
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/163512/

Deposited on: 6 June 2018
Image Challenge – Acute shortness of breath with widespread T wave inversion.

Rachael Bruce and Chris Isles, Medical Unit, Dumfries and Galloway Royal Infirmary, Dumfries DG2 8RX

Rachael Bruce FY1
Chris Isles Consultant Physician

Correspondence:
Prof Chris Isles
Medical Unit,
Dumfries infirmary
Dumfries DG2 8RX
Email chris.isles@nhs.net
Mob 07590 317255
Case History

A 72 year old woman presented with sudden onset shortness of breath. There was no associated chest pain, nausea or sweating. She had had breast cancer 14 years previously, treated by wide local excision, radiotherapy and tamoxifen. She gave no previous history of cardiac or pulmonary disease and had no current risk factors for venous thromboembolism. On examination she had good air entry to both lungs and normal breath sounds. Heart rate was 88/min with BP 133/73mmHg. Her SpO₂ on air was 92-95% at rest. She had no lower limb swelling or tenderness. Revised Geneva score was 4 suggesting moderate clinical probability of PE. There was no suggestion of recurrent breast cancer clinically. Haemoglobin was 145g/l, renal function was normal and CRP was 9mg/l (0-10). NT-proBNP was raised at 1158pg/ml (0-150). Her CXR was normal and her ECG is shown below (figure 1).

Discussion:

The ECG in our patient’s case shows right ventricular strain. This is associated with higher clot load in acute pulmonary embolism (APE) (1) and with higher mortality and greater risk of clinical deterioration (2). Acute coronary syndrome (ACS) can also cause T wave inversion (TWI) but in ACS with TWI in leads V1-V4 it would be unusual to find TWI in leads III and aVF as well (3). RV strain pattern is not pathognomonic for APE as it can also occur in patients with chronic respiratory disease (4). However its presence in an acutely breathless patient with no previous respiratory disease and a normal CXR must make APE extremely likely. The doctor who first saw the patient considered APE, prescribed dalteparin and confirmed the diagnosis by CTPA the following day (figure 2). The patient was anticoagulated with dalteparin and warfarin and was much improved when seen at the clinic 4 weeks later. No further investigations were undertaken to determine the source of the embolism. She remained well at her last clinic review 18 months after her initial presentation.

Teaching point

Patients with acute shortness of breath, no previous cardiorespiratory disease, hypoxaemia, normal CXR and RV strain pattern on their ECG should be treated as APE until proven otherwise.

Word count 342

Figure 1.

Initial ECG. RV strain is recognised by the simultaneous presence of TWI in V1-4, III and aVF

Figure 2.

CTPA. Acute pulmonary embolism with clots in both pulmonary arteries extending to all lobar branches (arrowed).
Competing interests

We have read and understood BMJ policy on declaration of interests and declare that we have no competing interests.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

Copyright

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence (to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution and convert or allow conversion into any format including without limitation audio, iii) create any other derivative work(s) based in whole or part on the on the Contribution, iv) to exploit all subsidiary rights to exploit all subsidiary rights that currently exist or as may exist in the future in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Contributorship

CI had the idea, RB wrote the first draft and both authors contributed to the final draft.

References

