
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/168303/

Deposited on: 05 September 2018

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Lipid management in patients with chronic kidney disease

[Title shortened to fit our limit of 90 characters including spaces. OK?]

Charles J Ferro¹, Patrick B Mark², Mehmet Kanbay³, Pantelis Sarafidis⁴, Gunnar H. Heine⁵, Patrick Rossignol⁶, Ziad A. Massy⁷, Francesca Mallamaci⁸, Jose M Valdivielso⁹, Jolanta Malyszko¹⁰, Marianne C. Verhaar¹¹, Robert EKart¹², Raymond Vanholder¹³, Gerard London¹⁴, Alberto Ortiz¹⁵ and Carmine Zoccali⁸

¹Department of Renal Medicine, University Hospitals Birmingham, Edgbaston, Birmingham, UK
²Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
³Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
⁴Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
⁵Saarland University Medical Center, Internal Medicine IV–Nephrology and Hypertension, Homburg, Germany
⁶Centre d'Investigation Clinique Plurithématique Pierre Drouin - INSERM CHU de Nancy, France
⁷Hopital Ambroise Paré, Paris Ile de France Ouest (UVSQ) University, Inserm U1018 Eq 5, Paris, France
⁸CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, 89124 Reggio Calabria, Italy
⁹Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, Lleida, Spain
¹⁰Department of Nephrology, Dialysis Therapy and Internal Medicine, Warsaw Medical University, Warsaw, Poland
¹¹Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
¹²Faculty of Medicine, Maribor University, Maribor, Slovenia
¹³Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
¹⁴Centre Hospitalier F.H. Manhès, France
¹⁵IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
Correspondence: Professor Charles Ferro, Renal Unit, University Hospitals Birmingham, Edgbaston, Birmingham B15 2GW United Kingdom. Tel: +44-121-3715839; Fax: +44-121-3715858; e-mail: charles.ferro@uhb.nhs.uk

Abstract | Glomerular filtration rate is inversely associated with cardiovascular disease independent of conventional risk factors. An increased risk of cardiovascular disease is present even at minor levels of renal impairment and the risk is highest in patients with end-stage renal disease (ESRD) requiring dialysis. Renal dysfunction changes the level, composition, and quality of blood lipids in favour of a more atherogenic profile. Patients with advanced chronic kidney disease or ESRD have a characteristic lipid pattern of hypertriglyceridemia and low HDL-cholesterol levels but normal LDL-cholesterol levels. In the general population, a clear relationship exists between LDL-cholesterol, coronary heart disease and ischaemic stroke. However, in patients with ESRD, LDL-cholesterol seems to show a negative association [Au: with these outcomes?] at below average LDL-cholesterol levels and a flat or weakly positive association with mortality at higher LDL-cholesterol levels. Overall, the available data suggest that lowering of LDL-cholesterol is beneficial for prevention of major atherosclerotic events in patients with chronic kidney disease and in kidney transplant recipient but is not beneficial in patients requiring dialysis. [Au: I’ve moved the description of the content of your Review to the end of the introduction as per our journal style. To fully reflect the content of your article, please finish off the abstrace with a couple of sentences relating to novel lipid-lowering therapies and the need for reconsideration of the KDIGO guidelines in the light of new data. We have a limit of 200 words for this section.]

[Au: I have highlighted suggestions for glossary terms throughout your manuscript with a [G]. Please provide succinct, one-sentence definitions for these specialist terms.]

[H1] Introduction
Guidelines regarding the management of lipids in patients with chronic kidney disease (CKD) and especially in those with end-stage renal disease (ESRD) are inconsistent in part owing to important deficiencies in the available data. [Au: Edit OK?] In 2013 KDIGO produced a comprehensive clinical practice guideline for lipid management in CKD¹. [Au: I suggest that we cite your original Table 1 (now Table 3) in the discussion of KDIGO recommendations at the end of the review so that the table is included next to this discussion in the final layout rather than in the introduction to the Review.] However, in
contrast to other [Au: subsequently published?] guidelines [Au: Such as?], these recommendations are considered by some to be overly conservative and restrictive with respect to patient selection, repeat cholesterol measurements and escalation of lipid-lowering therapy, as well as to possibly encourage a nihilistic approach, particularly in patients who require dialysis.2,3

To some extent these issues are related to the historical unavailability of low-cost, efficacious and well-tolerated non-statin-based lipid-lowering therapies. However, developments in the understanding of lipid metabolism, increasing evidence supporting the use of novel lipid-lowering therapies, emerging clinical data and the publication of guidelines from learned societies mean that nephrologists and other health professionals may now have to reconsider their attitude towards the use of such therapies in patients with CKD and ESRD.

Here we review the epidemiology, pathogenesis and treatment of dyslipidaemia in patients with CKD and ESRD and in kidney transplant recipients. We discuss the mechanisms of action of novel lipid-lowering agents, evaluate the emerging evidence that supports the use of these therapies and discuss the potential health economic implications of their adoption in clinical practice. [Au: Edit OK?] Finally, we reappraise the 2013 KDIGO Clinical Practice Guideline for Lipid Management in the context of the currently available data and more recent lipid management guidelines from other societies. [Au: Edit of this paragraph OK? I moved some text from the end of your abstract to provide more detail.]

[H1] Renal function and cardiovascular risk [Au: We have a limit for main [H1] subheadings of 39 characters including spaces. I have edited the subheadings throughout to fit this limit.] A graded inverse relationship exists between estimated glomerular filtration rate (eGFR) and cardiovascular disease, which is independent of age, sex and other conventional cardiovascular risk factors.4,5 This relationship is present even in the setting of minor renal impairment with most studies showing an increased risk [Au: of cardiovascular disease?] at an eGFR <60 ml/min/1.73m² and some studies showing an increased number of cardiovascular events even at higher levels of eGFR.4,6 Moreover, patients with ESRD who require dialysis have an extremely high risk of cardiovascular disease [Au: ok or should this be cardiovascular events?]7. In Europe, standardized cardiovascular and non-cardiovascular mortality are 8.1 and 8.8 times higher, respectively, in patients on dialysis than in the general population.8 The mortality of patients with ESRD is twice as high as that of patients with
congestive heart failure and four times that of patients with diabetes mellitus in the absence of CKD7. In all relevant studies of patients with early CKD or ESRD published to date, cardiovascular disease is the predominant cause of this increased mortality, accounting for over 50\% of all deaths4,5,7,9.

Kidney transplantation is the treatment of choice for patients with ESRD and is associated with healthcare cost savings, improved quality of life and improved survival10-13. Candidates for kidney transplants undergo rigorous cardiovascular investigations before transplantation14. However, cardiovascular mortality still accounts for approximately 50\% of all deaths in kidney transplant recipients15.

[H1] Dyslipidaemia in kidney disease [Au: I have added [H2] subheadings to this section to make it easier to navigate for readers. Please check that you are happy with these headings. We have a limit for [H2] subheadings of 39 characters including spaces.]

Patients with kidney disease are a very heterogenous population with a wide range of aetiologies of renal damage, levels of renal function and proteinuria, co-morbidities (especially concurrent diabetes), renal replacement modalities and treatments, all of which can affect the levels and properties of circulating lipids16,17. [Au: Edit OK?] In general, renal dysfunction changes the level, composition, and quality of these lipids in favour of a more atherogenic profile18-21. The characteristic lipid pattern in patients with CKD stage 3 or higher consists of hypertriglyceridemia [G], low levels of high-density lipoprotein (HDL) cholesterol and variable levels of low-density lipoprotein (LDL) cholesterol and total cholesterol18,19,22-25. However, different CKD stages, modes of dialysis and levels of proteinuria are associated with specific lipid profiles (Table 1). [Au: Edit OK? We generally avoid referring directly to display items in the text.]

[H2] Lipid metabolism

Lipid metabolism is complex and involves multiple organs, cells and tissues, including the liver, intestine, plasma, macrophages and vascular endothelium, all of which can be affected by impaired kidney function19,26 (Figure 1). As fats are hydrophobic and generally insoluble in plasma26, they are transported within hydrophilic lipoproteins with surface apolipoproteins [Au: What is the function of apolipoproteins in this context?]. Hundreds of these proteins [Au: Are you referring to lipoproteins, apolipoproteins or both?] exist26-28. Apolipoproteins also act as cofactors and ligands for lipid-processing enzymes.
Dyslipidaemia in patients with CKD occurs as a result of altered metabolism of postprandial lipoproteins and other triglyceride-rich lipoproteins (such as very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and LDL), changes in reverse cholesterol transport and lipoprotein structure, post-translational modification of lipoproteins and increased levels of lipoprotein(a) (Lp(a)). [Au: Edit OK?]

[H2] Lipoprotein structure

LDL-cholesterol has been a major focus of cardiovascular risk reduction in patients with CKD. However, the levels of LDL-cholesterol and total cholesterol are often within normal limits in these patients. Alterations in lipoprotein structure that are associated with CKD, for example an increased predominance of atherogenic small dense LDL particles, might be more important than quantitative changes in cholesterol levels. The increased pro-atherogenic potential of small dense LDL particles has been linked to their increased capacity to infiltrate the arterial intima and their increased susceptibility to oxidative modification.

[H2] Reverse cholesterol transport

The process of reverse cholesterol transport clears excess cholesterol from the arterial wall through HDL-cholesterol-mediated pathways (Figure 1). This process is negatively affected by CKD at several levels. Expression of the ATP-Binding Cassette (ABC) transporters, ABCA1 and ABCR1, which are key to promoting the efflux of cholesterol from macrophages to lipid-poor HDL precursors, is reduced in CKD. Activation of the plasma enzyme lecithin-cholesterol acyltransferase (LCAT) by Apolipoprotein-AI (Apo-AI; the major lipoprotein on HDL) to form cholesterol ester from free cholesterol stimulates the maturation of HDL precursors. Levels of plasma Apo-A1 and HDL-cholesterol are also significantly reduced in patients with CKD as a consequence of reduced liver synthesis of Apo-A1 and reduced concentration and activity of LCAT.

Cholesterylester transfer protein (CETP) mediates the transfer of cholesterol ester from HDL particles to triglyceride-rich lipoproteins. Low CETP activity leads to increased plasma HDL-cholesterol concentrations and is thought to protect against atheroma formation although whether HDL cholesterol levels are a modifiable risk factor remains unclear. However, CETP activity is increased in patients with CKD. This impaired HDL-cholesterol metabolism in CKD leads to the accumulation of immature HDL particle precursors with limited anti-oxidative and anti-inflammatory potential.

Renal transplant recipients...
often have high levels of HDL-cholesterol but are not protected against atherogenesis, probably as a direct result of the reduced quality of these HDL particles13,53.

[H2] Hypertriglyceridemia

Plasma triglyceride concentrations are increased in the early stages of CKD with the highest levels in patients on dialysis and in those with nephrotic syndrome34,54. The ratio of triglycerides to cholesterol in LDL and HDL particles is also increased in patients with CKD24. Hypertriglyceridemia [G] in CKD results from delayed catabolism of triglyceride rich lipoproteins, including VLDL particles and chylomicron [G] remnants, coupled to reduced LCAT activity34,43. Lipoprotein lipase (LPL) expression is reduced and the levels of Apolipoprotein C-III (Apo C-III), a competitive inhibitor of LPL, are increased in CKD24,55. LPL hydrolyses triglycerides transported within VLDL particles and chylomicrons56,57. Clearance of VLDL particles from the circulation, and their transformation into IDL particles, are also impaired in CKD because of reduced expression of VLDL receptors in adipocytes and myocytes25,58-60. Glucose loading in patients on peritoneal dialysis61 and recurrent heparinisation in those on haemodialysis are also thought to contribute [Au: to this reduced expression?]62. Switching from conventional thrice-weekly 4-hour haemodialysis sessions to more intensive regimens such as nocturnal haemodialysis has been reported to lower triglyceride concentrations and increase HDL-cholesterol levels63.

Attention has focused on alterations of triglyceride-rich lipoproteins as predictors of cardiovascular disease64. In the general population, Mendelian randomization analyses support the hypothesis of a causal association between triglyceride and lipoprotein abnormalities, including smaller and denser LDL and HDL particles and cardiovascular disease64,65. Patients with an eGFR <60 ml/min/1.73m2 have a highly-prevalent dyslipidemic phenotype consisting of increased levels of triglyceride-rich lipoproteins that is strongly associated with a high subclinical atherosclerosis burden66,67 and has also been shown to be associated with increased risk of coronary heart disease68. Hypertriglyceridaemia is also a strong [Au: risk?] factor for cardiovascular events and mortality in patients on haemodialysis with abdominal obesity69.

[H2] Lipoprotein(a)

Lp(a) is a unique lipoprotein that consists of a central LDL-like core containing a single molecule of Apoprotein-B (ApoB) linked by a disulphide bridge to Apoprotein(a)31,70,71. Lp(a) binds to the extracellular matrix and is highly atherogenic31. Plasma Lp(a) levels are
primarily genetically determined by Lp(a) gene variants and are thought to be causally associated with high cardiovascular risk based on epidemiologic, genetic association and Mendelian randomization studies31,70,72-76. Interestingly this association seems to become less important once coronary artery disease is established77. Elevated Lp(a) levels are also independently associated with risk of myocardial infarction and death in patients with CKD78.

The metabolic pathways of Lp(a) production and clearance are not well understood70. However, plasma Lp(a) levels seem to increase early in CKD owing to decreased clearance79 and are increased up to 4-fold in patients with nephrotic syndrome80,81. Lp(a) is thought to competitively inhibit fibrinolysis [G] and thus predispose to thrombosis and may also directly promote atherosclerosis70. The 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias recommend measuring of ApoB as an complementary risk marker, especially in patients with high triglyceride levels, and measuring of Lp(a) levels in selected patients at high risk of cardiovascular disease, in patients with premature cardiovascular disease, and for reclassification in patients with borderline cardiovascular risk79.

[H2] Oxidative stress

Oxidative stress increases as renal function declines82, leading to increased oxidation of circulating lipids19. The resulting oxidation products such as oxysterols83,84, malondialdehyde85,86, and oxidized HDL and LDL particles87,88 have increased atherogenic potential. Studies of the lipidomic profile in the CKD population show a reduction in phosphatidylcholines, sulfatides and ceramides in LDL particles, as well as an increase in N-acyltaurines89. These alterations may contribute to the pro-atherogenic potential of lipoproteins in CKD. Other qualitative abnormalities such as glycosylation and carbamylation have been reported in patients with CKD90. HDL particles in adult and paediatric patients with CKD are modified by retained symmetric dimethylarginine promoting endothelial dysfunction and atherogenesis91.

[H2] Nephrotic syndrome

Independent of alterations in GFR, increasing levels of albuminuria are associated with dysregulation of lipid metabolism and dyslipidaemia, which is exemplified in patients with nephrotic syndrome80,81,92. These patients typically have marked hypercholesterolaemia, hypertriglyceridaemia and low to normal HDL-cholesterol levels. These changes are mediated by changes in the expression and activity of key protein mediators of lipid metabolism, including decreased LPL activity and decreased expression of the LDL-receptor
(LDL-R)80,81,92, which in part relate to the insulin resistant state that is observed in these patients. Profound alterations in the structure and function of HDL particles are also present[Au: in patients with nephrotic syndrome?]81. Increases in proprotein convertase subtilisin–kexin type 9 (PCSK9) are also thought to contribute to the hypercholesterolaemia that is associated with nephrotic syndrome80,93. Plasma PCSK9 concentrations do not increase with decreasing GFR[Au: Please explain why this finding is important.]94.

\textbf{[H2] Imunosuppressive medication}

Kidney transplant recipients and patients with autoimmune or inflammatory conditions, which can be a cause of renal damage or an associated comorbidity, require treatment with immunosuppressive medication, which substantially alter lipid profiles95. Calcineurin inhibitors, particularly ciclosporin, increase LDL-cholesterol levels by a number of mechanisms, including reduced binding to the LDL-R, decreased bile acid synthesis and the promotion of glucose intolerance96,97. Although ciclosporin and tacrolimus seem to have similar actions on lipid metabolism and glucose intolerance, the use of ciclosporin is consistently associated with increased levels of LDL-cholesterol and Apo(B)98-100. mTOR inhibitors have anti-atherogenic effects but raise LDL-cholesterol levels at least as much as or even more than calcineurin inhibitors by a number of potential mechanisms including inhibition of LPL and increased lipoprotein synthesis[Au: Edit OK?]95,101-103. In addition, corticosteroids induce insulin resistance and dose-dependently increase concentrations of circulating cholesterol and triglycerides95. The effects of these drugs on dyslipidemia is additive to that of other immune-suppressive agents.

\textbf{[H1] Lipids and cardiovascular disease}

In the general population, a clear linear relationship exists between plasma cholesterol concentration and the risk of coronary heart disease and ischaemic stroke. For every 1 mmol/L (40 mg/dL) increase in LDL-cholesterol, the risk of coronary heart disease increases by 40\%104. However, in patients with ESRD on dialysis, LDL-cholesterol has a negative association with all-cause mortality at below average LDL-cholesterol levels and a flat or weakly positive association at higher levels105,106.\textsuperscript{[Au: Edit OK?] This relationship, which holds for patients on haemodialysis or peritoneal dialysis and when cardiovascular death is considered as a separate outcome106, is often referred to as “reverse epidemiology”, “reverse causality” or “the risk factor paradox”. That is, CKD or an associated co-morbidity causes both reduced LDL-cholesterol levels and an increased risk of death, thus creating a potentially deceptive association between low LDL-cholesterol levels and mortality107,108. However, an analysis of
the Study of Heart and Renal Protection (SHARP) found a weak linear relationship between LDL-cholesterol and the risk of major vascular events (HR 1.14, 95% CI 1.06-1.22 per 0.6 mmol/L increase in LDL-cholesterol) in 9,270 patients with moderate to advanced CKD, including 3,015 patients on dialysis. [Au: Please clarify how this finding supports or does not support the reverse causality hypothesis as this is not currently clear.]

Another possible or complimentary explanation [Au: “for the inverse relationship between LDL-cholesterol levels and all-cause mortality in patients with ESRD”?] is that CKD results in a unique cardiovascular phenotype with fewer deaths due to atherosclerotic processes but more deaths owing to heart failure and sudden cardiac death. The pathophysiology of these conditions seems to be associated with disturbances of calcium and phosphate metabolism, hypertension, arrhythmogenic electrolyte disorders, hypervolaemia, uraemic toxins and anaemia. A specific pattern of myocardial fibrosis that is found in patients with CKD and ESRD known as cardiomyopathy of CKD or uraemic cardiomyopathy is thought to form the pathophysiological basis for this phenotype, which is a powerful predictor of cardiovascular mortality in these patients.

Increased HDL-cholesterol levels are associated with decreased cardiovascular risk in the general population. However, RCTs in this population have not shown significant benefits of increasing HDL-cholesterol levels with non-statin medications, including niacin. Low levels of HDL-cholesterol are common among patients with CKD and ESRD but they do not seem to be associated with increased cardiovascular risk after adjustment for traditional risk factors. Some studies show a J-curve association with increased mortality among patients with ESRD who have very low or very high HDL-cholesterol levels. These data further support the importance of renal-function-induced changes in the composition and quality of lipoproteins.

In the general population, hypertriglyceridaemia is an independent cardiovascular risk factor although the association is far weaker than for hypercholesterolaemia. Elevated triglyceride levels are common in patients with CKD and ESRD, especially in those with insulin resistance and diabetes mellitus, and in those who are receiving peritoneal dialysis.

[H1] Statin therapy
Beneficial effects of lowering LDL-cholesterol levels using HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme) reductase inhibitors, commonly known as statins, are well established in patients without renal dysfunction. Their safety and efficacy has been demonstrated in the setting of secondary prevention following an atherosclerotic cardiovascular event in several adequately powered RCTs\cite{138,139}, and as primary prevention in patients at increased cardiovascular risk such as those with diabetes\cite{140,141}.

The overwhelming nature and magnitude of benefit of statin therapy in high-risk populations has also been demonstrated in a number of meta-analyses from the Cholesterol Treatment Trialists (CTT) collaboration\cite{142-145}. Statins might also be beneficial as primary therapy to prevent cardiovascular disease in lower risk populations\cite{145} such as in men with hypercholesterolaemia\cite{146} or in men and women with high levels of high-sensitivity C-Reactive protein (hsCRP; a marker of inflammation) in the absence of hyperlipidaemia\cite{147}.

To date, all of the large randomized controlled studies (RCTs) that have investigated the efficacy of lipid-lowering therapy for the prevention of cardiovascular events in patients with kidney disease have been performed using statins.

\[H2]\ Randomized controlled trials

Many of the early RCTs of statin therapy [Au: of statin therapy?] did not focus on renal dysfunction as a cardiovascular risk factor. However, the Pravastatin Pooling Project, which combined the results of three placebo-controlled pravastatin trials, demonstrated that reduced kidney function (eGFR 30-59 ml/min/1.73m²) was a predictor of cardiovascular events and that lipid lowering was associated with a reduction in the rate of these events in patients with reduced kidney function [Au: Edit OK?]\cite{148}. Similar results were seen in patients with reduced kidney function (defined as eGFR <60 ml/min/1.73m²) in the JUPITER\cite{149} and Treating to New Targets (TNT) trials\cite{150}.

\[H3]\ Kidney transplant recipients. The first large RCT of statin therapy for the prevention of cardiovascular events in kidney transplant recipient was the Assessment of Lescol in Renal Transplantation (ALERT) study, which included 2,102 kidney transplant recipients receiving ciclosporin-based immunosuppression with stable graft function and total cholesterol levels of 4.0-9.0 mmol/L (155–350 mg/dL) or 4.0-7.0 mmol/L (155–270 mg/dL) if they had previously experienced a myocardial infarction\cite{151}. Patients were randomly assigned to 40 mg fluvastatin or placebo and followed for a mean of 5.1 years. LDL-cholesterol was 1.0 mmol/L (40 mg/dL) lower in the statin group than in the placebo group following the intervention [Au: at what
follow-up?]. Although intervention with fluvastatin failed to reduce the incidence of the combined primary end point of major cardiac events (defined as cardiac death, non-fatal myocardial infarction or coronary intervention), this lipid-lowering therapy was associated with a significant reduction in non-fatal myocardial infarction and cardiac deaths151. However, the fairly low number of patients and the lack of a run-in period limited the power of ALERT to detect a difference in outcomes over this time period.

In a complex extension study, all of the ALERT participants were offered open-label, longer-term high dose (80 mg) fluvastatin and followed for a total of 6.7 years152. During this period, the benefits of random assignment to the fluvastatin group in the initial study in terms of non-fatal myocardial infarction and cardiac death were sustained [Au: Edit OK?]. Therefore, the overall conclusion was that statins seem to be safe and efficacious at reducing atherosclerotic cardiovascular events in renal transplant recipients. Some discrepancies were observed in the magnitude of benefit in kidney transplant recipients compared to non-ESRD populations [Au: in which studies?], mainly driven by lack of effect on coronary artery revascularization. [Au: Please provide a bit more detail on these discrepancies. Was the magnitude of benefit in transplant recipients not as great as in the general population?]

[H3] Patients with CKD or ESRD. Two large RCTs in patients on dialysis, the Die Deutsche Diabetes Dialyse Studie (4D)154 and A Study to Evaluate the Use of Rosuvastatin [Au: Changed from atorvastatin. OK?] in Subjects on Regular Haemodialysis: An Assessment of Survival and Cardiovascular Events (AURORA)153, showed no benefit of statin therapy in patients with ESRD. In the 4D study, 1,255 patients with diabetes who had been on haemodialysis for <2 years (of whom 29% had prior cardiovascular disease) were randomly assigned to atorvastatin 20 mg or placebo, with those on a statin undergoing a washout period with placebo for 4 weeks154. In the intervention group, LDL-cholesterol levels were reduced from median of 3.13 mmol/L (121 mg/dL) by a mean of 1.27 mmol/L (49 mg/dL) [Au: at what time point?]. Despite this reduction, no significant reduction was observed in the incidence of the combined outcome of major cardiovascular events ([Au: death from cardiac causes, nonfatal myocardial infarction, and stroke?]) with atorvastatin compared with placebo over a median of 4 years of follow up (HR 0.92, 95\% CI 0.77-1.10). However, atorvastatin therapy did reduce the rate of all cardiac events combined compared with placebo (RR 0.82 95\% CI 0.68-0.99).
In AURORA, 2,776 patients who had been treated with haemodialysis for at least 3 months and were not receiving statin therapy were randomly assigned to rosuvastatin 10 mg daily or placebo\(^{153}\). Nearly 40\% of patients enrolled in AURORA had known cardiovascular disease of whom 10\% [AU: OK?\] had a prior myocardial infarction. The fact that these patients were not on statins at recruitment might illustrate the undertreatment of patients [AU: “with ESRD”?\] even for secondary prevention [AU: “of cardiovascular disease”?\]. In contrast to the 4D study, 74\% of the AURORA participants were diabetic; however only patients over the age of 50 years were recruited whereas the 4D participants were aged over 18 years. Although LDL-cholesterol levels [AU: “in the rosuvastatin group”?\] fell by 43\% from a mean baseline of 2.6 mmol/L (100 mg/dL), and this reduction was accompanied by a significant decrease in C-reactive protein levels, no significant reduction was observed in the incidence of major cardiac events with rosuvastatin compared to placebo after a median follow up of 3.8 years (HR 0.96 95\% CI 0.84-1.11). However, the combined primary end point in AURORA was not specific and included non-atherosclerotic events.

Importantly, patients were not selected on the basis of hypercholesterolaemia in any of these studies [AU: Are you referring to ALERT, 4D and AURORA or just 4D and AURORA here?\]. Although patients with an LDL-cholesterol level >4.9 mmol/L (190 mg/dL) were excluded from the 4D trial\(^ {154}\), atorvastatin therapy significantly reduced the risk of fatal and non-fatal cardiac events in participants with a pre-treatment LDL-cholesterol level >3.76 mmol/L (>145 mg/dL)\(^ {155}\). However, this type of subanalysis should be interpreted with caution. [AU: Why?\]

The double-blind, randomized Study of Heart and Renal Protection (SHARP) tested the effect of lipid lowering with simvastatin plus ezetimibe for primary prevention of atherosclerotic vascular events in 9,270 patients with CKD\(^ {156}\). At enrollment, 6,247 of these patients did not require dialysis and had a serum creatinine level greater than 150 μmol/L (1.7 mg/dL) for men or greater than 130 μmol/L (1.5 mg/dL) for women; the remaining 3,023 patients were on dialysis\(^ {156}\). Of note, about 30\% of the study population had stage 4 CKD and 13\% were already at Stage 5 CKD but not on dialysis; thus, 75\% of the study population had CKD Stage 4 or 5.

On enrolment, the SHARP participants were initially randomly assigned to simvastatin plus ezetimibe, simvastatin alone and placebo groups. After 1 year, those who were initially allocated to simvastatin alone were randomly re-assigned to receive either simvastatin plus ezetimibe or placebo. Lipid lowering with simvastatin 20 mg combined with ezetimibe 10 mg
led to a mean difference in LDL-cholesterol levels of 0.85 mmol/L (33 mg/dL) compared to placebo. After an average of 4.9 years of follow up, a significant reduction (HR 0.83 95% CI 0.74-0.94) was observed in major atherosclerotic events [Au: in the simvastatin plus ezetimibe group?].

The cardiovascular events in SHARP were more tightly defined than in 4D or AURORA, specifically focusing on thrombo-occlusive disease that would be modifiable with lipid-lowering therapy. Thus the primary outcome was a composite of major atherosclerotic events (coronary death, myocardial infarction, non-haemorrhagic stroke or any revascularization). The effect of treatment [Au: do you mean lipid lowering?] was not associated with a significant reduction in these events when only patients who were already on dialysis at enrolment were considered (HR 0.90 95% CI 0.75-1.08). However, SHARP was not powered to detect a benefit in this patient group. After weighting for subgroup-specific reductions in LDL-cholesterol levels, the effects on outcomes in patients on dialysis did not differ from those in patients with non-dialysed CKD ($\chi^2=1.34; P=0.25$). The SHARP study clearly demonstrates a benefit of lowering LDL-cholesterol levels in patients with CKD not requiring dialysis, which is in keeping with the association of these levels with cardiovascular disease in this population109,157. Notably, a post hoc analysis of the SHARP data showed that lowering of LDL-cholesterol was not associated with any delay in progression of CKD158. This finding is in line with the results of a subsequent meta-analysis159.

Despite the differences [Au: in study populations, interventions and outcomes?] between the 4D, AURORA and SHARP studies, the apparent lack of efficacy of statins for prevention of cardiovascular events in patients on dialysis was remarkably similar. Several potential explanations for this failure exist. First, LDL-cholesterol is not associated with cardiovascular disease in patients on dialysis. However, such a lack of association seems unlikely given the well-established direct causal relationship between LDL-cholesterol and atheroma143,145. Second, cardiovascular events in patients on dialysis are proportionally increased due to non-atheromatous processes such as sudden death and heart failure, which would not necessarily be directly improved by lowering of LDL-cholesterol levels110,111. Third, all three studies had relatively small numbers of patients on dialysis compared with other studies of lipid lowering therapies (for example the Scandinavian Simvastatin Survival Study (n = 4,444)138 and the West of Scotland Coronary Prevention Study (n = 6,595)146) and could therefore have been underpowered to detect a modest effect.
[H3] Adverse effects. [Au: I’ve moved this discussion from the health economics section as I think it is more logical to include it in the discussion of statin therapy. OK?] In the very large RCTs conducted to date, the only serious adverse events that have been reported with long-term statin treatment are myopathy (defined as muscle pain and/or weakness in conjunction with significantly raised serum creatine kinase levels), new onset diabetes mellitus and possibly haemorrhagic stroke. [Au: Please reference this statement.]. Treating 10,000 patients for 5 years with an effective statin (for example atorvastatin 40 mg) would cause five cases of myopathy, with one case progressing to full-blown rhabdomyolysis if the statin was not discontinued, 50-100 cases of muscle pain and weakness that do not meet the criteria for myopathy, 50-100 cases of diabetes mellitus and 5-10 haemorrhagic strokes. [Au: Please reference this statement.]. The findings of large placebo-controlled RCTs suggest that most of these adverse effects are not directly attributable to the statin treatment. However, controversy persists regarding how well data on adverse effects have been collected in these RCTs.

[H2] Meta-analyses

Meta-analyses have shown that the proportional reduction in LDL-cholesterol levels achieved during statin trials in the general population is directly associated with the proportional reduction in risk of major vascular events. In these studies, a 1 mmol/L reduction in LDL-cholesterol is associated with a 22-23% reduction in these events. Although observational data have important limitations, especially in regards to confounding and bias, this reduction is approximately half that predicted from the observational relationship (40% would be expected). This finding is perhaps not particularly surprising. In most of the statin trials patients were treated for around 5 years whereas exposure to LDL-cholesterol in epidemiological studies lasts a lifetime. However, the relationship seems to be modified in patients with CKD suggesting that the worse the renal function, the lower the cardiovascular risk reduction per reduction in LDL-cholesterol levels with no risk reduction being demonstrable in patients on dialysis. In general, statins tend to increase circulating levels of Lp(a) and these may contribute to residual cardiovascular risk. As discussed above, circulating concentrations of Lp(a) increase with declining renal function and are highest in patients on dialysis. Whether this finding explains the reduced cardiovascular benefit of LDL-lowering in patients with CKD compared with the general population remains to be determined.
A number of meta-analyses have pooled data from trials in patients with varying degrees of CKD and ESRD to study the effect of lipid lowering with statins and/or lowering of LDL-cholesterol using ezetimibe in these populations [Au: Refs 164-169?]. The consistent finding of the individual trials is that lowering of LDL-cholesterol is beneficial for prevention of major atherosclerotic events in patients not requiring dialysis (including kidney transplant recipients), whereas lipid lowering has no obvious benefit in patients on dialysis. [Au: Edit OK?]

However, the findings of the meta-analyses are somewhat conflicting164-169. [Au:OK?]

The most comprehensive of these meta-analyses, which was conducted by the CTT collaboration, analysed data from 28 trials of statin-based therapy in patients with various degrees of renal impairment and included readjudication of all deaths in the AURORA trial to align with atherosclerotic end-points in the trials conducted in patients on dialysis112. This meta-analysis demonstrated that as eGFR declines there is a trend towards smaller relative risk reductions for major coronary events and strokes with stain therapy, even after adjusting for smaller reductions in LDL-cholesterol levels in patients with more severe CKD. In particular, there was little evidence that statin-based therapy reduced cardiovascular events in patients who were already on dialysis112. However, despite the reduced relative risk benefit of statin-based cholesterol lowering in ESRD, an absolute benefit may persist as the total number of atherosclerotic events in this population is extremely high, especially in high-risk patients such as those with concomitant diabetes mellitus3,112. Indeed, a sub-analysis of the 4D study showed that atorvastatin treatment significantly lowered the risk of fatal and nonfatal cardiac events in patients with type 2 diabetes on haemodialysis with pre-treatment LDL-cholesterol levels >3.76 mmol/L (>145 mg/dL)155. However, as always, the results of secondary analyses should be interpreted with caution.

[H2] Anti-inflammatory effects

Inflammation has been implicated in the pathophysiology of cardiovascular disease in the general population and in patients with CKD [Au: or ESRD?]170,171. A chronic inflammatory state is observed in these patients owing to factors including decreased clearance of pro-inflammatory cytokines, increased oxidative stress, acidosis, infections and the dialysis procedure177-180. Therefore, targeting inflammation, either directly or indirectly might improve outcomes independently of lipid-lowering in patients with CKD or ESRD. [Au: I suggest that you cut the discussion of the CANTOS study as it does not fit the scope of lipid-lowering therapies in CKD/ESRD or the subheading of anti-inflammatory effects of statins.]
Several lines of evidence support an anti-inflammatory action of statins \[\text{Au:OK?}\]. Moreover, the JUPITER trial showed that potent statin therapy reduced the risk of major cardiovascular events by 44\% in patients with elevated levels of hsCRP\[\text{Au: reduction in?}\]. Intriguingly, this reduction in cardiovascular risk was associated with the \[\text{Au: reduction in?}\] level of hsCRP but not with that of LDL-cholesterol. \[\text{Au: Please can you check if this is correct. The abstract says that a reduction in LDL cholesterol to less than 1.8 mmol was associated with a 55% reduction in vascular events.}\] Similar reductions in cardiovascular risk were found in a secondary analysis of the 3,267 JUPITER participants who had an eGFR <60 ml/min/1.73m\(^2\).\[\text{Au: Please clarify the point that you are making here. Do you mean that statin therapy resulted in similar reductions in hsCRP and LDL-C or that reductions in hsCRP and LDL-C were similarly associated with reductions in cardiovascular events?}\] Of note, patients with a creatinine level greater than 177 μmol/L (greater than 2 mg/dL) were excluded from the JUPITER trial.

A sub-analysis of the SHARP trial showed that although higher baseline hsCRP levels were associated with an increased risk of major cardiovascular events, the reduction in cardiovascular risk in those who received combination therapy with simvastatin and ezetimibe was similar irrespective of baseline hsCRP\[\text{Au: Edit OK?}\]. Although the results of subanalyses should be interpreted with caution, this finding suggests that the simvastatin and ezetimibe combination reduces cardiovascular risk independently of the presence of inflammation.

[H1] Fibrates

RCTs have shown that lowering triglyceride levels with fibrate monotherapy decreases cardiovascular risk in the general population, although this benefit may be limited to individuals with very high triglyceride and very low HDL-cholesterol levels\[181-184\]. However, the use of fibrates, although possibly not gemfibrozil\[185\], to lower triglyceride levels may increase creatinine levels, especially in patients with eGFR <30 ml/min/1.73m\(^2\) \[184,186,187\], by mechanisms that are not fully elucidated\[184,188,189\]. Currently very little evidence exists to recommend the use of fibrates in patients with CKD unless triglyceride levels are very high (>1,000 mg/dL; 11.3 mmol/L) in which case these therapies should be used judiciously and dose adjusted for renal function\[1\].
[H1] Bile acid sequesterants

[Au: What is the rationale for using bile acid sequestrants or omega-3 oil in patients with CV disease or CKD? What is their effect on lipids?] Although bile acid sequestrants (cholestyramine, colestipol, colesevelam) are currently recommended as second-line options in patients with atherosclerotic cardiovascular disease, a 2018 meta-analysis failed to identify any RCTs [Au: showing a benefit of these agents?] with more than 500 patients and greater than 1 year follow-up. Currently very little evidence exists to support the use of bile acid sequestrants or prescription omega-3 oil in patients with CKD or ESRD.

[H1] Emerging lipid-lowering therapies

Treatment of dyslipidaemia with the most widely used lipid-lowering drugs provides a significant reduction in cardiovascular risk. However, a significant proportion of [Au: treated?] patients will continue to have cardiovascular events. Several novel therapies for the treatment of dyslipidaemias and their associated risks are being developed. These therapies include agents that target major mediators of the clearance and secretion of atherogenic proteins (Table 2). [Au: ATP citrate lyase inhibitors, acetylcoenzyme A carboxylase inhibitors and diacylglycerol acyltransferase 1 inhibitors are included in table 2 but do not seem to be discussed in the main text. For completeness, please also discuss these agents if appropriate.]

[H2] PCSK9 inhibitors

[Au: I've rearranged text in this paragraph to improve flow.] Proprotein convertase subtilisin–kexin type 9 (PCSK9) is a secreted serine protease that binds to the extracellular domain of the hepatocyte LDL-receptor and promotes its lysosomal degradation. This receptor degradation reduces LDL particle uptake and leads to increased concentrations of [Au: circulating?] LDL-cholesterol (Figure 2). In 2003, gain-of-function mutations in the gene encoding PCSK9 were reported to cause autosomal dominant hypercholesterolemia. Subsequently, loss-of-function mutations in PCSK9 were discovered to reduce LDL-cholesterol levels by 15-28% and the risk of coronary heart disease by 47–88%

Monoclonal antibodies that act as PCSK9 inhibitors sequester PCSK9 and thereby prevent LDL-receptor catabolism so lead to an increase in LDL-receptor density on hepatocytes. The efficacy of one such antibody, alirocumab, has been investigated in the Effect of Alirocumab on the Occurrence of Cardiovascular Events in Patients Who Have Recently
Experienced an Acute Coronary Syndrome (ODYSSEY) clinical trial program, which includes approximately 23,500 patients worldwide. [Au: Please reference this statement.]

Overall, these trials showed that alirocumab therapy reduced LDL-cholesterol levels by 36%-61% after a minimum of 24 weeks of treatment [Au: Please reference the original paper from the ODYSSEY program in which this data was published.]. Alirocumab also consistently reduced concentrations of total cholesterol, ApoB, non-HDL-cholesterol, and Lp(a) independently of statin treatment and of additional ezetimibe use in heterozygous familial hypercholesterolaemia (HeFH) and non-FH populations. A post hoc analysis of the Long-term Safety and Tolerability of Alirocumab in High Cardiovascular Risk Patients with Hypercholesterolemia Not Adequately Controlled with Their Lipid Modifying Therapy (ODYSSEY LONG TERM) study showed a 52% reduction in major cardiovascular events after alirocumab treatment in patients with HeFH and high cardiovascular risk already on the highest tolerated dose of statins.

An analysis that pooled data from 8 phase 3 ODYSSEY trials of double-blind treatment with alirocumab for 24-104 weeks included 4,629 patients with hypercholesterolaemia of whom 467 had CKD stage 3. Among the patients with CKD, 315 were randomly assigned to alirocumab and 99% were already receiving a statin. The reduction in LDL-cholesterol levels at week 24 in patients with CKD treated with alirocumab ranged from 46.1% to 62.2% with an efficacy and safety profile comparable to that of patients with normal renal function (eGFR >60 ml/min/1.73m²).

The ODYSSEY OUTCOMES trial included 18,924 participants who had experienced an acute coronary event 1-12 months before enrolment. Following a run-in phase of 2-16 weeks on high intensity statin therapy, these participants were randomly assigned to fortnightly alirocumab treatment or placebo groups. The alirocumab therapy was titrated to keep LDL-cholesterol levels between 0.65 mmol/l and 1.3 mmol/L (25-50 mg/dL). In this trial, alirocumab therapy resulted in a significant reduction in the primary outcome of major cardiac events (HR 0.85; 95% CI 0.78-0.93; P=0.0003). [Au: Were patients with CKD included in this trial? If so is here any data on outcomes in this population?]

The efficacy of another PCSK9 inhibitor, evolocumab, is being assessed in the Program to Reduce LDL-cholesterol and Cardiovascular Outcomes Following Inhibition of PCSK9 in Different Populations (PROFICIO). This program of 14 phase III clinical trials aims to recruit approximately 30,000 patients. So far, studies have ranged from from 10 to 52 weeks
in duration and have included patients treated either with evolocumab monotherapy or with evolocumab in combination with a statin or ezetimibe. Very significant reductions in LDL-cholesterol levels have been reported, ranging from 49%–65%, with substantial reductions in the levels of non-HDL-cholesterol, ApoB and Lp(a) and modest effects on triglycerides and HDL-cholesterol. In addition, coronary atheroma regression with evolocumab compared with placebo (-0.95% versus +0.05%) has been reported in a double-blind, placebo-controlled trial in 968 patients with proven coronary atheroma on angiography that used serial intravascular ultrasound to assess atheroma volume. A greater proportion of patients in the evolocumab group than in the placebo group also had plaque regression in this trial (64.3% versus 47.3%).

The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) trial, included 27,550 patients with known atherosclerotic vascular disease (previous myocardial infarction, non-haemorrhagic stroke or symptomatic peripheral vascular disease), LDL-cholesterol greater than 1.8 mmol/L (>70 mg/dL) or non-HDL-cholesterol greater than 2.6 mmol/L (>100 mg/dL) already on optimized statin therapy. This study reported a significant reduction in the primary outcome (composite of cardiovascular death, myocardial infarction, stroke, hospital admission for unstable angina or coronary revascularization) with evolocumab therapy (9.8%) compared with placebo (11.3%) (HR 0.85 95% CI 0.79–0.92). Although patients with an eGFR >20 ml/min/1.73m² were eligible for inclusion in FOURIER, no information on the number and of patients with CKD who were enrolled and the outcomes in this population is currently available.

The safety and efficacy of another monoclonal antibody, bococizumab, in patients at high cardiovascular risk was investigated in the Studies of PCSK9 Inhibition and the Reduction of Vascular Events (SPIRE) 1 and SPIRE 2. However, further clinical development of this agent has been stopped because of an unexpected decrease in LDL-cholesterol lowering over time, high levels of immunogenicity and high rates of injection-site reactions.

Unlike therapeutic antibodies which bind to and inhibit their target protein, treatment with short interfering RNAs (siRNAs) results in the destruction of the target messenger RNA and reduces the production of the protein. Inclisiran (ALN-PCSSC) is a fully chemically modified, siRNA conjugated to triantennary N-acetylgalactosamine that inhibits the synthesis of PCSK9. In a phase 1 trial in healthy volunteers with a LDL-cholesterol level >2.59
mmol/L (100 mg/dL), a single dose of inclisiran >100 mg lowered LDL-cholesterol levels by a mean of 50.6% from baseline with reductions maintained for up to 6 months in those who received doses >300 mg217.

In a phase 2 multicentre study (ORION-1), 501 patients at high cardiovascular risk with elevated LDL-cholesterol levels received 2 doses of inclisiran (300 mg) at 0 and 90 days218. This regimen reduced LDL-cholesterol levels by 52.6% with 48% of patients having an LDL-cholesterol concentration <0.04 mmol/L (1.5 mg/dL) at 180 days. Sustained reductions in apoB, non-HDL-cholesterol, VLDL-cholesterol and triglyceride levels as well as modest increases in HDL-cholesterol and apoA1 were also reported219. The magnitude of these changes are broadly comparable to those observed in trials of PCSK9-inhibiting monoclonal antibodies219. Although preliminary, these results raise the possibility of lowering cholesterol levels using twice yearly injections. This possibility is now being investigated in an extension study of ORION-1, which involves a head-to-head comparison between inclisiran 300 mg every 180 days and fortnightly evolucamab (ORION-3; NCT03060577). [Au: Please add his study to the reference list.]

[Au: Please add the trials mentioned in this paragraph to the reference list.] Ongoing trials are investigating the safety and efficacy of inclisiran in patients with familial hypercholesterolaemia (ORION-2; NCT02963311) and in patients with atherosclerotic cardiovascular disease (ORION-4). In addition, an open-label single dose study of 300 mg inclisiran is planned in 24 patients with renal impairment with a creatine clearance as low as 15 ml/min (ORION-7; NCT0315946).

\textbf{[H2] CETP inhibitors}

Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl esters and triglycerides between mature HDLs and triglyceride-rich ApoB-containing lipoproteins and LDLs, thus modifying the lipid composition of HDLs (Figure 3)31. The first CETP inhibitor tested in humans, torcetrapib121,220, increased HDL-cholesterol levels by 72% and decreased LDL-cholesterol levels by 25%. However, this [Au: Please clarify what “this” refers to.] was associated with an increased risk of cardiovascular events and mortality, probably through CETP-independent actions on blood pressure and circulating aldosterone and endothelin-1 levels121,221.

[291x14]20
The development of the CETP inhibitors evacetrapib and dalcetrapib was halted because of a lack of beneficial effects on cardiovascular events, despite improvement of the lipid profile (more than doubling of HDL-cholesterol level and 30% decrease in LDL-cholesterol level) [Au: in which patient group?] 31,123,222,223. Another CETP inhibitor anacetrapib increased HDL-cholesterol by 138% and reduced LDL-cholesterol by 30% and Lp(a) by 39% in high risk patients on statin therapy224. The phase III Randomized Evaluation of the Effects of Anacetrapib Through Lipid-Modification (REVEAL) trial in patients with pre-existing atherosclerotic vascular disease who were already on an effective LDL-cholesterol lowering regimen (mean LDL-cholesterol at randomization of 1.6 mmol/L (61 mg/dL)) showed a statistically significant decrease in major coronary events of 9% (HR 0.91 95% CI 0.85-0.97) in the intervention group compared to placebo225,226. Unfortunately, patients with CKD and a serum creatinine level >200 μmol/L (>2.3 mg/dL) or with ESRD were excluded from this study. However, no benefit of anacetrapib was observed in patients with an eGFR <60 ml/min/1.73m² or macroalbuminuria, although the number of patients was small and there was no significant heterogeneity with respect to other groups.

Interestingly, the beneficial effects of anacetrapib seem to be the result of lowering non-HDL-cholesterol levels, rather than increasing HDL-cholesterol223. Anacetrapib is unlikely to become a licensed drug because the manufacturer has stopped development and a present will not be filing for approval. Clinical development of the CETP inhibitor obicetrapib was also halted in view of the REVEAL trial results, despite data from a phase II RCT showing that this agent increased HDL-cholesterol levels by >160% and decreased LDL-cholesterol levels by 47%227.

These results of clinical trials with CETP inhibitors are perhaps not surprising. Some have suggested that the rise in HDL-cholesterol levels that is caused by administration of these agents is not solely due to enhanced reverse cholesterol transport. [Au: Please reference this statement.] Instead this effect is caused by blockade of the exchange of the cholesterol cargoes of HDL particles with the triglyceride cargo of IDL particles. This process is essential to transform oxidation-prone, pro-inflammatory and atherogenic IDL particles and triglyceride-rich LDL particles to cholesterol-ester rich LDL particles, which are removed from the circulation by liver LDL-receptors (Figure 1)228,229.

[H2] Targeting lipoprotein(a)
Circulating levels of Lp(a) are fairly refractory to lifestyle and drug interventions, including statin therapy. Only nicotinic acid, PCSK9 inhibitors and cetrapibs such as anacetrapib have been shown to lower Lp(a) levels by 15-25%, 15-30%, and 35-40%, respectively. IONIS-APO(a) (previously called ISIS 681257) is an antisense oligonucleotide targeting the Lp(a) gene that was show to be safe and to decrease plasma Lp(a) levels by up to 80% in a phase I RCT. Phase II RCTs with IONIS-APO(a) and IONIS-APO(a)-I, a ligand conjugated antisense oligonucleotide variant, have shown reductions in plasma Lp(a) of up to 96%. Currently no data are available on clinical outcomes using these agents.

[H2] Inhibitors of VLDL production

Inhibition of VLDL particle production decreases the levels of the downstream LDL particle. Lomitapide inhibits microsomal triglyceride transfer protein (MTTP), which assembles lipids with ApoB to form lipoproteins and mipomersen is an antisense agent that inhibits the synthesis of ApoB. However, both agents may cause liver steatosis and are currently only in use as adjunct therapy in homozygous familial hypercholesterolemia. No data are available on cardiovascular outcomes with either lomitapide or mipomersen.

[H2] ApoC-III antisense oligonucleotide

Increased levels of ApoC-III and the presence of ApoC-II in ApoB-containing liposomes, ApoA-containing lipoproteins and Lp(a) are associated with increased atherogenic risk. An Apoprotein C-III gene antisense oligonucleotide, volanesorsen, has been shown to decreases serum triglyceride levels and pancreatitis in patients with familial chylomicronemia syndrome. Additional studies of volanesorsen are ongoing in patients with hypertriglyceridemia and other populations.

[H2] Targeting angiopoietin-like protein 3

Angiopoietin-like proteins (ANGPTL) are important regulators of lipid metabolism and ANGPTL3 is an endogenous inhibitor of LPL. Loss of function mutations of ANGPTL3 are associated with decreased LDL-cholesterol and triglyceride concentrations. In healthy volunteers, the anti-ANGPTL3 antibody evinacumab reduced triglyceride levels by up to 76% and LDL-cholesterol by up to 23% with similar reductions observed with the antisense oligonucleotide ANGPTL3-LRx, 63% and 33%, respectively.

[22]
HDL-peptide mimetics

HDL-peptide mimetics are parenteral drugs that mimic the structural and functional properties of HDL precursors and stimulate reverse cholesterol transport. In a phase 2B RCT, the plasma-derived ApoAI peptide CSL112 increased ApoA-I levels and ex vivo cholesterol efflux in patients who had experienced myocardial infarction in the week before enrollment but did not modify major atherosclerotic events (a secondary end point). A study of CSL112 in patients with CKD stage 3 is ongoing (NCT02742103).

CER-001 consists of recombinant human ApoA-I complexed with phospholipids that mimic HDL precursors. A phase 2 RCT failed to show any effect of CER-001 on plaque regression in patients with post-acute coronary syndrome. However, a subsequent analysis of the trial data by a second core laboratory did demonstrate reductions in total atheroma volume. A repeat imaging trial is currently comparing the efficacy of high dose CER-001 versus placebo.

Implications for health economics

In 2009, the healthcare costs associated with cardiovascular disease across the European Union was €106 billion, approximately 9% of the total health care outlay. Most cost-effectiveness studies of cardiovascular disease prevention combine research data and simulation models, and estimates of cost-effectiveness can vary hugely depending on the assumptions made with regards to some basic parameters, especially the age and cardiovascular risk of the target population and the cost of the intervention. Therefore, results for one condition or country will not necessarily be applicable to other situations. The incidence of serious adverse events can also have a major impact on cost-effectiveness as can the availability of generic drugs.

Despite the adverse effects discussed above, the cost-effectiveness of statin therapy in the general population is well established and the benefits persist in the long-term. Moreover, for each year statin therapy is prolonged larger absolute benefits accrue. In patients with CKD the evidence is limited. However, studies from the...
US and UK suggest comparable cost-effectiveness of statins for prevention of cardiovascular events [Au: in the general population?] and in patients with CKD not on dialysis.²⁵⁶,²⁶¹

Given the increased cardiovascular risk that is associated with CKD, the mollified effect of LDL-cholesterol reduction on cardiovascular events in patients with reduced renal function and the increased intolerance of high-dose statins [Au: Do you mean increased incidence of adverse effects in patients with CKD? Please reference.] treatment with novel lipid-modifying drugs might be an attractive option for physicians and their patients. Such a preference could be a matter of concern [Au: for healthcare providers?], especially given the currently excessive costs of these new agents.²⁶²-²⁶⁴ The issue of safety also needs to be addressed. The medical community as a whole, and the field of nephrology in particular, has previously fallen into the trap of extrapolating data from basic science, observational studies or clinical studies in other populations to justify treatments [Au: in patients with CKD?] that have eventually been shown to not be beneficial or even be damaging in later RCTs in this population.²⁶⁵-²⁷⁰

[Au: Paragraph moved from the end of this section to improve flow. OK?] As any investment in a new therapy reduces the resources that are available for other therapies,²⁷⁸ lipid-modifying agents should be evaluated carefully for their health-economic impact as well as for their safety in patients with CKD.¹² In the past, patients with significant CKD [Au: Please clarify what you mean by “significant CKD”?] were routinely excluded from cardiovascular trials.²⁷⁹ However, pressure should be put on regulatory and licensing authorities to demand the inclusion of patients with CKD in these trials in the future. Similar approaches together with several incentives have already improved the recruitment of women, children, elderly people and ethnic minorities into RCTs.²⁸⁰-²⁸²

The importance of lifestyle modification, including adhering to a healthy diet, regular exercise, smoking cessation and maintaining a healthy weight is emphasized by many guidelines aimed at lowering cardiovascular risk in the general population, both before and after the use of lipid-lowering treatment.⁷⁹,¹⁸⁴,²⁷¹-²⁷⁴ However, such modifications remain an underexploited health-economic resource.¹² In Germany, societal costs from non-communicable diseases including CKD might decrease by €168 (£149; $207) billion per year if the population improves their dietary intake [Au: Do you mean “reduces their dietary intake of salt, sugar and saturated fat”?] to the recommended levels.²⁷⁵ The idea of imposing a ‘fat tax’ or ‘health’ is controversial but might lead to a modification of dietary
habits and decrease societal costs of non-communicable diseases. In addition, the income raised by such a tax could be reinvested in health. Careful attention to health-economic aspects should become an essential aspect of medical and political decision-making, including regarding lipid-lowering in CKD.

[H1] The KDIGO Clinical Practice Guideline

The 2013 KDIGO Clinical Practice Guideline for Lipid Management has caused extensive discussion and controversy. Similar to all KDIGO guidelines published to date, production of this guideline involved a thorough and rigorous process. Notably, the document makes recommendations for treatment but is not a rigid set of instructions. This point is especially important given that several of the recommendations were based on weak evidence. Although the summary recommendations can be interpreted as being very rigid, the guideline document puts these recommendations into context with plenty of room for personalization for individual patients. This context is especially important given that guidelines as a whole tend to be simplifications, which makes them easier to remember and implement but can result in the misclassification of individual patients. In the 5 years since the publication of the KDIGO guideline, new clinical data has become available, novel therapies have emerged and other lipid management guidelines have been published. The KDIGO guideline deserves consideration and comment in the light of these developments (Table 3).

[H2] Assessment of lipid status

The KDIGO guideline recommends assessment of a lipid profile consisting of total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides but does not recommend measurement of Lp(a), ApoB and other lipid markers. As discussed above, emerging evidence suggests that these biomarkers might have utility in risk prediction and stratification in the general population and several subsequently published guidelines recommend their measurement. However, their usefulness in patients with CKD remains to be established.

Perhaps most controversially, the KDIGO guideline does not recommend follow-up measurement of lipid levels for the majority of patients. The evidence level for this statement is “not-graded” and the recommendation is based on the lack of data on treatment escalation to achieve specific LDL-cholesterol targets, substantial within person variability in LDL-
cholesterol measurements and the increased potential for medication toxicity in patients with CKD\(^{288-290}\). However, other reasons for follow-up measurements might exist, including monitoring or incentivizing adherence to treatment, which is known to be low in patients with CKD\(^{291}\), change in renal replacement modality or concerns about the presence of new secondary causes of dyslipidaemia\(^1\).

Other guidelines do suggest target cholesterol reductions\(^{79,184}\). The reasons for this difference are complex. Only taking into account evidence from RCTs ignores the totality of the available evidence so restricts the potential to prevent cardiovascular disease. Systematic reviews have repeatedly confirmed a dose-dependent reduction in cardiovascular events with lowering of LDL-cholesterol levels; that is, the greater the reduction in LDL-cholesterol, the greater the reduction in cardiovascular risk\(^{143,145}\). The benefits of reducing LDL-cholesterol do not seem to be restricted to statin treatment\(^{292}\). In addition, no level of LDL-cholesterol below which further reduction is not associated with benefit or results in harmful effects has ever been defined. Furthermore, considerable variability exists in the reduction in LDL-cholesterol levels that is achieved with therapy\(^{293}\). These factors support a tailored individualized approach to treatment with the setting of goals [Au: Edit OK?] to assist doctor–patient communication and potentially enhance adherence. Such an approach is particularly relevant to patients who are considered to be at very high cardiovascular risk, such as those with advanced CKD or ESRD, those who have recently experienced an acute cardiovascular event and those with genetic disorders of cholesterol metabolism and significant hypercholesterolaemia in whom statins are indicted.

[H2] Cholesterol-lowering treatment [Au: I have reordered the text in this section to improve flow.]

The KDIGO guideline recommends that patients with CKD stages 3-5 (not on dialysis) aged \(\geq 50\) years are treated with a statin or statin plus ezetimibe combination\(^1\). This recommendation is based on robust evidence and is consistent with other guidelines that do not recommend the use of risk assessment tools in this population. In adults with CKD stages 3-5 aged 18-49 years, KIDIGO recommends treatment if they have known coronary artery disease, diabetes mellitus, had a previous ischaemic stroke or an estimated 10-year incidence of coronary death or non-fatal myocardial infarction greater than 10%. Although the evidence for this recommendation is fairly weak, it is consistent with most other current guidelines (Table 4).
In contrast to the KDIGO guidelines, some guidelines advocate the use of lifetime-estimated risk of cardiovascular disease, rather than 10-year risk, to inform treatment decisions294. The rationale is that estimates of 10-year risk might offer false reassurance over the longer term, especially in young patients who have a high lifetime risk295. This point might be particularly relevant for young patients with CKD in whom cardiovascular morbidity and mortality increase with age and deteriorating renal function. \textbf{[Au: Please reference this statement.]}

As statins and other cardioprotective drugs have become considerably less expensive and evidence of their long-term safety and efficacy has increased over time, considerable scope exists to extend their use beyond the traditional 10-year cardiovascular risk threshold. Furthermore, lipid levels change over time in response to certain treatments (such as immunosuppressive therapies), disease progression or remission and the development of malnutrition \textbf{[Au: Is the development of malnutrition particularly relevant for patients with ESRD?]} Until concrete evidence exists regarding \textbf{[Au: statin use or use of lipid-lowering therapy in general?]} in patients with CKD, decisions on treatment are likely to continue to be based on acceptability, cost-effectiveness and practicality.

The KDIGO guideline also recommends treatment for patients with CKD stages 1-2 (eGFR >60 ml/min/1.73 m2) aged >50 years who have pathological albuminuria (urinary albumin:creatinine ratio >30 mg/g). This recommendation is based on observational studies given the absence of RCTs specifically targeting this population. Although such treatment might be reasonable given the increased cardiovascular risk of these patients, the application of risk calculators as for the general population could equally be justified and would perhaps be more prudent. A CKD-cardiovascular disease model, incorporating albuminuria, has been developed as a resource for evaluating the health outcomes and cost-effectiveness of interventions in CKD296. However, this model is based on data from the SHARP trial and is only applicable to patients with CKD stage 3B or higher.

The KDIGO guideline does not specify an upper age limit \textbf{[Au: for lipid-lowering therapy?]}, whereas most guidelines recommend treating individuals aged >75 years only for secondary prevention. This difference is related to the lack of validated risk calculators for older individuals and their exclusion from many trials. Given the concerns regarding high-intensity statin usage in patients with CKD because of their increased polypharmacy and
comorbidity, a reasonable approach might be to tailor treatment in elderly individuals based on their individual preferences.

The KDIGO guideline focuses on cardiovascular risk to guide treatment and does not recommend treatment of any patient on the basis of a “high” cholesterol level per se. However, other guidelines such as the 2016 European Guidelines on cardiovascular risk prevention suggest lifestyle advice and possible drug treatment if LDL-cholesterol level is \(\geq 4.9 \text{ mmol/L (~190 mg/dL)} \) even if the estimated 10-year cardiovascular risk is less than 1%. [Au: Please reference this guideline.] Furthermore this guideline suggests that most patients with a 10-year cardiovascular risk of 5–10% would benefit from lipid lowering therapy if baseline LDL-cholesterol is 2.6–4 mmol/L (100–155 mg/dL). This conclusion is based on the strong, robust and graded association between LDL-cholesterol levels and cardiovascular risk; the results of observational studies and trials of lipid lowering therapies using angiographic and clinical end-points; and the results of meta-analyses demonstrating a dose-dependent reduction of cardiovascular risk with LDL-cholesterol reduction \[142-145,293\]. These differing recommendations are relevant to the treatment of young patients with CKD and of patients on dialysis with substantial hypercholesterolaemia who would not receive lipid lowering therapy based on the KDIGO guidelines. In these populations, tailoring of treatment based on patient preferences should perhaps be considered.

In patients receiving statins, KDIGO advises reducing the dose if eGFR is \(< 60 \text{ ml/min/1.73 m}^2\), based on the reduced renal excretion of some statins, the increased polypharmacy and comorbidity [Au: of patients with CKD] and the doses of statins used in trials in CKD. This recommendation essentially means that high intensity statin therapy should be avoided. As moderate dose statin therapy is known to produce a mean reduction in LDL-cholesterol of 30%, [Au: Please reference this statement.] a substantial proportion of treated patients will not experience a reduction in LDL-cholesterol levels of this magnitude. This point is important in certain situations, including after an acute coronary syndrome. For example, the TNT trial found that a large group of patients with eGFRs of 45–59 ml/min/1.73 m\(^2\) (CKD stage 3a) gained significant benefit from high dose atorvastatin therapy in terms of reduction of excess cardiovascular events\[150\]. Furthermore, the prescribing information for atorvastatin states that no dose adjustment is required for patients with CKD, whereas dose reduction for rosuvastatin is only required if the GFR is \(< 30 \text{ ml/min/1.73m}^2\). Indeed, given that statins are now inexpensive (in stark contrast with the emerging lipid-lowering therapies) an argument could be made for adopting or studying an approach whereby stain-based regimens are chosen to
maximise the absolute reduction in LDL-cholesterol to achieve the largest treatment benefits in patients with CKD (rather than any target or goal-based approach). However, this approach is not necessarily without risk and may well need to be reserved for patients with high LDL-cholesterol levels. In addition to the intended inhibition of cholesterol production, statins inhibit the synthesis of byproducts of alternative (ie ubiquinone and dolichols) and intermediary (eg farnesyl-pyrophosphate and geranylgeranyl-pyrophosphates) pathways of mevalonate metabolism,297,298 which have important functions including protein synthesis and transport, regulation of cell and tissue growth, mitochondrial function and gene transcription299,300. These unintended effects may result in serious adverse effects, including myopathy or rhabdomyolysis and hepatotoxicity, especially when statins are used at high doses in vulnerable patients with CKD or ESRD and low LDL-cholesterol levels297,300.

The KDIGO guideline recommends that statins or combination therapy with a statin and ezetimibe should not be initiated in patients on dialysis 1. However, they suggest that patients who are already receiving such therapy at the time of dialysis initiation should not discontinue. This recommendation is based on the SHARP trial in which 2,141 patients with CKD progressed to needing dialysis during the study period but were analysed in the non-dialysis group in which overall benefit was observed156. These two recommendations seem rather incongruous and somewhat difficult to reconcile with the remaining KDIGO guidance. They partly reflect the very limited RCT evidence available rather than the totality of evidence.

One possible explanation for why a patient on dialysis might benefit from statin-based treatment only if they were receiving this therapy before dialysis initiation relates to the duration of treatment and/or exposure to risk. Although all RCTs of cholesterol-lowering therapies in patients on dialysis have been conducted over a period of around 5-years, the period of exposure to risk in the study participants is much longer with the atherosclerotic process having started years or decades earlier. As such, the 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidaemia274 suggest initiating treatment in patients on dialysis if they are likely to either remain on dialysis for many years or receive a transplant. Indeed, this suggestion seems to align with the KDIGO recommendation of treating all adult kidney transplant recipients with a statin. It also appears to be particularly relevant for diabetic patients on dialysis with high LDL-cholesterol levels (>3.76 mmol/L; >145 mg/dL)155.

Conclusions

Patients with all stages of CKD including those with ESRD on dialysis and kidney transplant recipients remain at high cardiovascular risk. Despite this risk, patients with CKD have repeatedly been shown to be less likely than patients without CKD to receive statin therapy for primary or secondary prevention of cardiovascular events. In this context of under-treatment, the 2013 KDIGO guideline for lipid management provides pragmatic guidance for lipid-lowering treatment. However, some of the KDIGO recommendations, especially for situations with a poor evidence base, can be considered too restrictive when compared to other guidelines aimed at the general population.

Starting lipid-lowering therapy, especially in patients with no previous cardiovascular event, can be a complex process. Shared decision making is especially important when the risks and costs of an intervention are immediate and the benefits are in the future. Two patients may choose different strategies and both are right based on their preferences. As a rule, clinicians should help to inform choices but avoid dictating treatments. Similarly, the role of guidelines is to inform choices but not to dictate them, especially in areas where the evidence is weak.

Several novel therapies to manage dyslipidaemia are in clinical development. To be useful for patients with CKD, these agents must be safe, effective, available and of proven benefit in clinical trials in this population. Many of the novel treatments are bio-drugs that are very expensive to produce. Thus, even if these agents are proven to be safe and effective, as well as being readily available, the high manufacturing costs may make them unaffordable so restrict their widespread use. The very real challenge for physicians managing patients with CKD and ESRD is to ensure that we get the evidence to support or refute the use of next generation lipid-lowering agents in this population without having to rely on extrapolation from studies in the general population. We must avoid, as has too often happened in the past, the widespread use of expensive and unproven treatments that later turn out to be unsafe or ineffective. The responsibility for this rests largely with manufacturers and regulatory authorities. However, as health-care professionals we too must push for, conduct and commit to large RCTs to answer these important questions. Importantly, all physicians looking after patients with CKD or ESRD must enroll those who are willing to participate into RCTs if we are to deliver the best possible care with the resources available.

Acknowledgements
AO was supported by Spanish Government ISCIII FEDER funds (PI16/02057, ISCIII-RETIC REDinREN RD16/0009) and Community of Madrid (B2017/BMD-3686 CIFRA2-CM).

Author contributions
C.J.F., P.B.M., M.K., R.V., and A.O. researched the data, made substantial contributions to discussions of the content, wrote the article and reviewed or edited the manuscript before submission. C.Z. researched the data, made substantial contributions to discussions of the content and wrote the article. P.S., G.H.H., P.R., Z.A.M., F.M., J.M.V., J.M., R.E., M.C.V. and G.M.L made substantial contributions to discussion of the content and reviewed or edited the manuscript before submission. [Au: Statement OK?]

Competing interests
AO is a consultant for Sanofi Genzyme and has received speaker fees from Amgen. [Au: Please confirm that the other authors declare no competing interests.]

[Au: Please use your software to update the reference list.]

241. Vuorio, A., Tikkanen, M.J. & Kovanen, P.T. Inhibition of hepatic microsomal triglyceride transfer protein - a novel therapeutic option for treatment of...

276. Smed, S., Scarborough, P., Rayner, M. & Jensen, J.D. The effects of the Danish saturated fat tax on food and nutrient intake and modelled health outcomes: an

Key points

- An independent, graded inverse relationship exists between cardiovascular risk and estimated glomerular filtration rate; patients with end-stage renal disease (ESRD) are at extremely high risk of cardiovascular events

- In chronic kidney disease (CKD) and ESRD, dysregulation of lipid metabolism results in increased levels of triglycerides and oxidised lipoproteins and reduced levels of high-density lipoprotein cholesterol; low-density lipoprotein cholesterol levels are usually normal

- As eGFR declines, there is a trend towards smaller relative risk reductions for major vascular events with statin-based therapy with little evidence of benefit in patients on dialysis
• Deteriorating renal function results in a unique cardiovascular phenotype with an increasing proportion of cardiovascular deaths due to heart failure and arrhythmias, rather than due to atherosclerotic events.

• Several novel therapies are being developed to treat dyslipidaemias and their associated risks; most of these agents are biologics, which are very expensive to produce.

• Currently there is very little evidence to support the use of novel lipid-lowering agents in patients with CKD or ESRD; however a need exists for further studies of these therapies.

[Au: I suggest that we cut Box 1 as your Review is already very long with 8 display items and the box is not necessary to aid understanding of the article. If you feel strongly that the box should be included please shorten the text to fit our limit of 300 words and cite it in the text. Alternatively the box could be included in supplementary information.]

Figure 1. Derangements in lipoprotein metabolism in chronic kidney disease. [Au: Edited title ok?] In the endogenous pathway, the liver secretes triglyceride-rich VLDL particles that transport triglycerides to peripheral tissues. As triglycerides are hydrolysed by LPL, the VLDL particles decrease in size to become IDL particles and finally LDL particles, which retain considerable amounts of cholesterol. The LDL particles transport cholesterol to the liver and peripheral tissues and are cleared by the LDL receptor, as well as by other specific receptors and scavenger receptors. In the exogenous pathway, triglyceride-rich chylomicrons transport dietary lipids absorbed from the gut. Chylomicrons are catabolised by LPL, resulting in the generation of free fatty acids that are taken up by liver, muscle and adipose tissue. Chylomicrons rapidly diminish in size to become chylomicron remnants that are taken up by the liver via the LDL receptor. HDL particles have a key role in the process of reverse cholesterol transport, which transports cholesterol from peripheral cells [Au: such
as macrophages and endothelial cells?] to the liver. As renal function declines, a gradual quantitative shift towards a uraemic lipid profile occurs. [Au: Please provide some more detail of the changes that characterize this profile?] The lipid profile is also further modified by co-morbidities including diabetes mellitus and nephrotic syndrome. In parallel to the quantitative changes, major qualitative changes in the lipoprotein particles that render them more atherogenic also occur, including increased oxidation. ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; ApoA-I, apolipoprotein A-I; ApoA-IV; CETP, cholesteryl ester transfer protein; IDL, intermediate-density lipoprotein; LCAT, lecithin–cholesterol acyltransferase; LDL-R, LDL receptor; LPL, lipoprotein lipase; LRP; SR-B1, scavenger receptor B1; VLDL, very low-density lipoprotein. [Au: Please define c-LDL]

Figure 2 Role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in cholesterol transport. a | LDL particles bind to LDL-receptors (LDL-R) on the surface of cells to form a complex that is taken up by the cell. As pH decreases inside the endosome [Au:OK?], the LDL-receptor dissociates from this complex. LDL-cholesterol is incorporated into the cell and the LDL-receptor recycles to the cell surface. b | PCSK9 is an extracellular protein that binds directly to the LDL-receptor and induces its internalization and degradation. Therapeutic agents that target PCSK9 either reduce the synthesis of the protein or block its binding to the LDL-receptor. These agents prevent degradation of the LDL-receptor so preserve LDL-receptor recycling, which increases LDL-receptor density on the hepatocyte surface so enables more LDL-cholesterol to be removed from the circulation. LDL, low density lipoprotein; PCSK9, proprotein convertase subtilisin/kexin type 9; VLDL, very low density lipoprotein.
Figure 3 | Role of cholesteryl ester transfer protein (CETP) in cholesterol transport.

HDL particles are initially cholesterol-free lipoproteins that are synthesized in hepatocytes and enterocytes. Extrahepatic tissues remove excess cholesterol by transferring it as free cholesterol to HDL particles. This free cholesterol is then either sent to the liver directly in a process dependent on hepatic scavenger receptor B1 (SR-B1) or indirectly via conversion into cholesteryl esters by LCAT. Cholesteryl esters are transported to the liver either by a direct but minor pathway that is dependent on SR-B1 or via an indirect major pathway that involves transfer to VLDL and LDL particles by CETP. Cholesterol ester is then taken up by the liver from these particles via the LDL receptor (LDL-R). Inhibition of CETP increases HDL-cholesterol levels and decreases the amount of cholesterol in atherogenic ApoB-containing VLDL and LDL particles. CETP, Cholesteryl ester transfer protein; LCAT, lecithin-cholesterol acyltransferase; LDL-R, low density lipoprotein-receptor.

[Au: I suggest that we cut figure 4 as it is not original and it does not add value to your Review. The meta-analysis is cited and interested readers can refer to the original paper if they want more details on the results.]

Table 1 | Lipid Profiles associated with CKD, dialysis and nephrotic syndrome.

[Au: Ref 34 was published in 2007 so this data is quite old. Please update the table with recent data and references if possible. We will look into obtaining permissions to adapt the table but if we are not able to obtain these we will have to cut it from the Review.]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CKD stage 1-5</th>
<th>Nephrotic Syndrome</th>
<th>Haemodialysis</th>
<th>Peritoneal dialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>↑</td>
<td>↑</td>
<td>⇆</td>
<td>↑</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>↑</td>
<td>↑</td>
<td>⇆</td>
<td>↑</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Non-HDL-cholesterol</td>
<td>↑</td>
<td>↑</td>
<td>⇆</td>
<td>↑</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>↑</td>
<td>↑</td>
<td>⇆</td>
<td>↑</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Normal (⇔), increased (↑), markedly increased (↑↑), and decreased (↓) plasma levels compared with patients with normal renal function; increasing (↗) plasma levels with
decreasing glomerular filtration rate. *Non-HDL-cholesterol includes cholesterol in low-density lipoprotein, very low-density lipoprotein, intermediate-density lipoprotein and chylomicrons and their remnants. Adapted from Kwan CH et al. 34
Table 2 | Emerging lipid-modifying therapies [Au: I have reformatted this table to fit our journal style and page layout (portrait orientation). ATP citrate lyase inhibitors, acetylcoenzyme A carboxylase inhibitors and diacylglycerol acyltransferase 1 inhibitors do not seem to be discussed in the main text. Please check if these should be included/discussed.]

<table>
<thead>
<tr>
<th>Target</th>
<th>Drug family</th>
<th>Mechanism [Au: Please check if my edits are correct.]</th>
<th>Individual drugs</th>
<th>Status</th>
<th>Results [Au: In this column when more than one drug is listed please specify which result is for which drug.]</th>
<th>Ref(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSK9</td>
<td>PCSK9 inhibitors</td>
<td>Increase the clearance of LDL particles</td>
<td>Alirocumab, evolocumab, bococizumab.</td>
<td>[Au: Which drugs?] available for FH Development of Bococizumab halted</td>
<td>[Au: Which drug(s)?] reduced the risk of major cardiovascular events in high-risk individuals and in patients with FH</td>
<td>204, 210, 214</td>
</tr>
<tr>
<td>PCSK9 siRNA</td>
<td></td>
<td>Increase the clearance of LDL particles</td>
<td>Inclisiran</td>
<td>Phase II RCT completed</td>
<td>Lowered LDL-cholesterol levels [Au: in which population?]</td>
<td>216</td>
</tr>
<tr>
<td>ATP citrate lyase inhibitor</td>
<td>ATP citrate lyase inhibitor</td>
<td>Reduces the synthesis of LDL particles</td>
<td>Bempedoic acid</td>
<td>Phase II RCT completed</td>
<td>Lowered LDL-cholesterol and C-reactive protein levels [Au: in which population?]</td>
<td>302</td>
</tr>
<tr>
<td>CETP</td>
<td>CETP inhibitors</td>
<td>Inhibit the exchange of cholesteryl esters and triglycerides between HDL and TG-rich lipoproteins</td>
<td>Torcetrapib Evaccetrapib Alocetrapib Anacetrapib Obicetrapib.</td>
<td>Phase III RCT [Au: of which drugs?] completed Clinical development [Au: of which drug?] halted</td>
<td>[Au: Which drugs?] Increased HDL and decreased LDL cholesterol levels [Au: in which population?] Lower atherosclerotic events with Anacetrapib [Au: in which population?]</td>
<td>191, 222, 12, 3, 225, 227</td>
</tr>
<tr>
<td>ApoA-I</td>
<td>ApoA-I mimic peptides</td>
<td>[Au: Increase or decrease?] the cholesterol efflux capacity of HDL particles</td>
<td>CSL112 CER-001</td>
<td>Phase II RCTs completed</td>
<td>Conflicting results on atheroma regression [Au: With which drug? in patients with post-acute coronary syndrome?]</td>
<td>249, 252</td>
</tr>
<tr>
<td>Lp(a) [Au: changed from Apo(a) OK?]</td>
<td>Lp(a) antisense oligonucleotide</td>
<td>[Au: Inhibition of?] Lp(a) synthesis</td>
<td>IONIS-APO(a)</td>
<td>Phase II RCTs completed</td>
<td>Lowered plasma Lp(a) >90% [Au: in which population]</td>
<td>233</td>
</tr>
<tr>
<td>MTTP</td>
<td>MTTP inhibitor</td>
<td>Inhibition of VLDL particle production</td>
<td>Lomitapide</td>
<td>Available for FH</td>
<td>>50% reduction in LDL-cholesterol [Au: in which population]</td>
<td>234</td>
</tr>
<tr>
<td>ApoB</td>
<td>ApoB antisense oligonucleotide</td>
<td>Inhibition of ApoB synthesis</td>
<td>Mipomersen</td>
<td>Available for FH</td>
<td>>50% reduction in LDL-cholesterol [Au: in which population]</td>
<td>235</td>
</tr>
<tr>
<td>ANGPTL3</td>
<td>Anti-ANGPTL3 antibody</td>
<td>VLDL particle secretion</td>
<td>Evinacumab</td>
<td>Phase II RCT completed</td>
<td>Lower triglycerides (76%) and LDL-cholesterol (23%) [Au: in which population]</td>
<td>247</td>
</tr>
<tr>
<td>ANGPTL3</td>
<td>ANGPTL3 antisense oligonucleotide</td>
<td>VLDL particle secretion</td>
<td>ANGPTL3-LRx</td>
<td>Phase I/II RCT completed</td>
<td>Lower triglycerides (63%) and LDL-cholesterol (33%) [Au: in which population]</td>
<td>248</td>
</tr>
<tr>
<td>Acetylcoenzyme A carboxylase</td>
<td>Acetylcoenzyme A carboxylase inhibitor</td>
<td>Enhances the clearance of VLDL particles</td>
<td>Gemcabene</td>
<td>Phase II RCT completed</td>
<td>Lower LDL-cholesterol, and C-reactive protein levels [Au: in which population?]</td>
<td>303</td>
</tr>
<tr>
<td>ApoC-III</td>
<td>ApoC-III antisense oligonucleotide</td>
<td>[Au: What is the effect on these]</td>
<td>Volanesorsen</td>
<td>Phase III RCT completed</td>
<td>lowers triglyceride levels in patients with familial chylomicronemia [Au:OK?]</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: [Au:] indicates annotations or edits made by an editor.
<table>
<thead>
<tr>
<th>lipoproteins – what specifically is targeted?</th>
<th>Pradigastat</th>
<th>Phase III RCT terminated</th>
<th>Lower triglycerides (70%) [Au: in which population].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diacylglycerol acyltransferase 1 inhibitor</td>
<td>Pradigastat</td>
<td>Phase III RCT terminated</td>
<td>Lower triglycerides (70%) [Au: in which population].</td>
</tr>
</tbody>
</table>

- ANGPTL3, angiopoietin-like 3; ApoA-I, apolipoprotein A-I; ApoB, apolipoprotein B; ApoC-III, apolipoprotein C-III; CETP, cholesteryl ester transfer protein; CKD, chronic kidney disease; FH, familial hypercholesterolaemia; HDL, high density lipoprotein; LDL, low density lipoprotein; LDL-Lp (a), lipoprotein (a); MTTP, microsomal triglyceride transfer protein; PCSK9, proprotein convertase subtilisin-kexin type 9; RCT, randomised controlled trial; sCr, serum creatinine; siRNA, small interfering RNA; VLDL, very low density lipoprotein.
<table>
<thead>
<tr>
<th>KDIGO Recommendation</th>
<th>Potential revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of lipid status</td>
<td></td>
</tr>
<tr>
<td>In adults with newly identified CKD (including those treated with chronic dialysis or kidney transplantation), we recommend evaluation with a lipid profile (total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides). (1C)</td>
<td>Consideration might be given to other emerging markers of dyslipidaemia (e.g. lipoprotein(a), Apolipoprotein B), although these should mostly be reserved for research studies</td>
</tr>
<tr>
<td>In adults with CKD (including those treated with chronic dialysis or kidney transplantation), follow-up measurement of lipid levels is not required for the majority of patients. (Not Graded)</td>
<td>Consider follow-up measurement in certain circumstances, for example in response to changes in clinical status and/or medications, in situations where intensive lipid lowering is potentially beneficial and to reinforce adherence</td>
</tr>
<tr>
<td>Pharmacological cholesterol-lowering treatment</td>
<td></td>
</tr>
<tr>
<td>In adults aged ≥50 years with eGFR<60 ml/min/1.73 m² but not treated with chronic dialysis or kidney transplantation (GFR categories G3a-G5), we recommend treatment with a statin or statin/ezetimibe combination.</td>
<td>Consideration needs to be given to patients with progressive CKD, especially if high levels of proteinuria are present</td>
</tr>
<tr>
<td>In adults aged ≥50 years with CKD and GFR>60 ml/min/1.73 m² (GFR categories G1-G2) we recommend treatment with a statin.</td>
<td>Potential consideration also needs to be given to patients with high estimated life-time risk likely to progress to dialysis and transplantation.</td>
</tr>
<tr>
<td>In adults aged 18–49 years with CKD but not treated with chronic dialysis or kidney transplantation, we suggest statin treatment in people with one or more of the following: • known coronary disease (myocardial infarction or coronary revascularization) • diabetes mellitus • prior ischemic stroke • estimated 10-year incidence of coronary death or non-fatal myocardial infarction >10%</td>
<td>In individuals with known coronary disease, secondary prevention recommendations may apply, including LDL-cholesterol targets</td>
</tr>
<tr>
<td>In adults with dialysis-dependent CKD, we suggest that statins or statin/ezetimibe combination not be initiated</td>
<td>Consider decision to be individualised if patient is expected to have a long renal career, receive a kidney transplant or has high LDL cholesterol levels</td>
</tr>
<tr>
<td>In patients already receiving statins or statin/ezetimibe combination at the time of dialysis initiation, we suggest that these agents be continued</td>
<td></td>
</tr>
<tr>
<td>In adult kidney transplant recipients, we suggest treatment with a statin</td>
<td></td>
</tr>
<tr>
<td>Triglyceride-lowering treatment</td>
<td>[Au: NA?]</td>
</tr>
</tbody>
</table>

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate; HDL-cholesterol, high density lipoprotein cholesterol; LDL-cholesterol, low density lipoprotein cholesterol; [Au: NA, not applicable.]
Table 4 | Summary of guidelines for lipid-modification \[Au: Should this be lipid-lowering therapy?\] therapy for the management of dyslipidaemia

<table>
<thead>
<tr>
<th>Society (year)</th>
<th>Recommendations</th>
<th>Assessment of risk for primary prevention</th>
<th>Patients with CKD or ESRD [Au: I’ve merged this column with the other notes column OK?]</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDIGO (2013)</td>
<td>Different statin intensity depending on 10-year ACSVD risk and presence of other risk factors</td>
<td>10-year risk of ACSVD using the pooled cohorts equation</td>
<td>No recommendation for patients on dialysis or those with severe heart failure</td>
<td>1</td>
</tr>
<tr>
<td>American College of Cardiology/American Heart Association (2013)</td>
<td>Target non-HDL-cholesterol <2.5mmol/L and LDL-cholesterol <1.8 mmol/L</td>
<td>JBS-3 risk calculator, to assess 10-year and life-time CVD risk</td>
<td>No risk estimation required for CKD stages 3-5 No mention of patients on dialysis except an indirect reference to KDIGO guidelines</td>
<td>271</td>
</tr>
<tr>
<td>Joint British Societies (2014)</td>
<td>Low, medium, high intensity statin treatment depending on risk for primary prevention High intensity (atorvastatin 80 mg) for secondary prevention.</td>
<td>10-year CVD event risk using the QRISK2 assessment tool.</td>
<td>Risk assessment not required if GFR <60 ml/min/1.73 m² or albuminuria (level not defined) Offer atorvastatin 20 mg to patients with CKD for the primary or secondary prevention of CVD Aim for >40% reduction in non-HDL-cholesterol and consider increasing dose if this target is not achieved. No reference to patients on dialysis or transplant recipients</td>
<td>294</td>
</tr>
<tr>
<td>Cardiovascular disease: risk assessment and reduction, including lipid modification (2014; updated 2016)</td>
<td>Target LDL-cholesterol <1.8 mmol/L in very high risk, <2.6 in high risk and <3.0 in low to intermediate risk patients</td>
<td>10-year risk of first fatal cardiovascular event using SCORE system</td>
<td>Patients with CKD are considered to be at high or very high cardiovascular risk Have broadly accepted KDIGO recommendations</td>
<td>79</td>
</tr>
<tr>
<td>European Atherosclerosis Society/European Society of Cardiology (2016)</td>
<td>Target LDL-cholesterol <1.8 mmol/L in very high risk, <2.6 in high risk and <3.0 in low to intermediate risk patients</td>
<td>10-year risk of first fatal CV event using SCORE system</td>
<td>Patients with CKD are considered to be at high or very high cardiovascular risk Have broadly accepted KDIGO recommendations</td>
<td>273</td>
</tr>
<tr>
<td>Sixth Taskforce European Society of Cardiology and other societies (2016)</td>
<td>Target LDL-cholesterol <1.8 mmol/L in very high risk, <2.6 in high risk and <3.0 in low to intermediate risk patients</td>
<td>10-year risk of CVD using the ACC/AHA pooled cohorts equation</td>
<td>No recommendations provided</td>
<td>305,306</td>
</tr>
<tr>
<td>US Preventative Services Task Force (2016)</td>
<td>All offered low-to moderate dose statins Primary prevention recommended for adults aged <75 years only [Au:OK?]</td>
<td>10-year Framingham Heart Study Risk Score modified for family history or CV age using Cardiovascular Life Expectancy Model (CLEM)</td>
<td>Risk assessment not required if GFR <60 ml/min/1.73 m² or ACR > 3.0 mg/mmol Suggest not initiating lipid lowering treatment in patients on dialysis Treatment might be desirable in younger individuals and in those who might become eligible for kidney Otherwise broadly similar to KDIGO.</td>
<td>274</td>
</tr>
<tr>
<td>Canadian Cardiovascular Society (2016)</td>
<td>Target > 50% LDL-cholesterol reduction</td>
<td>10-year risk of a coronary event using either Framingham Risk Assessment Tool, MESA, Reynolds Risk Score, UKPDS risk engine</td>
<td>Patients with CKD stages 4-5 are classified as high, very high or extreme risk depending on the presence of other risk factors</td>
<td>184</td>
</tr>
</tbody>
</table>
Conventional to SI units conversion: LDL-cholesterol: mg/dl to mmol/L conversion factor 0.0259. ACR: mg/g to mg/mmol conversion factor 0.113