Highly reduced and protonated aqueous solutions of [P2W18O62]6− for on-demand hydrogen generation and energy storage

Chen, J.-J., Symes, M. D. and Cronin, L. (2018) Highly reduced and protonated aqueous solutions of [P2W18O62]6− for on-demand hydrogen generation and energy storage. Nature Chemistry, 10(10), pp. 1042-1047. (doi: 10.1038/s41557-018-0109-5) (PMID:30104721)

[img]
Preview
Text
166657.pdf - Accepted Version

1MB
[img]
Preview
Text
166657Suppl.pdf - Supplemental Material

1MB

Abstract

As our reliance on renewable energy sources grows, so too does our need to store this energy to mitigate against troughs in supply. Energy storage in batteries or by conversion to chemical fuels are the two most flexible and scalable options, but are normally considered mutually exclusive. Energy storage solutions that can act as both batteries and fuel generation devices (depending on the requirements of the user) could therefore revolutionize the uptake and use of renewably generated energy. Here, we present a polyoxoanion, [P2W18O62]6−, that can be reversibly reduced and protonated by 18 electrons/H+ per anion in aqueous solution, and that can act either as a high-performance redox flow battery electrolyte (giving a practical discharged energy density of 225 Wh l−1 with a theoretical energy density of more than 1,000 Wh l−1), or as a mediator in an electrolytic cell for the on-demand generation of hydrogen.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Chen, Dr Jiajia and Symes, Professor Mark and Cronin, Professor Lee
Authors: Chen, J.-J., Symes, M. D., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Nature Chemistry
Publisher:Nature Publishing Group
ISSN:1755-4330
ISSN (Online):1755-4349
Published Online:13 August 2018
Copyright Holders:Copyright © 2018 Springer Nature
First Published:First published in Nature Chemistry 10(10): 1042-1047
Publisher Policy:Reproduced in accordance with the publisher copyright policy
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
503291Molecular-Metal-Oxide-nanoelectronicS (M-MOS): Achieving the Molecular LimitLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/H024107/1CHEM - CHEMISTRY
571901International Collaboration in Chemistry - Modular microtubular architectures for photo-driven water splittingLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J00135X/1CHEM - CHEMISTRY
577391Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1CHEM - CHEMISTRY
605821The Multi-Corder: Poly-Sensor TechnologyDavid CummingEngineering and Physical Sciences Research Council (EPSRC)EP/K021966/1ENG - ENGINEERING ELECTRONICS & NANO ENG
616021Energy and the Physical Sciences: Hydrogen Production using a Proton Electron BufferLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/K023004/1CHEM - CHEMISTRY
646611Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1CHEM - CHEMISTRY
599451Microscale Chemically Reactive Electronic AgentsLeroy CroninEuropean Commission (EC)FP7 ICT MICRE318671CHEM - CHEMISTRY
685741SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)670467CHEM - CHEMISTRY