10

GTX-1080 4.4 · 10−9 6.2 · 10−10

Tesla-V100 4.3 · 10−9 4.6 · 10−11

exp window (see also subsection 4.3 below). While the current code does not make
full use of the theoretical peak floating-point operations per second (flops) of modern
CPUs, the atoms-based transient-F-statistic algorithm fundamentally has a significant
computing cost contribution from index comparisons and other non-floating-point
operations, so that it is not currently obvious if any significant further optimisations
would be feasible. Meanwhile, the main finding of these tests is that already a
straightforward pyCUDA port of the algorithm, without additional optimisations, yields
significant speed-ups.

4.2. Memory

GPU applications are often memory-limited. However, for the transient F-statistic
map, we do not expect GPU memory to be a significant constraint, as we see in the
following. With the current approach, the input atoms need to be transferred to GPU
memory only for a single λ parameter space point at a time, then the Fmn(λ) matrix
is computed and returned. Hence, the peak GPU memory usage of input plus output
matrices is expected to be

M [bytes] = 4 (7NSFT +Nt0Nτ) , (9)

where 4 bytes is the base size of a real32 number in the underlying NumPy [23] package.
While the input array size grows only linearly with NSFT, assuming dt0 = dτ = TSFT
the Fmn matrix grows quadratically and will dominate memory usage at long Tobs.
However, in practice one might want to choose an undersampling of t0, τ .

A comparison of this expectation with practical memory usage measurements is
presented in figure 2. For TSFT = 1800 s and dt0 = dτ = TSFT, the memory usage
reaches only about 1.1 GB for a year of data, and with undersampling even much
longer data sets would remain easily feasible on current GPUs, even when multiple
jobs need to run on a single device.

Page 7 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 8

0 200 400 600

data length [days]

0

1

2

3

4

5
G

P
U

m
em

o
ry

u
se

[G
B

]

Figure 2. GPU memory usage on a GeForce
GTX 1070 (8 GB RAM) with CUDA V8.0.61.
Measured with TSFT = 1800 s and a resolution
of dt0 = dτ = TSFT at all Tobs. Each data
point is the difference between the output of
a call to pycuda.driver.mem get info() right
before allocating input and output arrays with
pycuda.gpuarray, and a call right afterwards.
The dashed line is the expected 4(7NSFT +
Nt0Nτ) scaling (in bytes). As Tobs → 0, we
find that the base memory use for the kernel
itself (and any other possible overheads) seems
to be only about 2–4 MB.

4.3. Accuracy

The original LALPulsar implementation is already using single precision for the atoms
and the F-statistic itself, so in contrast to some other GPU use cases [24] it was not
necessary to reduce the code’s internal precision for the pyCUDA version. However, the
F-statistic algorithm is already known to produce slightly different numerical results
on different CPU platforms, so it is worth checking the typical amount of differences
in the transient F-statistic between LALPulsar and pyCUDA versions.

As demonstrated for a particular test case in figure 3, we typically find negligibly
small differences, not larger than other implementation- and platform-dependent

0 2 4 6

∆Fmn/Fmn [10−6]

100

101

102

103

104

105

106

#
re

su
lt

s

rect window

0 2 4 6

∆Fmn/Fmn [10−6]

exp window

pure noise

noise+signal

Figure 3. Comparison of Fmn computed with the LALPulsar and pyCUDA

implementations. Each histogram gives the differences ∆Fmn between the two
implementations for a certain transient window, and either for pure Gaussian
noise or also including a (confidently detectable, max 2F ≈ 263) signal injection
with matching window function. The histograms are taken over all individual
Fmn values for 1000 frequency bins over a 1-day data set with TSFT = 1800. The
GPU for this test was a GeForce GTX 1070.

Page 8 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 9

Table 2. Example per-template timings of the Fmn-map cost for post-glitch
search setups with τ ∈ [2TSFT, Tobs = 4 months] and t0 in the band listed. Also
listed are GPU-over-CPU speedup factors and extrapolated total costs for example
searches with template counts Nλ from [26, 27]. The CPU columns are for a single
core of an Intel Xeon E5-2650 and the GPU columns for an Nvidia Tesla-V100.
The per-template timings are averaged over 5 runs of 100–1000 templates each,
except for the last CPU case (only 2 single-template runs).

t0 band window seconds per template GPU Vela: Nλ ≈ 2.2 · 10 6 Crab: Nλ ≈ 1.7 · 10 8

(days) CPU GPU speedup CPU GPU CPU GPU

0 rect 3.5 · 10−4 2.4 · 10−2 < 1 —— not dominated by Fmn cost ——
0 exp 5.7 · 10−1 2.3 · 10−2 ≈ 25 —— not dominated by Fmn cost ——
1 rect 1.1 · 10−2 2.6 · 10−2 < 1 0.3 d 0.7 d 21 d 51 d
1 exp 2.8 · 10 1 3.7 · 10−2 ≈ 750 2 y 1 d 150 y 72 d

120 rect 1.4 · 10 0 1.6 · 10−1 ≈ 9 35 d 4 d 7 y 1 y
120 exp 1.7 · 10 3 7.7 · 10−1 ≈ 2300 120 y 20 d 9300 y 4 y

variations in the F-statistic known from other work (e.g. [25]).
One relevant implementation detail of the LALPulsar code is the previously

mentioned lookup-table (LUT) based ‘fast exponential’ function. This can actually
lead to differences with pyCUDA for exponential windows of up to ∼ 10%, but figure 3
shows results after replacing it with the exp() function of the C standard library, thus
verifying that the difference did not come from a loss of accuracy with the new pyCUDA

implementation.

5. Conclusion and applications

The significant speedup achieved with our pyCUDA implementation of the transient
F-statistic will allow for a wider scope of searches for long-duration transient GWs.
We now discuss a few example applications that would be hard resource-wise, or even
prohibitive, on CPUs but could become viable with GPUs.

Let us first consider the natural use case of a GW data analysis triggered by
electromagnetic (EM) observations of a pulsar glitch. Quasi-monochromatic GW
emission, which the F-statistic is sensitive to, could be associated with the post-
glitch relaxation phase. Depending on the pulsar, this can have timescales of days
to months [11, 12] with an exponential decay, guiding the parameter range for a GW
transient search and motivating an exponential amplitude window.

As simple examples for possible transient search setups, assume we look at
Tobs = 4 months of data, signal durations τ ∈ [2TSFT, Tobs], and for the starting time
t0 we choose either (i) t0 ∈ [0, 1day] or (ii) t0 ∈ [0, Tobs − 2TSFT], with grid steps equal
to TSFT = 1800s for both t0 and τ . Setup (i) represents some uncertainty in GW
signal start time in relation to the glitch, while (ii) would instead be a completely
generic transient search for any signals after the glitch, not necessarily correlated with
the glitch time. Another possible setup, with a single fixed t0, would be appropriate
if models predict unequivocally that the GW emission starts at the same time as the
glitch; it is computationally cheap enough to not consider in detail here.

With these parameters, we obtain the per-template runtimes listed in Table 2.
Comparing a Tesla-V100 GPU with single-core runs on a Xeon E5-2650 CPU, we find
that for rectangular transient windows the GPU is actually still slower than the CPU

Page 9 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 10

in case (i) and only outperforms it by a factor of ∼ 10 for case (ii). But for exponential
windows, the Tesla beats the Xeon significantly by factors of approximately 750 and
2300. Still, with a single GW search template matching the post-glitch radio timing
solution (at fGW = 2fspin), any of these analyses would be computationally trivial
even on a single CPU.

However, it is reasonable to allow for some mismatch between the radio timing
and GW frequency evolution due to the perturbed state of the NS after a glitch. For
comparison, the ‘narrow-band’ search for CWs from known pulsars in the first aLIGO
run [26] (using 121 days of data, matching the 4 months considered in the Table 2
timings) covered some ranges in frequency f and spindown ḟ for each of its 11 targets,
with totals of e.g. Nλ ≈ 2.2 · 106 templates for the Vela pulsar and Nλ ≈ 1.7 · 108 for
the Crab pulsar.¶ (These values have been corrected in Table I of an erratum [27]
to [26].)

Multiplying these numbers of templates with the per-template transient F-
statistic costs (which in these setups again dominates over the rest of the search
algorithm), we find that in the more expensive case (ii) (t0 ∈ [0, Tobs − 2TSFT]), a
single Tesla could perform an exponential-window transient analysis over the Vela
band in less than 3 weeks, while the same analysis would take 120 years on a single
Xeon-E5-like CPU core; or equivalently would require about 2300 CPU cores to only
take the same 3 weeks as the single Tesla. For the wider Crab range (which was chosen
in [26] to account for the Crab’s strong spindown), even the Tesla would still need 4
years. The more relevant scenario in practice is that of a moderate t0 range, e.g. case
(i) with a 1-day range. Such a search over the Vela band would take a single day on
a Tesla, while requiring over 700 CPU core-days. Even the wider Crab range (chosen
in [26] to account for the Crab’s stronger spindown) would become feasible with 2–3
months on a single Tesla, instead of occupying a significant part of a large CPU cluster
for several weeks.

In summary, performing routine transient F-statistic analyses of all observed
glitches in known galactic pulsars during a GW observation run – with reasonably
wide bands in f and ḟ (similar to those used in [26], or only slightly reduced) and in
t0 – becomes feasible with a few dedicated GPU systems. Choosing GPUs over CPUs
for this kind of search is also efficient in terms of actual money cost, when we compare
the cost of adding a single GPU to an existing computer or adding another CPU-only
worker node to a cluster. For example, the Tesla-V100 on the CIT cluster used for
the above benchmarks cost about 6200 USD, while a single Xeon E5-2650 processor
(8 cores) was initially listed by Intel at 1100 USD. Allowing for a modest overhead for
other components in a CPU cluster node, a Tesla would thus already be efficient in
purchasing cost if faster than about 4 · 8 = 32 CPU cores. With power consumptions
of 250 W for the Tesla and ∼ 95 W (Intel’s listed Thermal Design Power) for a Xeon
under full load, the electricity cost comparison is even more favourable. Numbers will
of course vary for different hardware and purchase times, with more modern devices
typically delivering more power per USD and per W.

Similar estimates as for EM-triggered glitch searches also apply when considering
the follow-up [14, 30, 31] of significant or marginal detection candidates produced by
wide-parameter space CW searches [3]. Even though those searches target perfectly
persistent signals, they can also produce candidates if there are sufficiently strong

¶ Both are interesting targets for post-glitch transient searches: Vela last glitched on 2016-12-12 [28],
during the Advanced LIGO O2 run, and the Crab last glitched on 2017-11-08 [29], unfortunately
after the end of O2.

Page 10 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 11

transient events in the data [32]. A comprehensive transient-aware follow-up, with
the goal of either verifying the presumed persistent nature or uncovering a transient
signal instead, needs to not only target the exact phase-evolution parameters λ of the
candidate, but search a wider band around it to account for degeneracies with the
transient evolution parameters. Reducing the computational cost of each candidate’s
follow-up directly translates into a larger number of candidates that can be analysed,
so that the overall threshold of the CW search can be lowered and a better search
sensitivity can be achieved.

The data length and {t0, τ} ranges in this scenario can be longer than in the EM-
triggered post-glitch scenario: the aLIGO runs O1–O3 took data for / are scheduled
for 4, 9 and 12 months respectively [33], and for the follow-up of a strong candidate
data from multiple observing runs could get combined. The range of phase evolution
parameters λ that should be searched for full coverage depends on the exact setup of
the CW search and on possible intermediate follow-up steps; but the scaling of the
transient F-statistic cost would be similar to the more expensive full-t0-range case (ii)
considered in the EM-triggered example above (see Appendix A for the full timing
model) and the improvements in accessible search volume using a small number of
GPUs over CPUs will be at least similar.

In the longer term, untriggered all-sky searches for long-duration transients are
of high interest. Similarly to all-sky CW searches, they have the potential to discover
a population of electromagnetically dark NSs, for example glitching pulsars with
their beam pointed away from Earth. The sensitivity of all-sky searches is directly
limited by how densely they can cover the λ parameter space at a fixed computational
budget. [34, 35]. Hence, adding transient parameters at first significantly reduces
the overall sensitivity of a blind search. But speeding up the transient part by
orders of magnitude could still make a combined search for CWs and transients
feasible in the long run, when large numbers of specialised GPUs become available
in high-performance clusters. This could also be of interest for distributed volunteer
computing [Einstein@Home 36]: the speedup with consumer GPUs (e.g. the GTX
family) is more modest, but still significant. In practice, though, the more promising
approach for blind transient searches might be to apply a cheap add-on transient
modification, like that introduced in [32], to a semi-coherent CW algorithm as a first
search stage, then apply the fully-coherent transient F-statistic only in a follow-up
step.

In any of these scenarios, while we have focussed on the fact that the pyCUDA

version can bring down the cost of exponential-windowed transients significantly, the
cost for rectangular windows always remains smaller, so that in practice whenever
exponential windows are feasible, it is also cheap and natural to run both analyses
and evaluate a posteriori which one fits the data better. Different window functions
for the amplitude evolution could also be considered, and would generically follow the
GPU kernel grid setup and timing model for the exponential window, since it does
not assume any function-specific optimisations.

Acknowledgments

The authors would like to thank Reinhard Prix for feedback on the manuscript as
well as him and Karl Wette for development and continued support of the underlying
LALSuite F-statistic code. Thanks to Chris Messenger and Stuart Anderson for
support with the GPU test systems at Glasgow and CIT. We also thank the CQG

Page 11 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 12

referees for thoughtful suggestions on improving the paper, especially on extending
the discussion of efficiency, practical applications and costs.
DK was funded under the EU Horizon2020 framework through the Marie Sk lodowska-
Curie grant agreement 704094 GRANITE, and would also like to acknowledge the
Horizon2020 ASTERICS-OBELICS International School (Annecy 2017) that inspired
this investigation into pyCUDA and GPU applications.

Appendix

Appendix A. Generalising the PGM2011 timing model

Here we revisit the timing model for computing Fmn maps introduced in Appendix
A3 of [1]. Their equations (A13) and (A14) give the computing cost for a single-λ
Fmn map with either exponential

ceFmap ≈ ce
∆t0
dt0

∆τ

dτ

(τmin + ∆τ/2)

TSFT
≈ ceNt0 Nτ

(τmin + ∆τ/2)

TSFT
(A.1)

or rectangular window functions:

crFmap = cr
∆t0
dt0

(τmin + ∆τ)

TSFT
≈ crNt0

(τmin + ∆τ)

TSFT
= crNt0

τmax

TSFT
. (A.2)

The timing constants ce and cr are interpreted as the cost to compute the (weighted)
sums over atoms at each step. The exponential model corresponds to a ‘generic’ case
where all quantities have to be re-evaluated at each step, while the rectangular case
reuses partial sums as discussed before.

We note now that this formulation of the timing model does not explicitly include
the cost of computing the antenna pattern matrix determinant D̂ and the F-statistic
itself, which is done once for each (m,n) pair after all sums have been computed and
hence is independent of the window function choice.+ We can include this contribution
by adding a term +cF Nt0Nτ to both cases. It will be very subdominant for exponential
windows, where the summations term grows much faster than Nt0Nτ , but can be
relevant for rectangular windows where the summations term is more efficient.

Another small contribution to the timing model is from setup and index-lookup
costs that scale with the total number of SFTs handed to the F-statistic-map function;
for completeness we include a common term cSFTsNSFT.

In addition, Eqs. (A.1) and (A.2) only hold true if the full range of transient signal
durations explored by the Fmn map is fully contained within the available data range,
that is when t0max + τmax < T0 + Tdata. (We call this the ‘embedded’ case below.)
Otherwise, i.e. if some of the transient windows overlap the end of the available data,
by convention the LALPulsar code still returns results for the full rectangular Fmn
matrix, but truncates the atoms summations. Thus, the total computing cost in such
cases is lower than estimated by Eqs. (A.1), (A.2) and using them to fit the timing
constants from runtime measurements as in Sec. 4.1 would yield inconsistent results.

Hence, we generalise the PGM timing model by introducing Nsums as the effective
number of summation steps for an Fmn map, which depends on the window type, Tdata,
and the ranges of both t0 and τ :

ceFmap ≈ cSFTsNSFT + cesumsN
e
sums + cF Nt0 Nτ , (A.3)

+ In its scalings, this extra cost is degenerate with the marginalisation cost cmarg of PGM’s Eq. (15),
in search code executions were both Fmn maps and marginal Bayes factors are computed; so it was
effectively included in PGM’s overall code timing, but just attributed to a different part of the model.

Page 12 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

GPU transient F-statistic 13

crFmap ≈ cSFTsNSFT + crsumsN
r
sums + cF Nt0 Nτ . (A.4)

For rectangular windows, we have

N r
sums =

Nt0∑
m=1

min(Tdata − t0m, τmax)

TSFT
, (A.5)

which reduces to PGM’s N r
sums = Nt0τmax/TSFT in the special ‘embedded’ case

that PGM considered, and to N r
sums = 0.5Nt0τmax/TSFT in the special case of

Nt0dt0 = Nτdτ = Tdata − 2TSFT that we used for the timing results in Sec. 4.1.
For exponential windows, we also need to note that the current code’s convention,

as introduced in Eq. (18) of [1], is that an exponential window with duration parameter
τ covers an effective length of 3τ/TSFT atoms. (The exponential decay is not cut off
after only one, but after three e-folds, where the remaining SNR would be much more
negligible.) Hence, PGM’s original timing constant ce effectively contains a factor of
3 (from counting all steps in τ) that we now include in N e

sums instead:

N e
sums =

Nt0∑
m=1

Nτ∑
n=1

min(Tdata − t0m, 3 τn)

TSFT
. (A.6)

In the ‘embedded’ case this reduces to 3Nt0
Nτ∑
n=1

τn/TSFT = 3Nt0Nτ (τmin + 0.5∆τ)/TSFT,

equivalent to PGM’s result up to the factor of 3.
In practice, on each architecture we can use these more general equations (A.3)–

(A.6) to fit the four timing constants {cSFTs, cF , c
r
sums, c

e
sums} from a variety of setups

(in terms of Tdata, [t0min, t0max], [τmin, τmax]), then consider the special ‘embedded’
case∗ (and Nτ � 1, τmax � τmin) to directly compare to [1] by

cr = crsums +
TSFT
τmax

(
cSFTs

NSFT

Nt0
+ cF Nτ

)
≈ crsums + cF , (A.7)

ce = 3cesums +
TSFT

τmin + 0.5∆τ

(
cSFTs

NSFT

Nt0Nτ
+ cF

)
≈ 3cesums +

2

Nτ
cF ≈ 3cesums .(A.8)

Using a set of timing runs that in addition to those in section 4.1 also cover many
different combinations of {Tdata, Nt0 , Nτ}, and also measuring only the executation
time of the actual F-statistic map function (while in section 4.1 the whole search
call is timed, including the contribution of computing the atoms, which is usually
subdominant but not in the limit of low Nt0 Nτ and Nsums), we do a detailed fit of
the full timing model of (A.3) and (A.4), in the following iterative steps to ensure
convergence:

(i) fit the cSFTsNSFT term only to short data sets with Nsums ≤ 100

(ii) using this fixed cSFTs, fit crsumsN
r
sums + cF Nt0 Nτ for rectangular windows

(iii) using fixed cSFTs and cF , fit cesumsN
e
sums for exponential windows

∗ The example used for timing in Appendix A3 of [1] is 1 year of data with τ ∈ [0.5, 14.5] days; which
means that with t0 close to the end of the year and τmax = 14.5 days the overlap is at most 4% and
the deviations from the fully-embedded special case used for this comparison are smaller than typical
timing uncertainties.

Page 13 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

REFERENCES 14

We find e.g.

crFmap ≈ ((2.80± 0.03)NSFT + (0.96± 0.08)N r
sums + (5.59± 0.06)Nt0Nτ) 10−8 s (A.9)

ceFmap ≈ ((2.80± 0.03)NSFT + (3.55± 0.03)N e
sums + (5.59± 0.06)Nt0Nτ) 10−8 s(A.10)

for the i5-6200U laptop CPU (corresponding to PGM constants cr = (6.36± 0.08)10−8

and ce = (1.07± 0.01)10−7); and

crFmap ≈ ((2.59± 0.02)NSFT + (0.27± 0.02)N r
sums + (3.09± 0.02)Nt0Nτ) 10−8 s(A.11)

ceFmap ≈ ((2.59± 0.02)NSFT + (2.22± 0.03)N e
sums + (3.09± 0.02)Nt0Nτ) 10−8 s(A.12)

for the Xeon X5675 workstation CPU (corresponding to PGM constants
cr = (3.26± 0.02)10−8 and ce = (6.67± 0.08)10−8). These results agree reasonably
well with those obtained on the same systems, but with fixed Nt0 , Nτ in relation to
Tdata and with simplified fits, as presented in table 1. While the error bars from fitting
alone appear too small to explain the remaining differences of 0.5–7%, it is likely that
variations in system configuration and load between timing runs are the main culprit.

References

[1] Prix R, Giampanis S and Messenger C 2011 Phys. Rev. D 84 023007 [arXiv:1104.1704]

[2] Prix R (for the LIGO Scientific Collaboration) 2009 Gravitational Waves from Spinning
Neutron Stars (Astrophys. Space Sci. Lib. vol 357) (Springer Berlin Heidelberg) chap 24,
pp 651–685 ISBN 978-3-540-76964-4 URL https://dcc.ligo.org/LIGO-P060039/

public

[3] Riles K 2017 Mod. Phys. Lett. A32 1730035 [arXiv:1712.05897]

[4] Aasi J et al. (LIGO Scientific Collaboration) 2015 Class. Quant. Grav. 32 074001
[arXiv:1411.4547]

[5] Acernese F et al. (Virgo Collaboration) 2015 Class. Quant. Grav. 32 024001
[arXiv:1408.3978]

[6] Jaranowski P, Królak A and Schutz B F 1998 Phys. Rev. D 58 063001 [arXiv:gr-
qc/9804014]

[7] Cutler C and Schutz B F 2005 Phys. Rev. D 72 063006 [arXiv:gr-qc/0504011]

[8] Aasi J et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2015 Astrophys.
J. 813 39 [arXiv:1412.5942]

[9] Zhu S J et al. 2016 Phys. Rev. D 94 082008 [arXiv:1608.07589]

[10] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Phys.
Rev. D 96 122004 [arXiv:1707.02669]

[11] Lyne A G, Shemar S L and Smith F G 2000 Mon. Not. R. Astron. Soc. 315 534–542

[12] Haskell B and Antonopoulou D 2014 Mon. Not. Roy. Astron. Soc. 438 16
[arXiv:1306.5214]

[13] Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P and Fasih A 2012 Parallel Computing
38 157–174 ISSN 0167-8191

[14] Ashton G and Prix R 2018 Phys. Rev. D 97 103020 [arXiv:1802.05450]

[15] Ashton G and Keitel D 2018 Pyfstat-v1.2 URL https://doi.org/10.5281/zenodo.

1243931

[16] LSC Algorithm Library - LALSuite (free software) URL https://git.ligo.org/

lscsoft/lalsuite

Page 14 of 15AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

http://www.arxiv.org/abs/1104.1704
https://dcc.ligo.org/LIGO-P060039/public
https://dcc.ligo.org/LIGO-P060039/public
http://www.arxiv.org/abs/1712.05897
http://www.arxiv.org/abs/1411.4547
http://www.arxiv.org/abs/1408.3978
http://www.arxiv.org/abs/gr-qc/9804014
http://www.arxiv.org/abs/gr-qc/9804014
http://www.arxiv.org/abs/gr-qc/0504011
http://www.arxiv.org/abs/1412.5942
http://www.arxiv.org/abs/1608.07589
http://www.arxiv.org/abs/1707.02669
http://www.arxiv.org/abs/1306.5214
http://www.arxiv.org/abs/1802.05450
https://doi.org/10.5281/zenodo.1243931
https://doi.org/10.5281/zenodo.1243931
https://git.ligo.org/lscsoft/lalsuite
https://git.ligo.org/lscsoft/lalsuite

REFERENCES 15

[17] Williams P R and Schutz B F 1999 AIP Conf. Proc. 523 473 [arXiv:gr-qc/9912029]

[18] Prix R 2009 The F-statistic and its implementation in ComputeFStatistic v2 Tech. Rep.
LIGO-T0900149-v6 last updated 2018 URL https://dcc.ligo.org/LIGO-T0900149/

public

[19] Prix R and Krishnan B 2009 Class. Quant. Grav. 26 204013 [arXiv:0907.2569]

[20] Keitel D, Prix R, Papa M A, Leaci P and Siddiqi M 2014 Phys. Rev. D 89 064023
[arXiv:1311.5738]

[21] Beazley D M 1996 SWIG: An Easy to Use Tool for Integrating Scripting Languages with
C and C++ Proc. 4th Conf. USENIX Tcl/Tk Workshop (Berkeley, CA, USA: USENIX
Association) pp 15–15 URL http://dl.acm.org/citation.cfm?id=1267498.1267513

[22] Beazley D M et al. SWIG - Simplified Wrapper and Interface Generator URL www.swig.

org

[23] Oliphant T E 2006 A guide to NumPy (Trelgol Publishing)

[24] Navarro C A, Hitschfeld-Kahler N and Mateu L 2014 Communications in Computational
Physics 15 285329

[25] Prix R 2011 F-statistic bias due to noise-estimator Tech. Rep. LIGO-T1100551 URL
https://dcc.ligo.org/LIGO-T1100551/public

[26] Abbott B P et al. (Virgo, LIGO Scientific) 2017 Phys. Rev. D 96 122006
[arXiv:1710.02327]

[27] Abbott B P et al. (Virgo, LIGO Scientific) 2018 Phys. Rev. D 97 129903

[28] Palfreyman J, Dickey J M, Hotan A, Ellingsen S and van Straten W 2018 Nature 556
219–222

[29] Shaw B et al. 2018 Mon. Not. R. Astron. Soc. 478 3832–3840 [arXiv:1805.05110]

[30] Shaltev M and Prix R 2013 Phys. Rev. D 87 084057 [arXiv:1303.2471]

[31] Papa M A et al. 2016 Phys. Rev. D 94 122006 [arXiv:1608.08928]

[32] Keitel D 2016 Phys. Rev. D 93 084024 [arXiv:1509.02398]

[33] Abbott B P et al. (VIRGO, LIGO Scientific) 2018 Living Rev. Relativ-
ity 21:3 [arXiv:1304.0670] URL https://link.springer.com/article/10.1007/

s41114-018-0012-9

[34] Prix R and Shaltev M 2012 Phys. Rev. D 85 084010 [arXiv:1201.4321]

[35] Wette K 2012 Phys. Rev. D 85 042003 [arXiv:1111.5650]

[36] Allen B et al. Einstein@Home distributed computing project URL https://

einsteinathome.org

Page 15 of 15 AUTHOR SUBMITTED MANUSCRIPT - CQG-104918.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d
M

an
us

cr
ip

t

http://www.arxiv.org/abs/gr-qc/9912029
https://dcc.ligo.org/LIGO-T0900149/public
https://dcc.ligo.org/LIGO-T0900149/public
http://www.arxiv.org/abs/0907.2569
http://www.arxiv.org/abs/1311.5738
http://dl.acm.org/citation.cfm?id=1267498.1267513
www.swig.org
www.swig.org
https://dcc.ligo.org/LIGO-T1100551/public
http://www.arxiv.org/abs/1710.02327
http://www.arxiv.org/abs/1805.05110
http://www.arxiv.org/abs/1303.2471
http://www.arxiv.org/abs/1608.08928
http://www.arxiv.org/abs/1509.02398
http://www.arxiv.org/abs/1304.0670
https://link.springer.com/article/10.1007/s41114-018-0012-9
https://link.springer.com/article/10.1007/s41114-018-0012-9
http://www.arxiv.org/abs/1201.4321
http://www.arxiv.org/abs/1111.5650
https://einsteinathome.org
https://einsteinathome.org

	Cover Sheet (AFV)
	168905

