In this paper, we develop a distributed control scheme for the perimeter traffic flow control problem in urban road networks. The proposed scheme determines optimally distributed input flows for a number of gates located at the periphery of a protected network area. A parsimonious model is employed to describe the traffic dynamics of the protected network. To describe traffic dynamics outside of the protected area, we augment the basic state-space model with additional state variables for the queues at store-and-forward origin links at the periphery. We aim to equalise the relative queues at origin links and maintain the vehicle accumulation in the protected network around a desired point, while the system’s throughput is maximised. The perimeter traffic flow control problem is formulated as a convex optimal control problem with constrained control and state variables. Simulation results are carried for a protected area of downtown San Francisco with fifteen gates of different geometric characteristics. Results demonstrate the efficiency and equity properties of the proposed approach to better manage excessive queues outside of the protected area and optimally distribute the input flows.
taking into account the different geometric characteristics of origin links. Such a distribution policy applied independently to multiple gates of a protected network area would be efficient in case of unconstrained origin link queues for vehicle storage (i.e., infinite storage capacity). However, gated queues at origin links must be restricted to avoid interference with adjacent street traffic outside of the protected network area and geometric characteristics of the different gates must be taken into account in the optimisation. Thus, limited origin links storage capacity and the requirement of equity for drivers using different gates to enter a protected area are the main reasons towards distributed perimeter flow control.

In this work, we propose an integrated model for the distributed perimeter traffic flow control problem in urban road networks. We employ the renowned network or macroscopic fundamental diagram of urban networks to describe the traffic dynamics of the protected network area. To describe traffic dynamics outside of the protected area, we augment the basic state-space model with additional state variables for the queues at store-and-forward origin links at the periphery. The integrated model is then used to formulate a convenient convex or nonlinear optimal control problem with constrained control and state variables for distributed perimeter flow control. This scheme determines optimally distributed input flow values (or feasible entrance link green times) to avoid queues and delays at the perimeter of a protected area while system's output is maximised. We present preliminary results to demonstrate its efficiency and equity properties to better manage excessive queues outside of the protected network area and optimally distribute the input flows.

2 Perimeter Flow Modelling with Entrance Links Dynamics

Consider a protected network area with a number of controlled gates \(o \in \mathcal{O} = \{1, 2, \ldots\} \) located at its periphery as shown in Fig. 1. The set \(\mathcal{O} \) includes all the origin links whose outflow is essentially entering into the protected network from a number of controlled gates/entrances (e.g. signalised junctions or toll stations). In principle, the origin links at the periphery of the protected network would have different geometric characteristics, i.e., length, number of lanes, capacity, and saturation flows. The protected network traffic can be treated macroscopically as a single-region dynamic system with vehicle accumulation \(n(t), t \geq 0 \) as a single state variable (Daganzo, 2007). To this end, assume there exists a well-defined function \(O(n(t)) \) (veh/h) that provides the estimated rate flow (output) at which vehicles complete trips per unit time either because they finish their trip within the network or because they move outside of the network. The output can be expressed as \(O(n(t)) = \frac{l}{L}O_c(n(t)) \), where \(L \) (m) is the average trip length in the network, \(l \) (m) is the average link length, and \(O_c \) (veh/h) is the total network circulating flow. In general, the circulating flow \(O_c \) can be estimated by the generalised definition of flow if \(n(t) \) is observed in real-time.
Let \(q_o(t) \) (veh/h) be the outflow of gate \(o \in \mathcal{O} \) at time \(t \). Also, let \(q_{\text{out}}(t) \) (veh/h) and \(d_o(t) \) (veh/h) be the total outflow and the uncontrolled traffic demand (disturbances) of the protected network at time \(t \), respectively. The dynamics of the system are governed by the following nonlinear conservation equation

\[
\dot{n}(t) = \sum_{o=1}^{\left|\mathcal{O}\right|} q_o(t) - q_{\text{out}}(t) + d_n(t),
\]

where \(q_{\text{out}}(t) \) is in general a nonlinear function of vehicle accumulation \(n(t) \). Since the system evolves slowly with time \(t \), we may assume that outflow \(q_{\text{out}}(t) \propto O_o(n(t)) \), and it may thus be given in terms of the output \(O(n(t)) \). Note that \(q_o(t), o \in \mathcal{O} \) are the input variables of the controlled gates/entrances, to be calculated by a distributed perimeter flow control strategy.

To describe traffic dynamics outside of the protected area, we augment the basic state-space model (1) with additional state variables for the queues at store-and-forward entrance links at the periphery. Each origin link \(\ell_o \) receives traffic demand \(d_o \) and forwards it into the protected network, as shown in Fig. 1. The queuing model for the entrance link dynamics is described by the following conservation equation

\[
\dot{\ell}_o(t) = d_o(t) - q_o(t), \quad o \in \mathcal{O} = \{1, 2, \ldots\}
\]

where \(\ell_o(t) \) (veh) and \(d_o(t) \) (veh/h) are the vehicle queue and traffic demand in origin link \(o \) at time \(t \), respectively. The integrated model (1)–(2) can be extended to consider a broader class of state and control constraints as follows:

\[
\begin{align*}
0 & \leq n(t) \leq n_{\text{max}} \\
0 & \leq \ell_o(t) \leq \ell_{o,\text{max}}, \quad o \in \mathcal{O} = \{1, 2, \ldots\} \\
q_{o,\text{min}} & \leq q_o(t) \leq q_{o,\text{max}}, \quad o \in \mathcal{O} = \{1, 2, \ldots\}
\end{align*}
\]

where \(n_{\text{max}} \) is the maximum vehicle accumulation of the protected network; \(\ell_{o,\text{max}} \) is the maximum permissible capacity of link \(o \in \mathcal{O} \); \(q_{o,\text{min}}, q_{o,\text{max}} \) are the minimum and maximum permissible outflows, respectively; and, \(q_{o,\text{min}} > 0 \) to avoid long queues and delays at the periphery of the network. Link capacities and maximum vehicle accumulation depend on geometric characteristics of the origin links (length, number of lanes) and the topology of the protected network, respectively. Minimum and maximum permissible outflows can easily be determined given saturation flows, minimum and maximum green times, and cycle times of a nominal traffic signal plan (or corresponding toll ticket) at each controlled gate of the protected network.

The presented model can be viewed as a nonlinear process with input variables \(u^T = [q_1, q_2, \ldots, q_{\left|\mathcal{O}\right|}] \), state variables \(x^T = [n, \ell_1, \ell_2, \ldots, \ell_{\left|\mathcal{O}\right|}] \), and disturbances \(d^T = [d_n, d_1, d_2, \ldots, d_{\left|\mathcal{O}\right|}] \). Then, the continuous-time nonlinear state system (1), (2) with constraints (3) for a protected network with controlled gates \(o \in \mathcal{O} \), may be rewritten in compact vector form as

\[
\begin{align*}
\dot{x}(t) &= f [x(t), u(t), d(t), t], \quad t \geq 0, \quad x(0) = x_0 \\
0 & \leq x(t) \leq x_{\text{max}} \\
\text{u}_{\text{min}} & \leq u(t) \leq u_{\text{max}}
\end{align*}
\]

where \(f \) is a nonlinear vector function reflecting the right-hand side of (1)–(2); \(x_0 \) is a known initial state; and \(x_{\text{max}}, \text{u}_{\text{min}}, \text{u}_{\text{max}} \) are vectors of appropriate dimension reflecting the upper and lower bounds of constraints (3).

Assuming a nonlinear representation of \(q_{\text{out}}(t) \triangleq O(n(t)) \), the continuous-time nonlinear model (4) may be linearised around some set point \(\bar{s}^T = [\bar{x}, \bar{u}, \bar{d}] \), and directly translated into discrete-time, using Euler first-order time discretisation with sample time \(T \), as follows

\[
\Delta x(k + 1) = A \Delta x(k) + B \Delta u(k) + C \Delta d(k)
\]
where \(k = 0, 1, \ldots, N_o - 1 \) is a discrete time index with optimisation horizon \(N_o \); \(\Delta(\cdot) \triangleq (\cdot) - \cdot \) for all vectors; and \(A = \partial f/\partial x|_{x^0}, B = \partial f/\partial u|_{x^0}, C = \partial f/\partial d|_{x^0} \) are the state, control, and disturbance matrices, respectively. This discrete-time linear model is completely controllable and reachable, and will be used as a basis for control design. The sample time interval \(T \) is literally selected to be a common multiple of cycle lengths of all controlled gates at the periphery of the protected network, while \(T \in [3, 5] \) minutes is usually appropriate for constructing a well-defined outflow function \(O(n(t)) \), given experimental data.

3 Distributed Perimeter Flow Control

A suitable control objective for a protected network area with origin links queue dynamics aims at: (a) equalising the relative vehicle queues \(\ell_o//o_{max} \), \(o \in O \) over time, and (b) maintaining the vehicle accumulation in the protected network around a set (desired) point \(\hat{n} \) while the system’s throughput is maximised. A quadratic criterion that considers this control objective has the form

\[
J = \frac{1}{2} \sum_{k=0}^{N_o-1} \left(\| \Delta x(k) \|_Q^2 + \| \Delta u(k) \|_R^2 \right)
\]

(8)

where \(Q \) and \(R \) are positive semi-definite and positive definite diagonal weighting matrices, respectively. The diagonal elements of \(Q \) are responsible for balancing the relative vehicle accumulation of the protected network \(n/n_{max} \) and the relative vehicle queues \(\ell_o//o_{max} \), \(o \in O \). Given that vehicle storage in the protected network is significantly higher than in the origin links, a meticulous selection of diagonal elements is required. A practicable choice is to set \(Q = \text{diag}(1/w, 1/\ell_{1, max}, \ldots, 1/\ell_{O, max}) \), where the scale of \(w \ll \ell_{max} \) is of the order of \(\sum_{o \in O} \ell_o \) to achieve equity. It becomes quite clear here that equity at origin links and efficiency of the protected network area are partially competitive criteria, hence a perimeter flow control strategy should be flexible enough to accommodate a particular trade-off (i.e. to give priority to the protected network or the outside area, e.g. to manage better excessive queues) to be decided by the responsible network authorities. Finally, the choice of the weighting matrix \(R \triangleq rI, r > 0 \) can influence the magnitude of the control actions and thus \(r \) should be selected via a trial-and-error process.

Rolling horizon control is a repetitive optimisation scheme, where at each time step an open-loop optimal control problem with finite horizon \(N_o \) and predicted demands \(d(k) \) is optimised, then only the first control move is applied to the plant and the procedure is carried out again. Given the known initial state \(x(0) = x_0 \), a static convex optimisation problem may be formulated over \(N_o \) due to the discrete-time nature of the involved process. To see this, assume \(N_o = N_p \) and define the vectors

\[
\Delta X = [\Delta x(1)^T \ \Delta x(2)^T \ \cdots \ \Delta x(N_o)^T]^T
\]

\[
\Delta U = [\Delta u(0)^T \ \Delta u(1)^T \ \cdots \ \Delta u(N_o-1)^T]^T
\]

\[
\Delta D = [\Delta d(0)^T \ \Delta d(1)^T \ \cdots \ \Delta d(N_p-1)^T]^T
\]

Assuming now availability of demand flow predictions at the origin links of the protected network over a prediction horizon \(N_p \), i.e. \(\Delta d(k) \neq 0, k = 0, 1, \ldots, N_p - 1 \), minimisation of the performance criterion (8) subject to (7) leads to the analytical solution:

\[
\Delta U = -H^{-1}F[x(0) + GD]
\]

(9)

where \(H = \Gamma^TQ\Gamma + R \) is the Hessian of the corresponding quadratic program (QP), \(F = \Gamma^TQ\Omega \), and \(G = \Gamma^TZ \). The matrices \(\Gamma \) and \(\Omega \) may be readily specified from the integration of (7) starting from the initial point \(x(0) \), while \(Q, R, Z \) are weighting matrices (in function of \(Q, R, \) and \(Z \)) over the optimisation \(N_o \) (see e.g. Goodwin et al. (2005) for details). Given that \(R > 0 \) in the cost criterion (8) the Hessian \(H \) is positive definite, and thus the QP is convex and has a global optimum.
Using the above notation, we can express the problem of minimising (8) subject to the equality constraints (7) and inequality constraints (5)–(6) as follows:

$$\min_{U} \frac{1}{2} U^T H U + U^T [x(0) - H\hat{U} + G\Delta D]$$

subject to:

$$LU \leq W$$

where \(L \) and \(W \) are matrices reflecting the lower and upper bounds of the state and control constraints (given state integration starting from the initial point \(x_0 \)) over the optimisation horizon \(N_o \) (see e.g. Goodwin et al. (2005) for details). Once the open-loop QP problem (10) is solved from the known initial \(x(0) \) and predicted disturbances \(d(k), k = 0, 1, \ldots, N_p - 1 \), the rolling horizon scheme applies, at the current time \(k \), only the first control move, formed by the first \(m \) components of the optimal vector \(U^*(x_0) \) in (10). This yields a control law of the form

$$u(k) = M \left[x(k), d(\kappa) \right], \quad \kappa = k, k + 1, \ldots, k + N_p - 1$$

where \(x(k) = x_0, k = 0, \ldots, N_o - 1 \) is the current state of the system and \(M \) is a linear mapping from the state and disturbance spaces to control. Then the whole procedure is repeated at the next time instant, with the optimisation horizon kept constant.

4 Case Study and Results

4.1 Case Study Description

Fig. 3 depicts the shape of \(O_c \) in function of \(n(t) \) for the 2.5 square mile area of Downtown San Francisco, CA, including 110 junctions and 440 links (see Fig. 2). Fig. 3 confirms the existence of a fundamental diagram like-shape for the study area, which shape is seen to depend on the accumulation of vehicles. It can be seen that as the vehicle accumulation is increased from zero, the network flow increases to a maximum (flow capacity) and then turns down and decreases sharply to a low value possibly zero (in case of gridlock). Flow capacity (around \(30 \cdot 10^4 \) veh/h) is observed at a vehicle accumulation of about 6,000 veh. The shape of the fundamental diagram (and its critical parameters) was reproduced under different demand and OD scenarios with Dynamic Traffic Assignment activated to capture somewhat adaptive drivers in a microsimulation study via AIMSUN (Aboudolas and Geroliminis, 2013). The shape of \(O_c \) in Fig. 3 can be approximated by the following 3rd order polynomial:

$$O_c(n) = 4.128 \times 10^{-7} n^3 - 0.0136n^2 + 113.264n$$

where \(n \in [0, 13000] \). To determine the output \(O \) from \(O_c \) an average trip length \(L = 1.75 \) km and average link length \(l = 0.25 \) km were considered. The value of \(L \) is consistent with the average trip length and the travel time across the test area of San Francisco.
4.2 Controller Design

The desired vehicle accumulation for (7) is selected \(\hat{\theta}_o = 0 \), \(\forall o \in O \). Table 1 provides the different geometric characteristics of the fifteen (\(|O| = 15 \)) entrance links and controlled gates shown in Fig. 2 (illustrated with blue arrows). The third column provides the storage capacity of each controlled link that is the vector \(\mathbf{x}_{\text{max}}^T = [n_{\text{max}}, \ell_{1,\text{max}}, \ldots, \ell_{|O|,\text{max}}] \). The last three columns of the table provide the vectors \(\underline{q} = q_{\text{min}}, \hat{\mathbf{u}} = \mathbf{q}, \) and \(\mathbf{u}_{\text{max}} = \mathbf{q}_{\text{max}} \), respectively. These values are calculated from the field applied signal plans presented in columns 5 (\(C_o \): saturation flow), 6 (\(C_o \): cycle length), 7 (\(g_{\text{min}} \): minimum green time), 8 (\(g_{\text{nom}} \): nominal green time), and 9 (\(g_{\text{max}} \): maximum green time), via \(gS/C \). In this way, any input flows ordered by the distributed perimeter flow control strategy are feasible traffic signal plans.

Note that traffic signals at controlled gates are all multiphase fixed-time operating on a common cycle length of 90 s for the west boundary of the area (gates \(o = 1, \ldots, 11 \)) and 60 s for the rest (gates \(o = 12, \ldots, 15 \)).

For the solution of (9) or (11) it suffices to specify the state matrices \(A, B, \) and \(C \), and weighting matrices \(Q \) and \(R \). All state matrices are constructed for the studied network on the basis of the selected \(\mathbf{x}^T = [\hat{n} \ 0] \), \(\hat{n} = \mathbf{q} \) and \(\mathbf{d} = 0 \), and sampling time \(T = 180 \) s. The matrix \(Q = \text{diag}(1/w, 1/\ell_{1,\text{max}}, \ldots, 1/\ell_{|O|,\text{max}}) \) is selected, where \(w = 2000 \) veh was found appropriate to achieve equity. The diagonal elements of \(R \) were set equal to \(r = 0.0001 \). The disturbance vector \(\mathbf{d} \) consists of the demands \(d_o, o = 1, \ldots, 15 \), at every origin of the protected network and disturbance \(d_o \) of the fundamental diagram. Trapezoidal demands have been used for \(d_o(k) \), \(o = 1, \ldots, 15, k = 0, \ldots, N_p - 1 \) over a predicted horizon of \(N_p = 40 \). To capture the uncertainty of the (scaled) fundamental diagram, particularly when the network operating in the congested regime (notice the noise for \(n > 6000 \) veh), \(d_o \) is selected to vary gradually with respect to \(n(k) \) in the range \([-3000, 3000]\) veh/h for \(n > 6000 \) veh.

Table 1: Different characteristics of entrance links and controlled gates.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Length (m)</th>
<th>Capacity (veh)</th>
<th>No lanes</th>
<th>Saturation Flow (veh/h)</th>
<th>Cycle Length (s)</th>
<th>Min Green (s)</th>
<th>Nominal Green (s)</th>
<th>Max Green (s)</th>
<th>Min Flow (veh/h)</th>
<th>Nominal Flow (veh/h)</th>
<th>Max Flow (veh/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>235</td>
<td>128</td>
<td>3</td>
<td>5400</td>
<td>60</td>
<td>15</td>
<td>33</td>
<td>39</td>
<td>1350</td>
<td>2970</td>
<td>3510</td>
</tr>
<tr>
<td>2</td>
<td>299</td>
<td>109</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>30</td>
<td>42</td>
<td>720</td>
<td>1800</td>
<td>2520</td>
</tr>
<tr>
<td>3</td>
<td>299</td>
<td>163</td>
<td>3</td>
<td>5400</td>
<td>60</td>
<td>15</td>
<td>27</td>
<td>39</td>
<td>1300</td>
<td>2430</td>
<td>3510</td>
</tr>
<tr>
<td>4</td>
<td>271</td>
<td>98</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>35</td>
<td>42</td>
<td>720</td>
<td>2100</td>
<td>2520</td>
</tr>
<tr>
<td>5</td>
<td>261</td>
<td>95</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>24</td>
<td>42</td>
<td>720</td>
<td>1440</td>
<td>2520</td>
</tr>
<tr>
<td>6</td>
<td>299</td>
<td>109</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>30</td>
<td>42</td>
<td>720</td>
<td>1800</td>
<td>2520</td>
</tr>
<tr>
<td>7</td>
<td>298</td>
<td>109</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>36</td>
<td>39</td>
<td>720</td>
<td>2160</td>
<td>2340</td>
</tr>
<tr>
<td>8</td>
<td>298</td>
<td>109</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>37</td>
<td>42</td>
<td>720</td>
<td>2220</td>
<td>2520</td>
</tr>
<tr>
<td>9</td>
<td>296</td>
<td>269</td>
<td>5</td>
<td>10000</td>
<td>60</td>
<td>17</td>
<td>27</td>
<td>31</td>
<td>2833</td>
<td>4500</td>
<td>5167</td>
</tr>
<tr>
<td>10</td>
<td>296</td>
<td>269</td>
<td>5</td>
<td>8800</td>
<td>60</td>
<td>16</td>
<td>27</td>
<td>38</td>
<td>2347</td>
<td>3960</td>
<td>5573</td>
</tr>
<tr>
<td>11</td>
<td>299</td>
<td>109</td>
<td>2</td>
<td>3600</td>
<td>60</td>
<td>12</td>
<td>25</td>
<td>42</td>
<td>720</td>
<td>1500</td>
<td>2520</td>
</tr>
<tr>
<td>12</td>
<td>190</td>
<td>103</td>
<td>3</td>
<td>5400</td>
<td>90</td>
<td>13</td>
<td>42</td>
<td>43</td>
<td>780</td>
<td>2520</td>
<td>2580</td>
</tr>
<tr>
<td>13</td>
<td>81</td>
<td>44</td>
<td>3</td>
<td>5400</td>
<td>90</td>
<td>12</td>
<td>18</td>
<td>41</td>
<td>720</td>
<td>1080</td>
<td>2460</td>
</tr>
<tr>
<td>14</td>
<td>81</td>
<td>44</td>
<td>3</td>
<td>5400</td>
<td>90</td>
<td>12</td>
<td>20</td>
<td>41</td>
<td>720</td>
<td>1200</td>
<td>2460</td>
</tr>
<tr>
<td>15</td>
<td>341</td>
<td>186</td>
<td>3</td>
<td>5400</td>
<td>90</td>
<td>12</td>
<td>48</td>
<td>59</td>
<td>720</td>
<td>2880</td>
<td>3540</td>
</tr>
</tbody>
</table>
4.3 Open-loop Control Results

Several tests were conducted in order to investigate the behaviour of the proposed distributed control for different scenarios. The scenarios were created by assuming more or less high initial queues $\ell_o(0)$ in the fifteen origin links of the protected network while the protected network area operating in the congested regime, i.e., its state $n(0) > 6000$ veh. The optimisation horizon for each scenario is 2 h (40 cycles).

Fig. 4 shows some obtained trajectories for a heavy scenario with $\ell_o(0) = 0.7\ell_{o,\text{max}}$, $\forall o = 1, \ldots, 15$ and two initial states in the congested regime of the fundamental diagram $n(0) = 7000$ veh and $n(0) = 12000$ veh (extreme case). Tests were conducted with and without external demand flows at origin links, denoted with “s+d” and “s-d”, respectively. It should be noted that despite the same level of saturation (70%) is used for all origin links, the corresponding vehicle queues observed vary due to different geometric characteristics. The main observations are summarised in the following remarks:

- The proposed strategy manages to stabilise the vehicle accumulation of the protected network around its desired point $\hat{n} = 4000$ veh for all initial points (even in the extreme case) and cases with and without disturbances (see Fig. 4(c)).

- The proposed distributed control strategy manages to dissolve the initial origin link queues in a balanced way (see Figs. 4(j–o)) and thus, the desired control objective of queue balancing and equity for drivers using different gates to enter the protected network area is achieved.

- The proposed strategy manages to stabilise all input flows to their desired values \hat{q} (corresponding to the nominal signal plan in Table 1) in the steady state, i.e., where $n = \hat{n} = 4000$ and system's throughput is maximised (see Figs. 4(d–i), notice the different reference points \hat{q}_o in each subfigure).

- The input flows ordered by the distributed perimeter flow control strategy have different trajectories and characteristics (see control trajectories in Figs. 4(d–i)). This confirms that an equal distribution of ordered flows to corresponding junctions is not optimal, as largely assumed or ignored in previous studies. As can be seen, the proposed strategy determines optimally distributed input flows (or feasible entrance link green times) by taking into account the individual geometric characteristics of the origin links as well as minimum and maximum constraints.

- Excessive demand and high initial queues at origin links, coupled with the applied control, causes congestion shortly after the beginning of the time horizon. At the same time the protected network is operating in the congested regime ($n(0) = 7000$ veh or $n(0) = 12000$ veh). As can be seen, the distributed control strategy first restricts the high initial queues at origin links to flow into the oversaturated protected network area and then, in order to manage the developed long queues therein (in some cases reach the upper bounds), it gradually increases the input flows. Note that for some gates (7, 8 and 9) bound constraints are active for a certain time period.

Figs. 4(a, b) depict the state and control trajectories for the perimeter flow control problem without origin link dynamics, i.e., for the single-input single output control problem with only (1). For this problem $\hat{n} = 6000$ veh is considered. As can be seen, the strategy manages to stabilise the vehicle accumulation of the protected network around its desired point $\hat{n} = 6000$ veh starting from a number of different initial points. The strategy restricts flow to enter the protected network area whenever $n > 6000$, while increases the input flows for $n < 6000$. It is evident that the single-region control strategy without queue dynamics outside of the protected area needs more time and effort to stabilise the system at $k = 60$, compared to the proposed distributed perimeter flow control, which stabilises all queues and protected network's accumulation at $k = 40$. This is attributed to the complete lack of information of the geometric characteristics of the origin links that affects control decisions. On the other hand, the control flexibility and efficiency of the proposed control while explicitly considering the queue dynamics and constraints underlines the clear superiority of appropriate distributed flow control.
Figure 4: (a, b) State and control trajectories without link dynamics; (c) State trajectories of the protected network for different initial points with and without disturbance; (d–o) State and control trajectories of six selected origin links (gates) for different initial points with and without disturbance.
5 Conclusions

In this paper, an integrated model for distributed perimeter flow control is presented. Compared to previous works, the proposed scheme determines optimally distributed input flows for a number of gates located at the periphery of a protected network area. Simulation results for a protected area of downtown San Francisco with fifteen gates of different geometric characteristics were presented. Results demonstrated the efficiency and equity properties of the proposed approach to better manage excessive queues outside of the protected network area and optimally distribute the input flows. It is expected that similar policies can also be utilised for dynamic road pricing. Future research will focus on the efficiency versus equity properties of perimeter flow control with queue dynamics and the integration of additional components for dynamic road pricing.

References

