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ABSTRACT
Enterprises continue to migrate their services to the cloud
on a massive scale, but the increasing attack surface has be-
come a natural target for malevolent actors. We show policy
injection, a novel algorithmic complexity attack that enables
a tenant to add specially tailored ACLs into the data center
fabric to mount a denial-of-service attack through exploiting
the built-in security mechanisms of the cloud management
systems (CMS) . Our insight is that certain ACLs, when fed
with special covert packets by an attacker, may be very diffi-
cult to evaluate, leading to an exhaustion of cloud resources.
We show how a tenant can inject seemingly harmless ACLs
into the cloud data plane to abuse an algorithmic deficiency
in the most popular cloud hypervisor switch, Open vSwitch,
and reduce its effective peak performance by 80-90%, and, in
certain cases, denying network access altogether.

1 INTRODUCTION
Enterprises increasingly offload their business-critical work-
loads to the public cloud to benefit from low infrastructure
cost, flexible resource provisioning, etc. At the same time,
they inevitably share the network infrastructure with other,
potentially malevolent users. Hence, infrastructure security
is a major concern for enterprises, also fueled by doubts on
the adequacy of isolation between tenants’ workloads in the
shared data-center infrastructure. Like any complex system,
the cloud data plane may also be susceptible to algorithmic
complexity attacks [5], whereby an attacker exploits some
intrinsic algorithmic deficiency by forcing the system spend-
ing its time processing malicious input, while denying access
to benign users.
Cloud users can control communications permitted be-

tween their services by setting up appropriate ACLs in the hy-
pervisor switches via the cloud management system (CMS).
Here, we show that even the simplest Whitelist + Default-
Deny type of ACLs a typical CMS would accept from users
may be a plausible target for algorithmic complexity attacks,
exploiting that network packet filtering and classification is a
computationally very difficult problem [6]. We show in this
demonstration that by injecting a specially crafted ACL into
the CMS and feeding this ACL with a low-bandwidth (1–2
Mbps) covert packet stream, an attacker can bring down
Open vSwitch (OVS), the most popular hypervisor switch

through exhausting the flow caches that underlie the OVS
fast-path packet classifier.

2 BACKGROUND AND ARCHITECTURE
Cloud Networking. The basic unit of operation users can
deploy over the cloud is the pod or VM, a pack of software
resources running in an isolated environment with limited
access to the rest of the system. Network isolation is mostly
driven bymicrosegmentation, a cloud security best-practice to
protect pod-to-pod communication. Creating such isolation
barriers within theworkload is implemented by network poli-
cies in Kubernetes [1] or security groups in OpenStack [7],
allowing users to impose L3/L4 forwarding policies. ACLs,
used mainly in firewalls operate on the IP 5-tuple: the IP
source and destination address, transport protocol and its
ports, with any of the 5 fields potentially wildcarded.
The Open vSwitch pipeline. A flow table is an ordered
set of wildcard rules operating over certain header fields,
and a set of packet processing primitives (i.e., actions) to be
applied to matching packets. For increased flexibility, OVS
permits flow rules to overlap; if multiple rules in the flow
table match, the one added first will be applied. However, this
makes packet classification rather complex since, even in the
case of non-overlapping flow rules, the complexity of any
wildcard rule matching algorithm could be exponential [3].

To fasten packet classification, OVS relies on the fast-path/
slow-path separation principle. The first packet of each flow
is subjected to full flow-table processing on the slow path,
and the flow-specific rules and actions are then cached in
the fast path, which can then process the rest of the flow’s
packets efficiently. The fast path comprises two layers of flow
caches: themicroflow cache implements an exact-match store
over all header fields; and themegaflow cache (MF) uses tuple-
space search (TSS): entries matching on the same header
fields are collected into a hash in which masked packet head-
ers can be found fast. To reduce complexity, the slow path
ensures that MF entries are non-overlapping, resulting in
masks and associated hashes are searched sequentially until
the first matching entry is found. This means that even if
hash lookup is O(1), the TSS algorithm still has to iterate
through all hashes assigned to different masks, rendering
TSS a costly linear search when there are lots of masks. In
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Figure 1: Architecture: The attacker installs ACLs at
the virtual ports marked by red dots.

ip_src action

00001010 allow
******** deny

(a) Binary ACL repre-
sentation of the single-
field network policy

Key Mask Action

00001010 11111111 allow
10000000 10000000 deny
01000000 11000000 deny
00100000 11100000 deny
00010000 11110000 deny
00000000 11111000 deny
00001100 11111100 deny
00001000 11111110 deny
00001011 11111111 deny

(b) Resultant non-overlapping MF
entries

Figure 2: SimpleACL and the correspondingMF cache.

this note we show that this OVS flow cache infrastructure is
inherently vulnerable to algorithmic-complexity attacks.
Architecture. To launch the attack as a user, we need the
following ingredients: (i) the capability to define ACLs be-
tween our pods/VMs (this is provided by the CMS); (ii) a set
of malicious ACLs; and (iii) an adversarial packet sequence,
which will trash the MF with excess entries and masks, ef-
fectively sparking the DoS attack by triggering the above
algorithmic deficiency (linear search) of the TSS scheme.
The test setup (see Fig. 1) comprises two server nodes, a

data center fabric, and hypervisor switches (OVS in our case)
providing network services to the pods/VMs provisioned
at each server. First, the attacker injects an ACL to allow
communication from 10.0.0.0/8 to her pods/VMs and deny
everything else, resulting in the flow table shown in Fig. 2a.
Note that there are different strategies to convert a flow
table into a non-overlapping form: OVS in particular tries to
wildcard as many bits as possible to get the broadest possible
rules. This strategy results in exact-match entry for the allow-
rule and 8 different key-mask pairs for testing the rest of
the header bits (see Fig. 2b). We also need a packet sequence
that will populate the MF with the “required” entries, but
we omit the details in the interest of space. This technique
creates 8 masks and so 8 iterations for executing the TSS. In
the demo, we show how to extend this approach to launch
an effective DoS attack.
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Figure 3: OVS degradation in Kubernetes: Attacker
feeds her ACL with low-bandwidth packets at 60th sec

During the demo, we will show how our technique can
be applied to an arbitrary number of protocol fields, each
resulting in a significant increase in the number of MF entries
and masks in OVS. We will demonstrate that, by setting
only 2 ACL rules matching solely on the IP source address
and the L4 destination port (both ACLs are supported by
Kubernetes/OpenStack), one can inject 512MFmasks/entries
into the OVS fast path, slowing it down to 10% of the peak
performance.

Then, we will show that, if the CMS allows us to also filter
on the L4 source port (the Kubernetes networking plugin
Calico does this), our attack technique can produce enough
masks (8192) to a full-blownDoS attack (see Fig. 3). Attendees
will also be engaged in discussions of, and be exposed to
potential work-in-progress mitigation techniques and their
trade-offs (e.g., joint troubleshooting techniques by tenants
and provider [2], improved heuristics in OVS, flow cache-less
softswitches [4]). Accompanying material can be found at
https://github.com/cslev/ovsdos.
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3 TECHNICAL REQUIREMENTS
3.1 Equipment to be used for the demo
A single laptop.

3.2 Space needed
Typical space provided by SIGCOMM - one large table

3.3 Setup time required
Up to 30 minutes.

3.4 Additional facilities needed, including
power and any Internet access
requirements

• Internet access (wired or wireless)
• Power source/extension cord
• One additional large screen for the showcase
• One poster stand for demonstrating the architecture
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