Food Waste Gasification through Hydrothermal Carbonization Pre-treatment

Izaharuddin, A.N., Paul, M.C. , Theppitak, S., Dai, X. and Yoshikawa, K. (2018) Food Waste Gasification through Hydrothermal Carbonization Pre-treatment. Joint Meeting of the German and Italian Sections of the Combustion Institute, Sorrento, Italy, 23-26 May 2018. ISBN 9788888104225

[img]
Preview
Text
161598.pdf - Accepted Version

268kB

Publisher's URL: http://www.combustion-institute.it/proceedings/XXXXI-ASICI/proceedings2018.pdf

Abstract

Non-recyclable wastes promise great potential for the development of new and robust Waste-to-Energy (WtE) technology. Most of these wastes consist of the vital energy contents which could potentially be converted to various forms of useful energy through advanced thermochemical processes such as gasification, thus helping to reduce landfill of wastes. In gasification technology, syngas (synthesis gas) as the energy source is produced, which mainly includes hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) contents. Food waste has a great potential in the energy field as a feedstock and it has the advantage in recovering energy since there is the high energy content help to reduce landfill. The equilibrium model of food waste gasification initially is developed by fixing the value of temperature at 1023K – 1173K with moisture content of 0% - 40% and equivalence ratio of 0.2 – 0.4, by using air as a gasifying agent. Secondly, mass and energy balance equations are solved to calculate the gasification temperature thorugh an iterative procedure. For this research, food waste has been collected and the ultimate and proximate analyses performed, and the data then fed into a gasification equilibrium model to compare the syngas production between non-pre-treatment and hydrothermal carbonisation (HTC) pretreatment food waste.

Item Type:Conference or Workshop Item
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Izaharuddin, AINUL NADIRAH and Paul, Professor Manosh
Authors: Izaharuddin, A.N., Paul, M.C., Theppitak, S., Dai, X., and Yoshikawa, K.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
ISBN:9788888104225
Copyright Holders:Copyright © 2018 ASICI - Associazione Sezione Italiana del Combustion Institute
First Published:First published in Joint Meeting German and Italian Sections of The Combustion Institute 41st Meeting of the Italian Section of The Combustion Institute Proceedings, May 23-26, 2018
Publisher Policy:Reproduced with the permission of the publisher
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record