Real-time optical manipulation of cardiac conduction in intact hearts

Scardigli, M. et al. (2018) Real-time optical manipulation of cardiac conduction in intact hearts. Journal of Physiology, 596(17), pp. 3841-3858. (doi: 10.1113/jp276283) (PMID:29989169)

[img]
Preview
Text
168194.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart.

Item Type:Articles
Additional Information:This work was supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 654148 Laserlab-Europe, by National Institutes of Health (NIH Grant: R01 EB001963), by the Italian Ministry for Education, University and Research in the framework of the Flagship Project NANOMAX, by the Italian Ministry of Health (WFR GR-2011-02350583), by Telethon–Italy (GGP13162), by Ente Cassa di Risparmio di Firenze (private foundation), and by FAS-Salute ToRSADE project. C.C. holds a long-term fellowship from the Human Frontiers Science Program Organization.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Muellenbroich, Dr Caroline
Authors: Scardigli, M., Muellenbroich, C., Margoni, E., Cannazzaro, S., Crocini, C., Ferrantini, C., Coppini, R., Yan, P., Loew, L.M., Campione, M., Bocchi, L., Giulietti, D., Cerbai, E., Poggesi, C., Bub, G., Pavone, F.S., and Sacconi, L.
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Journal of Physiology
Publisher:Wiley
ISSN:0022-3751
ISSN (Online):1469-7793
Published Online:10 July 2018
Copyright Holders:Copyright © 2018 The Authors
First Published:First published in Journal of Physiology 596(17):3841-3858
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record