WH15: SERF Archive Report: Lithics

Introduction
There are nine lithics recovered from the excavations of an Early Neolithic pit cluster, and Bronze Age cist with a cremation deposit undertaken at Wellhill, Dunning (WH15) in 2015.

Methodology
The methodology, type and attribute terminologies employed for the analysis of the primary and secondary technologies follows the format devised and adopted for the Southern Hebrides Mesolithic Project (Finlayson et al. 2000). This augmented the research design used for the analysis of the lithic assemblage from the site at Kinloch on Rùm (Wickham-Jones 1990), derived from earlier terminologies and technological classifications (Tixier et al. 1980), and subsequently enhanced (Inizan et al. 1999). This format lends itself to the incorporation of later prehistoric forms such as projectile points, ‘knives’, certain types of scrapers and Post-Medieval gunflints (cf. Wright 2012). The database for the typological and technological analysis of the lithics uses Access™ 2016.

Primary Technology speaks to those initial procedures of the chaîne opératoire relating to the choices made in the selection and the obtaining of appropriate raw material, the reduction strategies, the production of blanks, e.g. flakes and blades through to the discard of cores. The knapping reduction strategies undertaken in the past are determined by reference to the detailed analysis of the characteristics and attributes of the cores and debitage products recovered during archaeological fieldwork (Finlay et al. 2000a, 553; Woodman et al. 2006, 78).

Secondary Technology refers to the later stages of the chaîne opératoire, which considers the process of the modification of blanks, their utilisation and discard. Following the removal of a blank from a core, modification is generally achieved by the application of pressure to the edge of the blank. In the case of scrapers, the modified edge functions as the working edge. However, that may not be the case for all retouched artefacts. For example, the modification may be undertaken to facilitate hafting (Finlay et al. 2000b, 571; Wickham-Jones and McCartan 1990, 87). Invasive and inverse retouch are generally particular features of secondary modification during the Neolithic and Bronze Age periods (Ballin 1999 and others).

For individual lithics, the first number is the catalogue reference followed by the small finds number, where applicable.

Geology
The solid geology consists of Scone Sandstone Formation, with glaciofluvial sheet deposits comprising of sand and gravels recorded for the drift geology (Digimap®
EDiNA Geology Roam). There is glacial till recorded in the southeast area of the field (Figure 1).

![Map of Wellhill with glacial till and glaciofluvial sheet deposits highlighted](image)

Figure 1: Drift geology at Wellhill (Digimap® EDiNA Geology Roam online resource; © NERC/Crown copyright database right).

Primary technology

DF0046

Fill (15051) of pit [15006] overlying (15056), (15093) and (15102); underlying (15007), [15144] and (15125).

- One fresh, tertiary, irregular, platform quartz flake (1178/15054) with evidence for anvil support;
- One fresh, primary, irregular, bipolar andesite flake fragment (1180/15098);
- One fresh, tertiary, irregular, platform flint flake (1181/15116); and
- One fresh, tertiary, regular, platform pitchstone blade (1182/15129).

DF0047

Fill (15005) of pit [15004] overlying (15055), (15096) and (15058).

- One fresh, tertiary, irregular, platform quartz flake (1176/15040).

DF0049

Fill (15013) of pit [15012] overlying (15068), (15069) and (15070).

- One fresh, tertiary, regular, platform pitchstone blade (1175/15002).

DS002

Sand natural (15101) below cist structure (DS002) for cremation deposit.

- One fresh, primary, irregular, platform flint flake (1179/15058).
A piece of burnt tibia produced a radiocarbon date of 2126-1923BCE (3635±25BP SUERC-66242).

Secondary technology

DF0046

Fill (15051) of pit [15006] overlying (15056), (15093) and (15102); underlying (15007), [15144] and (15125).

- A burnt flint ‘slug’ form fabricator fragment with invasive retouch (1177/15046); and
- A fragment of a Group VI polished stone axe (1177/15046).

Summary

There was a substantial assemblage of Early Neolithic pottery recovered from DF0046 as well as the fragment of the polished stone axe (1177/15046), and the fabricator fragment (1177/15046). Table sets out the details of the radiocarbon dates from (15051).

<table>
<thead>
<tr>
<th>2σ (95.4%)</th>
<th>Laboratory</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>3893-3670BCE</td>
<td>4975±25BP SUERC-66240</td>
<td>Alder roundwood</td>
</tr>
<tr>
<td>3768-3655BCE</td>
<td>4936±25BP SUERC-66241</td>
<td>Bread seed wheat</td>
</tr>
<tr>
<td>3766-3652BCE</td>
<td>4930±25BP SUERC-66245</td>
<td>Carbonised residue</td>
</tr>
</tbody>
</table>

Table 1: Radiocarbon data from DF0046 (15051).

Fabricators date from the Mesolithic to the Bronze Age. For example, there are numerous artefacts illustrated in the Portable Antiquities Scheme database (https://finds.org.uk/database/search/results/q/fabricators/objectType/FABRICATOR). These artefacts were used as either strike-a-lights, or for the processing of other materials such as leather and possibly stone (Edmonds 1995). Hopman (2011), referencing Clarke (1970) and Cave-Brown (1992), refers to fabricators being skilfully worked artefacts, which is case for the artefact from WH15.

Pitchstone (DF0046 and DF0049) recovered on the mainland is usually associated with Early Neolithic features (cf. Ballin 2017).

Dr Dene Wright
4 September 2018
References

